A Smart Home Digital Twin to Support the Recognition of Activities of Daily Living - IMT Atlantique
Article Dans Une Revue Sensors Année : 2023

A Smart Home Digital Twin to Support the Recognition of Activities of Daily Living

Résumé

One of the challenges in the field of human activity recognition in smart homes based on IoT sensors is the variability in the recorded data. This variability arises from differences in home configurations, sensor network setups, and the number and habits of inhabitants, resulting in a lack of data that accurately represent the application environment. Although simulators have been proposed in the literature to generate data, they fail to bridge the gap between training and field data or produce diverse datasets. In this article, we propose a solution to address this issue by leveraging the concept of digital twins to reduce the disparity between training and real-world data and generate more varied datasets. We introduce the Virtual Smart Home, a simulator specifically designed for modeling daily life activities in smart homes, which is adapted from the Virtual Home simulator. To assess its realism, we compare a set of activity data recorded in a real-life smart apartment with its replication in the VirtualSmartHome simulator. Additionally, we demonstrate that an activity recognition algorithm trained on the data generated by the VirtualSmartHome simulator can be successfully validated using real-life field data.
Fichier principal
Vignette du fichier
sensors-23-07586.pdf (5.88 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04474884 , version 1 (29-05-2024)

Licence

Identifiants

Citer

Damien Bouchabou, Juliette Grosset, Sao Mai Nguyen, Christophe Lohr, Xavier Puig. A Smart Home Digital Twin to Support the Recognition of Activities of Daily Living. Sensors, 2023, 23 (17), pp.7586. ⟨10.3390/s23177586⟩. ⟨hal-04474884⟩
79 Consultations
39 Téléchargements

Altmetric

Partager

More