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Abstract—Assistive robots introduce a new paradigm for
developing advanced personalized services. At the same time,
the variability and stochasticity of environments, hardware and
unknown parameters of the interaction complicates their mod-
elling, as in the case of staircase traversal. For this task, we
propose to treat the problem of robot configuration control
within a reinforcement learning framework, using policy gradient
optimization. In particular, we examine the use of safety or
traction measures as a means for endowing the learned policy
with desired properties. Using the proposed framework, we
present extensive qualitative and quantitative results where a
simulated robot learns to negotiate staircases of variable size,
while being subjected to different levels of sensing noise.

Index Terms—Cognitive robotics, learning-based control, ob-
stacle negotiation, active stability, reinforcement learning, neural
networks

I. INTRODUCTION

Among a number of applications for service robots, there is
a growing interest towards assisting activities of daily living,
for instance via assistive robots [?]. To be able to palliate the
loss of autonomy of elderly or frail people, in the context of
ambient assisted living (AAL), a robot is required to transport
objects or humans (see Fig.?? for a representative example)
in an environment populated with various 3D obstacles such
as steps and stairs. To enable mobility in 3D environments,
a 2D environment structure typically used in path planning
is overly restrictive if the robot requires to undertake novel
tasks. The first possible application relates to an autonomous
mobile robot (agent) navigating in indoor, usually multi floor,
environments while accomplishing different tasks provided by
a human or an algorithm. Such a robot can be integrated into
a smart home with connected objects and mobile robots such
as presented in [?] in the context of the leadership (Chaire)
research program M@D whose research goal concerns the
creation of a living environment for elderly or frail people
whose loss of autonomy would be palliated by the use of

Fig. 1: Example platform and application scope: Scewo Bro
wheelchair traversing a staircase (https://scewo.ch/en/bro/).

connected objects and mobile robots (https://chaire-mad.fr/
la-chaire-md/).

A major challenge then amounts to autonomously and
safely traversing (negotiating) staircases which constitutes the
scope of this paper. Thanks to task similarity, once the first
use-case has been successfully addressed, we could transfer
the developed behavior to the second use-case of person
transportation.

Earlier works addressing the stair traversal problem [?],
[?] were largely based on solutions customized to specific,
previously known robot kinematics and based on accurate
stair parameter estimates. Broadly speaking, this complicates
portability to platforms with different or unknown kinematics
or poor environment observability, weakly taking into con-
sideration the dynamics of physical interaction. On the other
hand, learning-based control of flippers [?] allows to make
less restrictive hypotheses with respect to variation in the
environment or the robotic kinematics and focuses more on
task constraints such as safety [?]. A more recent approach [?]
for navigation in multi floor environment, that has shown good

https://scewo.ch/en/bro/
https://chaire-mad.fr/la-chaire-md/
https://chaire-mad.fr/la-chaire-md/
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performance on more than hundreds of staircase instances,
relies on the passive adaptation to obstacles which cannot
be generalized to assistive robots due to high movement
stochasticity.

Following up on earlier work [?], we present in this article
a learning-based control approach for the problem of staircase
negotiation (see Fig. ??), applied to an articulated, tracked
robotic vehicle. Employing a reinforcement learning-based
(RL) pipeline, our focus here is on the constraints of the
control policy that we wish to satisfy, such as safety, traction,
execution speed. To demonstrate the generalization ability of
the framework, the policy is learnt and tested for a variety of
staircases of different step heights and angles, while evaluating
its capacity to cope with different levels of noise in its sensory
data. This initial work on simulation can serve as paradigm for
transfer to different platforms but it can also provide insights
when modelling control for newly encountered situations.

The remaining of the paper is organized as follows. Section
?? presents related works for the problem of stair negotiation
together with stability assessment techniques. In section ??
the proposed reinforcement learning framework is presented.
In section ?? we formulate the notion of safe stair traversal
and design the reward function. Finally, in section ?? the
experimental setup is presented together with the obtained
results.

II. RELATED WORK

Following various attempts for the kinematic modelling
of tracked robots, the authors of [?] were among the first
to propose an effective motion controller. To improve the
capability of negotiating more complex obstacles, such robots
are often equipped with articulated front and/or rear flippers.
These flippers improve obstacle negotiation skills but they
inevitably increase the complexity of robot control due to the
addition of degrees of freedom while accounting for surface
geometry. We can broadly distinguish two main approaches for
the control of such robots, namely, learning-free and learning-
based.

A. Learning-free approaches

Among learning-free approaches, a terrain traversability (we
refer the reader to [?] for an extensive review on the notion of
traversability) study was performed in [?] as well as a motion
control algorithm for a tracked robot with two front flippers.
This work assumes knowledge of the exact robot kinematics
which is not always feasible for commercial robots, while
motion control is only applied to the traversal of a palette.
The authors of [?] elaborate the idea of tangential orientation
of flippers during obstacle traversing along with a motion
planning framework. They suggest that this allows to negotiate
any uneven structure within the limits of robot capabilities, yet
based on exhaustive laser sensory data about the environment.
In [?] the authors introduce a framework capable of dealing
with obstacles exceeding obstacle negotiation capabilities of
[?]. They endow a tracked robot with passive flippers, which

apply force against the traversing obstacle, and a warning sys-
tem based on the normalized energy stability margin (NESM).
This stability criterion, which estimates deviation from the
most stable position, became widely used in robotics while
keeping comprehensibility and will be discussed later in detail.
The previous framework considers precise knowledge of robot
dynamics and supposes that a human expert controls the robot.

To the best of our knowledge, the most elaborate and
recent learning-free method was proposed in [?] and delegates
the problem of stair negotiation to passive adaptation of the
mechanical platform. The latter comprises six arc-shaped legs
rotating under a certain control algorithm used both in outdoor
and indoor multi floor navigation. This platform is more
suitable for search and rescue missions for what it was initially
devoted to [?]. Obviously, its utility is limited in the context
of assistive robotics, due to the stochasticity of its movement
that could cause considerable slipping and shaking.

B. Learning-based approaches

Employing learning-based control becomes more relevant in
cases where the true kinematics of such robots are harder to
obtain or approximated in simulation [?]. The authors of [?]
were among the first who used the learning-based approach
and applied deep deterministic policy gradient (DDPG) to the
staircase negotiation problem in an end-to-end fashion. They
mapped input data from an inertial measurement unit, front
and back cameras with flipper commands using a convolu-
tional neural network (CNN). The main shortcoming of this
work is the high processing cost induced from the employed
CNN and slow convergence to the optimal policy. One of the
most elaborate approaches for flipper control in the scenario of
palette traversal is proposed by [?]. The main contribution con-
cerns the use of contextual relative entropy policy search [?] by
introducing safety constraints into the optimization problem. A
small number of episodes was deemed sufficient for learning to
negotiate a palette using a RL algorithm, estimating safety by a
physics-based simulator. Often, knowledge of forward/inverse
robot kinematics cannot be obtained for commercial robots. In
such cases, a learning-based approach appears more suited for
obtaining the policy of flipper control for the task of obstacle
negotiation.

C. Safety assessment

Moreover, the policy used for traversing terrains has to
ensure safety of the robot motion in some manner. For
example, safety of actions could be estimated and a robot
could be programmed to avoid such unsafe actions [?]. An-
other method is to incorporate a safety criterion inside a RL
algorithm [?]. However, this does not generalize well across
all RL algorithms. Another alternative considers integration of
penalty terms into the reward function [?] allowing to obtain
a policy with desired properties with a wider generalization
across RL algorithms. In this paper, we consider this method
and incorporate stability and traction criteria into the reward
function and study the learning performance along with policy
safety and traction.
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D. Reinforcement learning preliminaries

In this section, we concisely recall the main components of
reinforcement-based learning.

In a typical RL framework [?], at each discrete time step
t and a given state s ∈ S, an agent selects and applies an
action a ∈ A with respect to its policy π : S −→ A, obtains
a scalar reward r ∈ R and observes a new state s′ ∈ S.
Although A can be discrete or continuous, the latter choice
seems more adapted to use-cases requiring variable accuracy
depending on the state. For instance, in our use-case, the robot
may encounter situations where it is necessary to adapt flippers
drastically avoiding step-wise approaching to a desired flipper
angle as it would happen with the use of discrete action space.
The trajectory τ = {s0,a0, .., sT−1,aT−1}, called the roll-out
where T is the number of time steps in the roll-out, defines
the set of consecutive state-action pairs. A policy can either
be stochastic at ∼ πθ(at|st) or deterministic a = π(s),
depending on the problem.

RL methods could be divided into two groups which are
value-based and Policy Search (PS) methods. The first makes
an agent evaluate the quality of an action taken in some state
by calculation of a value function in accordance with the
expected cumulative reward.

Methods of the second group [?] tend to be more ad-
vantageous in robotic applications [?]. The reasons for this
are ease of implementation thanks to reduced complexity of
policy approximation and the fact that small changes in policy
do not lead to a drastic changes in behaviour in contrast to
value-based methods where an agent can start to exploit a
significantly less favorable policy after policy update.

In previous years, policy gradient (PG) algorithms attracted
significant attention because of their direct policy optimization
in contrast to value-based methods where the policy is obtained
via its relation with the learnt approximator. The main idea
behind these algorithms is the gradient ascent over the policy
approximator parameters θ using the policy gradient∇θJ(πθ),

θk+1 = θk + α∇θJ(πθk) (1)

Fig. 2: Stair traversal task illustration

where α is the learning rate and J(πθ) is the expected return
that could be written as follows:

J(πθ) = Eτ∼πθ [R(τ)] (2)

R(τ) is the cumulative reward over a trajectory τ .

R(τ) =

T−1∑
t=0

rt (3)

Finally, rt is the reward obtained by the robot during a time
step t, its value depending on the reward function design and
will be discussed in the following section ??.

Among various possible policy gradient algorithms, we have
selected Proximal Policy Optimization (PPO) [?], [?] as a
state-of-the-art algorithm that exhibits good trade-off between
ease of tuning, sample complexity, ease of implementation and
good performance [?]. This algorithm updates the policy with
stochastic gradient ascent while keeping a new policy close to
the previous one that could be completed either by penalisation
of KullbackLeibler divergence or specialized clipping in the
objective function.

III. REINFORCEMENT LEARNING FRAMEWORK

A. Flipper Control Problem Formalisation

Robot control could be divided into reactive main track and
flipper control [?], [?]. Reactivity implies that the controller
directly maps sensor input to desired actions. Hereafter, we
assume an independently developed main track controller (i.e.
a global path planner) and focus only on the development
of flipper control whose objective is to perform a mapping
between the pose of a robot on a staircase and the appropriate
flipper commands.

In relation to the addressed problem, we consider the robot
to select two rotation angles ψfront, ψrear forming an action
vector a = (ψfront, ψrear) ∈ [ψmin, ψmax]2 for the front and
rear flippers while constant effort is applied to each track mov-
ing it forward. The state vector s = (px, py, φfront, φrear) ∈ S
consists of the distances px, py of the robot centroid to the
next step nosing along the axes X and Y (see Fig. ??) where
the origin corresponds to the step center. It further includes the
flipper angles φfront and φrear in each flipper frame which be-
long to [φmin, φmax] where φmin < ψmin < ψmax < φmax.

In accordance to the reactive control architecture, the task to
be learned consists of flipper reconfiguring so as: (i) to enable
the robot to reach the top of the staircase and (ii) to fulfil
certain policy constraints such as traction and stability.

This is performed with application of PPO where the agent’s
goal is to maximize the cumulative return (Eq.??). Learning
efficiency is sensible to the reward function design as well
as learning policy that can incorporate desired or unpleasant
characteristics by mistake. We introduce such reward functions
which bring safety characteristics to the policy in the next
section and, afterwards, analyze their impact on stability in
comparison with the ”default” reward function elaborated for
stair negotiation within discussed problem formulation.
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Fig. 3: Relative distance of the robot centroid to the next
step edge/nosing

Our contribution of this paper is summarized as follows: (i)
we apply Proximal Policy Optimization (PPO) to learn flipper
control for the stair traversal task in simulation (see Fig. ??)
and (ii) we examine the use of stability and traction measures
during policy learning and (iii) we show the generalisation
capability of our policy by varying the terrain parameters and
simulating sensory noise.

B. Reward function design

1) Baseline/default reward function: The first and most
simple examined reward function remunerates the robot ac-
cording to the travelled distance on the staircase. It receives the
positive reward rt = ∆xt/‖Dmax‖ where ∆xt is the travelled
distance to the goal on the ground, stair or upper landing at
time step t, and ‖Dmax‖ is the total distance from the starting
position to the goal. We do not assign the positive reward twice
if the robot slips back and re-travels an already seen position.
The robot starts to receive this positive reward when it comes
closer than D2 = d + 0.5l on the ground to the first stair
step (see Fig. ??, ??), while the episode ends when the robot
crosses D4 on the stair landing. Thus, the cumulative episode
reward R(τ) becomes:

R(τ) =

∑T−1
i=0 ∆xt
‖Dmax‖

(4)

That total reward hence varies from 0 to 1 accordingly to
an applied policy. If the robot gets closer than D2 without
appropriate flipper actions, it could be stuck (cumulative
reward 0), thus, we start to provide the reward to evaluate
policy performance once the robot is close enough to the first
step. The episode is considered terminated if the distance D4

is crossed on the upper landing (cumulative reward 1). D4 is
chosen to be equal to d+ l

2 , because we want to assure that the
robot loses the contact with the stair at the end of the episode,
and the traversal is successfully accomplished.

2) Normalized Energy Stability Margin (NESM): Following
the idea of applying negative rewards to unsafe states in
Markov Decision Processes [?], we incorporate a negative

Fig. 4: NESM notations

penalty term by introducing a stability criterion into the reward
function. In detail, we employ the Normalized Energy Stability
Margin (NESM) [?], [?] that is based on the fact that the robot
rotates around a support line when tumbling/tipping over. This
margin E is usually deduced as the difference between the
maximum centroid height and its current height [?].

E = Hmax −H (5)

Based on this measure, we associate robot instability
I as equal to the current height H over the surface A′

(see Fig. ??). Thus, when I = 0 the robot is consid-
ered as maximally safe, whereas when I = Hmax =

cos(β)
√
d2 + ( l2 )2 − ld cos(π − |φmin|) − h where β is the

stair inclination, the robot is maximally unsafe. The value
Hmax is the distance of the robot centroid to the surface A′

when the robot is pivoting over the lower support polygon
foothold and φrear = φmin. We consider the negative reward
based on NESM to be −I/1m where division by 1m ensures
independence from the chosen units of measurement. Thus,
the reward per time step rt = ∆xt/‖Dmax‖ − I . Every
time step the robot can obtain a positive reward along with a
negative one if its gravity center G deviates from the surface
A′, whenever the robot centroid projection is located within
the first and last nosings on the surface A′.

3) Support polygon (SP): The idea of maximizing the
contact of flippers to the traversing surface is commonly em-
ployed as a measure of traversability. Authors of [?] suggested
to set the orientation of flippers tangential with respect to
the traversed surface during obstacle negotiation in order to
maximize traction. In [?] flippers are even pushed against the
traversed surface in order to enforce contact.

It is reasonable to assume that a minimal contact sur-
face area should be maintained, between the flippers and
the obstacle being negotiated, otherwise the exerted control
actions might not have the desired effect. On the other hand,
depending on the geometry of the robot and the staircase,
maximizing surface contact might drive the robot to poses
from which it would be impossible to successfully traverse
the staircase.
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Knowing the actual size proportions between a conventional
staircase and commercial tracked robotic vehicles, maximizing
traction while traversing a staircase indeed amounts to moving
at an angle equal to the inclination of the staircase. Therefore,
we assume that the maximum traction with the surface is
achieved when the robot maximizes its SP. The maximum SP
surface area Pmax is then simply the projected surface area of
the robot on the surface A when the robot is located on the
staircase with a flat configuration, namely, with flat flippers.

Letting the actual SP surface area be P , in order to fa-
vor a control policy where the robot has increased traction,
a negative reward is considered at each time step rp =
−(Pmax−P )/(Pmax). Thus, the overall reward per time step
is rt = ∆xt/‖Dmax‖+ rp.

IV. EXPERIMENTS

In this section, we present the experiments that we con-
ducted to evaluate the RL control pipeline as was described
earlier in Section ??, quantitatively as well as qualitatively, by
varying the form of staircases and in the presence of different
levels of simulated noise.

Main experimentation protocol: We simulate the control-
learning pipeline of the robot in the Gazebo environment
(gazebosim.org). The tracked robot is endowed with front
and rear flippers and its task is to learn how to mount a
five-step staircase whose tread and rise are randomly chosen.
Among various alternatives for imitating mobile robot tracks,
we employ the common approximation of representing tracks
by an ensemble of overlapping, non self-colliding, tracked
wheels (cf. [?]).

Experiments were performed repeatedly for a given configu-
ration of a staircase. At each time step the robot observes the
state vector s. The state vector comprises relative distances
to the next step nosing px and py . The former varies from
the minimum distance pminx = 0 to the horizon of step
observation pmaxx = 1m. Relative distance along Y axis
has as its maximum value the biggest height pmaxy which
is assumed to be the negotiation robot capability Hcritical,
thus, pmaxy = Hcritical = h + d · sin π

4 and its minimum
pminy = −d · sin π

4 .
In every episode, irrespective of the results of the previous

episode, a new staircase of 5 steps is generated in the following
way. First, a random rise size Hrise ∈ [Hmin

rise , H
max
rise ] is sam-

pled where Hmin
rise = 0.5 ·Hcritical and Hmax

rise = 0.8 ·Hcritical.
Second, the stair angle β ∈ [βmin, βmax], where βmin = 20◦

and βmax = 30◦, is randomly sampled. Last, the tread size is
calculated as Dtread = Hrise/ tan(β).

The robot starts at a front-parallel position with respect to
the staircase at a distance of D1 +D2. Once the robot travels
D1, upon application of an action the robot obtains a reward r
proportional to the travelled distance and potentially penalized
depending on the chosen reward function (see section ??).
A traversal experiment is deemed as successful if the robot
succeeds in traversing over D4 on the upper landing from
the last nosing. The finite-horizon undiscounted return of
one trajectory represents the proportion of travelled distance

and could vary from 0 to 1 if we do not model safety.
This sequence is repeatedly executed until the end of an
episode that is set to occur after a maximum number of 100
time steps. If the standard deviation of 25 most recent robot
position estimations along the X-axis drops under 0.01 m,
the episode stops assuming that the robot has been “stuck”.
All experiments have 10000 time steps that compares with
250 episodes while remaining parameters were chosen in
accordance with [?].

Employed policy representation: We wish to map the
robot state represented by a vector s to a vector of actions
a under the policy π, which requires a good policy function
approximation. Artificial neural networks have demonstrated
remarkable results in machine learning as well as in rein-
forcement learning in particular, and could be well suited
for nonlinear function approximation [?], [?], [?]. Having
small input and output vectors of estimated robot state and
corresponding actions, we approximate the policy with a multi-
layer perceptron consisting of two layers where each of them
has 32 neurons with tanh activation function, in contrast to
[?] which employs a complex CNN because of necessity to
treat complex image input data. Judging from the obtained
qualitative data, this policy function approximator provided
satisfactory results for the task under consideration.

Policy testing: A learnt policy is evaluated on stair con-
figurations that do not necessarily appear during learning. We
perform this after the first policy update and, then, every 8
policy updates on three stair configurations with parameters
presented in Table ??. During this assessment, we calculate
mean cumulative reward, stability and traction over 3 cases
which correspond to small, medium and big staircases also
called configurations.

TABLE I: Stair configurations used in evaluation

Type Step height Stair angle
Small Hmin

rise βmin

Medium 0.5(Hmin
rise +Hmax

rise ) 0.5(βmin + βmax)
Big Hmax

rise βmax

A. Reward function evaluation

Along with the quantitative results presented later in this
section, we bring a video that provides representative results of
the learnt policies for staircases of varying difficulty, accessi-
ble in (https://partage.imt.fr/index.php/s/pBSzKaoeDnqFSyA/
download).

For every type of reward function, we performed 3 training
repetitions. During experiments, cumulative reward, NESM-
based instability measure I and estimated robot projection
ratio P/Pmax were measured every 20 episodes.

Fig. ?? presents the smoothed average cumulative reward
per learning episode and testing, using min-max bands. Here-
inafter referred smoothing is accomplished using an exponen-
tial moving average (EMA) with the coefficient 0.95 and 0.8
for learning and testing curves respectively.

gazebosim.org
https://partage.imt.fr/index.php/s/pBSzKaoeDnqFSyA/download
https://partage.imt.fr/index.php/s/pBSzKaoeDnqFSyA/download
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With respect to learning performance (Fig. ?? (a)), the
NESM-based and SP policies converge as early as the unsafe
policy (around 175 episodes) and their mean episode returns
vary from 0.5 at the beginning up to 1 at the end. We can
observe the presence of non-zero episode cumulative rewards
in the beginning that could be provoked by random actions that
the robot makes in the beginning of training which allows it to
reach half of its chassis length on the staircase. On the other
hand, the optimal reward values per episode are slightly lower
for policies that incorporate safety, because of unavoidable
necessity to perform less safe actions. We can further observe
that max bands of learning curves reach the maximum return
after 100 episodes for all types of reward function. This
means that policies are yet capable to perform appropriate
flipper control, but min bands are constantly increasing due to
behaviour improvement on unseen staircases. By 200 episodes,
the mean curves converge and this could be considered as the
end of learning.

With respect to testing performance (Fig. ?? (b)) for stair
configurations of varying difficulty (cf. Table I), we observe
that the mean reward tends to become higher during learning,
which suggests a successful learning progress, independently
of the staircase. Moreover, the mean test learning curve for SP
policies constantly increases the cumulative reward Rτ that
also confirms steady learning of a policy that satisfies safety
constraints.

(a) Learning

(b) Testing

Fig. 5: Smoothed cumulative reward R(τ) during (a)
learning and (b) testing

With respect to the results shown in Fig. ?? (a), we can
deduce that the policy safety does not change too much in
the beginning of the learning due to possible difficulties to
negotiate the stair. Instability for all 3 policy types starts to
increase after 100 episodes which correlates to learning curves
whose max bands reach the maximum cumulative reward 1.
We can argue that a safety drop is unavoidable to perform in
order to accomplish the main task of stair traversal. By the end
of the training, the lowest instability corresponds to NESM-
based and default (unsafe) policies, while the instability of SP
tends to be higher. Test instability curves (see Fig. ?? (b)) show
the same behaviour, the SP policy is less safe by the end of
training, while the NESM-based and unsafe policies have the
same instability values. One notable difference on test learning
curves (Fig. ?? (b)) in the beginning of learning, namely, is that
the SP-based policy is considerably more unstable compared
to the two other policy types.

(a) Learning

(b) Testing

Fig. 6: Smoothed instability I during learning and tests

The projection assessment curves (see Fig. ?? (a)) show
that the NESM and SP-based policies tend to better ensure a
flat robot configuration compared to the default policy. The
NESM and SP policies perform better in most cases than
the unsafe policy after episodes, NESM-based and projection
penalisation terms could be considered as improving traction.
The SP policy tends to increase its projection meanwhile the
NESM-based policy decreases it. Thus, the SP policy learns
desired behaviour of flippers. In accordance with the tests in
Fig. ?? (b), the SP-based policy tends to increase traction with
the stair, two other policy types decrease their projection that
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correlates to learning projection curves. It seems surprising at
first inspection that a safety-based NESM and unsafe policies
exhibit the same behaviour (see ?? (b), ?? (b)) in terms of
instability and traction. However, we penalize elevation of the
robot over the stair and at the same time the robot has to be
relatively flat in order to negotiate a staircase. Thus, the robot
does not visit states which may drive it to unsafe state and
this constraint is automatically satisfied.

(a) Learning

(b) Testing

Fig. 7: Smoothed projection P/Pmax during learning and
tests

B. Resilience of policy learning to noise

Our targeted application in the context of AAL where the
robot is integrated within a smart space/house [?], suggests a
relatively well-controlled environment. The part of the state of
the robot concerning its relative position with respect to the
traversed steps could be obtained by fusion of on-board sensors
with ambient sensors. Nevertheless, due to potential slipping
of the platform while traversing the staircase it is important
to assess the robustness of policy learning in the presence of
varying levels of noise, since erroneous state estimation could
lead to wrong actions and influence the robot performance
even making it impossible to attain the desired goal.

Thus, noise should be accounted for during learning at
the moment when we provide the robot with estimation of
its relative position to the next step. We simulate corrupted
estimation of px, py via a Gaussian error model, namely,
p̂i ∼ N (pi, σx) where p̂i is the noisy position, pi is the true
position given by the simulation environment, σi = ξ · Vmax

(a) Learning

(b) Testing

Fig. 8: Smoothed cumulative reward R(τ) during learning
and tests, noising

is the chosen standard deviation, i denotes either X or Y
axes, Vmax stands for the maximum possible observation value
and ξ is a parameter modelling different noise levels. We
experiment with three levels of noise, abbreviated as low,
medium and high, that correspond to ξ = {0.1, 0.3, 1.0}.

Firstly, three sets of experiments were conducted for each
noise level using the baseline/default reward function. We can
observe (see Fig. ?? a)) that policies learned with low or
medium noise converge as the default policy. On the other
hand, high noise in state estimation decreases the learning
convergence rate, but eventually, the same cumulative reward
is attained after 250 episodes. During testing (see Fig. ??
(b)), high noise levels seemed to have a more notable impact
on the final cumulative reward, yet, we do not expect such
extreme noise levels to be representative of real conditions
of our AAL scenario. For reference, the results provided in
Tables ??, ?? demonstrate that noisy state estimation does not
have an noticeable impact on safety constraints.

V. CONCLUSION

In this paper we have presented a RL framework for the
staircase negotiation. Within 200 learned trajectories which
correspond to 60 policy updates, the robot learned how to
safely traverse staircases consisting of 5 steps with varying rise
and stair angle in representative real-world ranges. We have
designed and compared three alternative reward functions. The
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TABLE II: Resilience to noise for safety constrains during
learning

Measure Level of noise
type Without Low Medium High
I 0.017 ± 0.021 0.015 ± 0.017 0.013 ± 0.025 0.005 ± 0.009
P/Pmax 0.962 ± 0.047 0.986 ± 0.007 0.966 ± 0.029 0.967 ± 0.026

TABLE III: Resilience to noise for safety constrains during
testing

Measure Level of noise
type Without Low Medium High
I 0.018 ± 0.01 0.022 ± 0.008 0.017 ± 0.01 0.015 ± 0.01
P/Pmax 0.991 ± 0.003 0.99 ± 0.003 0.992 ± 0.002 0.99 ± 0.003

NESM-based policy did not behave significantly differently
with respect to the unsafe policy. Incorporation of the projec-
tion maximization into the reward function produced a desired
behaviour in terms of flipper sticking to the stair. A policy
learnt without safety criteria presented a good generalization
capability when applied to newly encountered stair parameters.
Finally, while noisy sensory data may decrease convergence
rate the final control policy attains the maximum reward in
most cases. In our subsequent work, we plan to couple these
results with [?], and apply it on a real robot allowing it to
autonomously navigate in 3D indoor environments.
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