Learning Latent Dynamics for Partially-Observed Chaotic Systems - IMT Atlantique
Article Dans Une Revue Chaos: An Interdisciplinary Journal of Nonlinear Science Année : 2020

Learning Latent Dynamics for Partially-Observed Chaotic Systems

Résumé

This paper addresses the data-driven identification of latent dynamical representations of partially-observed systems, i.e., dynamical systems for which some components are never observed, with an emphasis on forecasting applications, including long-term asymptotic patterns. Whereas state-of-the-art data-driven approaches rely on delay embeddings and linear decompositions of the underlying operators, we introduce a framework based on the data-driven identification of an augmented state-space model using a neural-network-based representation. For a given training dataset, it amounts to jointly learn an ODE (Ordinary Differential Equation) representation in the latent space and reconstructing latent states. Through numerical experiments, we demonstrate the relevance of the proposed framework w.r.t. state-of-the-art approaches in terms of short-term forecasting performance and long-term behaviour. We further discuss how the proposed framework relates to Koopman operator theory and Takens' embedding theorem.
Fichier principal
Vignette du fichier
103121_1_online.pdf (3.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02274705 , version 1 (12-05-2023)

Identifiants

Citer

Said Ouala, Duong Nguyen, Lucas Drumetz, Bertrand Chapron, Ananda Pascual, et al.. Learning Latent Dynamics for Partially-Observed Chaotic Systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30 (10), ⟨10.1063/5.0019309⟩. ⟨hal-02274705⟩
153 Consultations
44 Téléchargements

Altmetric

Partager

More