Staircase Traversal via Reinforcement Learning for Active Reconfiguration of Assistive Robots - IMT Atlantique
Communication Dans Un Congrès Année : 2020

Staircase Traversal via Reinforcement Learning for Active Reconfiguration of Assistive Robots

Résumé

Assistive robots introduce a new paradigm for developing advanced personalized services. At the same time, the variability and stochasticity of environments, hardware and unknown parameters of the interaction complicates their modelling , as in the case of staircase traversal. For this task, we propose to treat the problem of robot configuration control within a reinforcement learning framework, using policy gradient optimization. In particular, we examine the use of safety or traction measures as a means for endowing the learned policy with desired properties. Using the proposed framework, we present extensive qualitative and quantitative results where a simulated robot learns to negotiate staircases of variable size, while being subjected to different levels of sensing noise.
Fichier principal
Vignette du fichier
WCCI2020_Camera_Ready.pdf (2.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02676585 , version 1 (31-05-2020)
hal-02676585 , version 2 (10-06-2020)
hal-02676585 , version 3 (15-12-2020)

Identifiants

Citer

Andrei Mitriakov, Panagiotis Papadakis, Sao Mai Nguyen, Serge Garlatti. Staircase Traversal via Reinforcement Learning for Active Reconfiguration of Assistive Robots. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul 2020, Glasgow, United Kingdom. ⟨10.1109/FUZZ48607.2020.9177581⟩. ⟨hal-02676585v2⟩

Collections

ENSTA ENSTA_U2IS
359 Consultations
485 Téléchargements

Altmetric

Partager

More