Staircase Traversal via Reinforcement Learning for Active Reconfiguration of Assistive Robots - IMT Atlantique
Communication Dans Un Congrès Année : 2020

Staircase Traversal via Reinforcement Learning for Active Reconfiguration of Assistive Robots

Résumé

Assistive robots introduce a new paradigm for developing advanced personalized services. At the same time, the variability and stochasticity of environments, hardware and unknown parameters of the interaction complicates their modelling , as in the case of staircase traversal. For this task, we propose to treat the problem of robot configuration control within a reinforcement learning framework, using policy gradient optimization. In particular, we examine the use of safety or traction measures as a means for endowing the learned policy with desired properties. Using the proposed framework, we present extensive qualitative and quantitative results where a simulated robot learns to negotiate staircases of variable size, while being subjected to different levels of sensing noise.
Fichier principal
Vignette du fichier
main.pdf (2.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02676585 , version 1 (31-05-2020)
hal-02676585 , version 2 (10-06-2020)
hal-02676585 , version 3 (15-12-2020)

Identifiants

  • HAL Id : hal-02676585 , version 1

Citer

Andrei Mitriakov, Panagiotis Papadakis, Sao Mai Nguyen, Serge Garlatti. Staircase Traversal via Reinforcement Learning for Active Reconfiguration of Assistive Robots. IEEE World Congress on Computational Intelligence, Jul 2020, Glasgow, United Kingdom. ⟨hal-02676585v1⟩
359 Consultations
485 Téléchargements

Partager

More