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ABSTRACT

This paper addresses the data-driven identification of latent representations of partially observed dynamical systems, i.e., dynamical systems
for which some components are never observed, with an emphasis on forecasting applications and long-term asymptotic patterns. Whereas
state-of-the-art data-driven approaches rely in general on delay embeddings and linear decompositions of the underlying operators, we intro-
duce a framework based on the data-driven identification of an augmented state-space model using a neural-network-based representation.
For a given training dataset, it amounts to jointly reconstructing the latent states and learning an ordinary differential equation representa-
tion in this space. Through numerical experiments, we demonstrate the relevance of the proposed framework with respect to state-of-the-art
approaches in terms of short-term forecasting errors and long-term behavior. We further discuss how the proposed framework relates to the
Koopman operator theory and Takens’ embedding theorem.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019309

Delay embedding coordinates provide a simple tool for
reconstructing a system limit cycle given partial observations of
the dynamics. However, finding a parametric approximation of
the dynamics based on the delay-embedded states is far from
being straightforward since we do not have any relationships
between the spanned limit cycle and a particular form of para-
metric models. In this work, we propose an alternative based on
neural networks and automatic differentiation. We learn both
the dynamics and the latent states jointly as a solution of an
optimization problem.

I. INTRODUCTION

Learning the underlying dynamical representation of observed
variables xt ∈ R

n (where t ∈ {t0, . . . , T} is the temporal sampling
time and n is the dimension of the observations) is a key challenge
in various scientific fields, including control theory, geoscience, fluid
dynamics, and economics, and for applications ranging from system
identification to forecasting and assimilation issues.1–4

For fully observed systems, i.e., when the observed variables xt

relate to some underlying deterministic states zt, recent advances5–10

have shown that one can identify the governing equations of the
dynamics of zt from a representative dataset of observations {xti }i

.
Unfortunately, when the observed variables xt only relate to some
but not all the components of underlying states zt, these approaches
cannot apply since no ordinary differential equation (ODE) or, more
generally, no one-to-one mapping defined in the observation space
can represent the time evolution of the observations. In this context,
Takens’ theorem states the conditions under which a delay embed-
ding, formed by lagged versions of the observed variables, guaran-
tees the existence of governing equations in the embedded space.11

Takens’ theorem has motivated a rich literature of machine
learning schemes to identify dynamical representations of partially
observed systems using a delay embedding. This comprises both
non-parametric schemes based on nearest-neighbors or analogs12

and parametric schemes that include polynomial representations,13

neural network models,14 and support vector regression (SVR)
models.15 For all these approaches, the identification of the appro-
priate delay embedding is a critical issue.16,17
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From a neural network and machine learning perspective, the
inference of a latent space, within a state space model (SSM) frame-
work, for dynamical systems has motivated a broad literature espe-
cially for time series forecasting.18–22 Most of those techniques were
introduced in the context of reduced order modeling (ROM) to infer
low-dimensional manifolds, where the dynamics of the observations
can be represented. When considering partially observed systems,
these approaches state this issue as the inference of a (non-linear)
projection of an input sequence in a latent space where the obser-
vations can be modeled. This projection is usually computed in a
probabilistic framework using Bayesian filtering techniques. How-
ever, recovering the attractor’s dynamics using iterative predictions
is still an issue for such models since the explicit modeling of latent
space as a delay embedding of the observations may limit the expres-
siveness of the latent states, especially when considering chaotic
dynamics.

In this work, we show that we do not need to rely explic-
itly on a delay embedding. We address the identification of an
augmented space of higher dimension than that of the manifold
spanned by the observed variables, where the dynamics of the obser-
vations can be fully described by an ODE. Using neural-network
representations for the parametrization of the dynamical model, it
amounts to jointly learning the governing ODE and reconstruct-
ing the augmented latent states for a given observation dataset. We
report experiments on linear and chaotic dynamics, which illustrate
the relevance of the proposed framework compared to state-of-
the-art approaches. We then further discuss the key features of
this framework with respect to state-of-the-art dynamical systems
identification tools such as the Koopman operator theory.23

II. BACKGROUND AND RELATED WORK

This section introduces the learning of dynamical representa-
tions for partially observed systems and links this problem to recent
advances in machine learning.

Let us consider an unobserved state variable z governed by an
autonomous system of s differential equations żt = f(zt). Let us also

assume that this system generates a flow8ti(zt0) =
∫ ti

t0
f(zw)dw ∈ R

s

with trajectories that are asymptotic to a limit-cycle L of dimension
d contained in R

s. We further assume that we are provided with
a measurement function H that maps our state variables to our
observations xt = H(zt) ∈ R

n.
When considering the data-driven identification of a dynam-

ical mapping that governs some observation data, we first need
to evaluate whether the dynamics in the observation space can
be described using a smooth24 ODE. Another way to tackle this
question is to find the conditions under which the deterministic
properties of the unobserved limit-cycle L are preserved in the obser-
vation space in R

n such that one can reliably perform forecasts in the
observation space. The general condition under which a mapping H

preserves the topological properties of the initial limit-cycle involves
a differential structure. Assuming that L is a smooth compact dif-
ferential manifold, the topological properties of L are preserved
through a mapping H in R

n if H is one-to-one and is an immer-
sion of L in R

n. Under these conditions, our observation mapping is
called an embedding.25

The simplest example of an embedding involves an iden-
tity observation operator H. With this embedding, we have direct
access to the state variables, which are governed by a deterministic
ODE. This particular case has been widely studied in the literature.
Parametric representations have been for decades the most pop-
ular models thanks to their simplicity and interpretability.5,13,26–28

Recently, these approaches have been enriched by neural network
and deep learning schemes.29,30 In particular, the link between resid-
ual networks7,31 and numerical integration schemes has opened new
research avenues for learning extremely accurate dynamical mod-
els even from irregularly sampled training data. These schemes
show greater interpretability and forecasting performance for the
data-driven representation of systems governed by an ODE, com-
pared with other state-of-the-art neural network schemes, including
recurrent neural networks (RNN) such as LSTM (long-short-term
memory). Recent advances in model free representations using, for
instance, attention mechanisms as in Ref. 32 and reservoir learn-
ing as in Ref. 33 have recently shown meaningful improvements in
forecasting applications.

However, for a wide range of real-world systems, we are never
provided with an observation operator that forms an embedding
of the unobserved dynamical system. In such situations, we do not
have any guarantee on the existence of a smooth ODE that gov-
erns the temporal evolution of our observations. From this point of
view, the question of finding an appropriate dynamical representa-
tion of some observed data may not be this straightforward. The fact
that our data may come from some unobserved governing equation
may restrict the use of the above-mentioned state-of-the-art algo-
rithms. The main difficulty lies in the ability to map observation
series to a latent space that provides at least a one-to-one map-
ping between two successive states. From a geometrical point of
view, the time delay theorem11 provides a way to build a latent
space that preserves the topological properties of the true (unob-
served) dynamics limit-cycle. A generalization of this theorem25

shows that one can reconstruct topologically similar limit-cycles
using any appropriate smooth composition map of the observations.
Recent works have also investigated the use of deep learning mod-
els to find embedding representations of time series. In the work
of Ref. 34, a general embedding technique is proposed based on
an autoencoder architecture that successfully enfolded the hidden
attractor of several state-of-the-art time series. The derivation of a
dynamical system from such representations, however, encounters
large disparities since no explicit relationships between the defined
phase space and an ODE formulation have been clearly made. Clas-
sical state-of-the-art techniques such as polynomial representations5

and K-Nearest Neighbors (KNN)35 algorithms were proposed, but
they often fail to achieve both accurate short-term forecasting per-
formance and long-term topologically similar reconstructed limit-
cycles (see experiments for an illustration). The difficulty in finding
such representations remains, in our opinion, in the fact that the
embedded attractor is defined independently from the data driven
model formulation and learning.

We may also point out that the limitation of ODE-based rep-
resentation in deep learning architecture has also been pointed
out recently in Refs. 36 and 37 for classification issues. As ODE-
derived trajectories do not intersect, it may limit the ability of neural
ODE representations to reach relevant classification performance
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in a given feature space. To address this issue, Dupont et al.36 and
Zhang et al.37 propose to consider an augmented state, simply by
augmenting the observed state by a number of zeros to create a
high-dimensional space in which an ODE representation can be
identified. Such a strategy cannot apply to time series modeling
as successive augmented states cannot be forced to zero for some
dimensions.

Advances in the inference of latent spaces in state space models
were introduced essentially, from a dynamical systems perspec-
tive, to retrieve low-dimensional manifolds, where the dynamics of
the system evolve. When applied to partially observed systems, the
latent variables are typically inferred from a sequence of observa-
tions through a parametric modeling of the posterior distribution as
in Refs. 21, 22, and 7 or through marginalization with model con-
straints as in Refs. 18 and 19. However, such models often fail in
accounting for long term patterns (as shown in the experiments).
This is due to the fact that the latent space is constrained to be a
non-linear projection of a sequence of observations, which limits
the expressiveness of the dynamical model. Interestingly, Mirowski
and LeCun20 do not involve the learning of an inference model as
the reconstruction of the latent states is solved as gradient-based
minimization of the dynamical prior with respect to an observation
series. However, the dynamical prior relies on an explicit delay rep-
resentation (not necessarily an embedding) as the dynamics of the
latent state depend both on the previous latent state and on a delay
embedding of the observations.

In this work, we address the identification of a latent embed-
ding, associated with an ODE representation, for partially observed
systems. The core idea of this work is to infer an augmented latent
space, governed by an ODE, which fully explain the observed time
series and their dynamics. In contrast to previous work,7,18,19,21,22 we
do not exploit either a delay embedding or an explicit modeling of
the inference model (i.e., the reconstruction of the latent states given
the observed time series). As such, our scheme only involves the
selection of the class of ODEs of interest. The expected benefits are as
follows: (1) our model ensures the existence of a latent embedding
associated with an ODE, which may not be guaranteed when con-
sidering a parametric inference model and/or a delay embedding,
(2) our model reduces the complexity of the overall scheme to the
complexity of the ODE representation, and (3) our model guaran-
tees the consistency of the reconstructed latent states with respect to
the learned ODE.

III. LEARNING LATENT REPRESENTATIONS OF

PARTIALLY OBSERVED DYNAMICS

A. Augmented latent dynamics

Let us assume a continuous s-dimensional dynamical system
zt governed by an autonomous ODE żt = f(zt), with 8t being the

corresponding flow 8t(zt0) =
∫ t

t0
f(zw)dw with trajectories that are

asymptotic to a limit-cycle L of dimension d contained in R
s.

In many applications, one cannot fully access the state z and
the observations only relate to some components of this state. For-
mally, we can define an observation function H : R

s −→ R
n such

that the observations xt follow xt = H(zt). We can also define a

bijective map M that maps our observations xt to some low dimen-
sional manifold rt = M(xt) ∈ R

k. The definition of this operator is
crucial in the data driven identification of ROMs38 of real data since
in this case, the provided data are usually mapped through H in a
higher dimensional space. Besides, M is supposed to be bijective so
that the dynamics in R

n are fully determined by the dynamics in R
k.

From now on, and for the sake of simplicity, we will refer to both
rt ∈ R

k and xt ∈ R
n as observations since they are equivalent up to

a bijective map M.
We aim to derive an ODE representation of xt ∈ R

n. However,
the key question arising here is the extent to which the dynam-
ics expressed in the observations space reflect the true underlying
dynamics in R

s, and consequently, the conditions on H under
which the predictable deterministic dynamical behavior of the hid-
den states is still predictable in the observations space. To illustrate
this issue, we may consider a linear dynamical system in the complex
domain governed by the following linear ODE:

{
żt = αzt,

zt0 = z0,
(1)

with z ∈ C being a state variable and α ∈ C being a complex imagi-
nary number. The solution of this problem is

zt = z0e
αt. (2)

Let us assume now that we are only provided with the real part as
direct measurements of the unobserved state, i.e., H(.) = Real(.) :
xt = Real(zt) so in this case M = I1 and k = n.

Proposition 1: The flow of an ODE cannot represent the time
evolution of xt.

The proof of the proposition is given in the Appendix A and
the intuition behind it is as follows. Assuming that we are only pro-
vided with the real part as direct measurements xt ∈ R of the true
states zt, no smooth autonomous ODE model in the scalar obser-
vation space can describe the trajectories of the observations as the
mapping between two observations is not one-to-one. For exam-
ple, assuming that zt0 and zt1 correspond to two states that have the
same real part but distinct imaginary parts, the associated observed
states are equal xt0 = xt1 . However, the time evolution of the states
zt0 and zt1 differ if they have different imaginary parts such that the
observed states xt0+δ and xt1+δ after any time increment δ are no
longer equal. As a consequence, a given observation may have more
than one future state and this behavior cannot be represented by a
smooth ODE in the observation space. And the application of an
ODE mapping6,7 for such observations will lead to poor forecasting
performance. From a Naïve neural networks point of view, fitting
such a model will most likely force the forecasting into an equilib-
rium point since we are iteratively matching the same inputs with
different output predictions. For a given observation operator H of a
deterministic underlying dynamical system that governs zt, Takens’
theorem guarantees the existence of an augmented space, defined as
a delay embedding of the observations, in which a one-to-one map-
ping exists between successive time steps of the observation series.11

Rather than exploring such delay embedding, we aim to identify an
augmented latent space, where the latent dynamics are governed by
a smooth ODE and can be mapped to the observations. Let us define
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ut ∈ R
dE a dE-dimensional augmented latent state as follows:

ut
T = [M(xt)

T, yT
t ], (3)

with yt ∈ R
l being the unobserved component of latent state ut. The

augmented latent space evolves in time according to the following
state space model:

{
u̇t = fθ (ut),

xt = M
−1
(G(ut)),

(4)

where the dynamical operator fθ belongs to a family of smooth oper-
ators (in order to guarantee uniqueness39) parametrized by θ . We
typically consider a neural-network representation with Lipschitz
nonlinearities and finite weights. G is a projection matrix that sat-
isfies M(xt) = G(ut). As detailed in Secs. III B–III D, we address the
identification of the operator fθ and of the associated latent space u
from a dataset of observations {x0, . . . , xT} as well as the exploitation
of the identified latent dynamics for the forecasting of the time evo-
lution of the observed states, for instance, unobserved future states
{xT+1, . . . , xT+N}.

B. Learning scheme

Given an observation time series {x0, . . . , xT} and the bijective
map M, we aim to identify the state-space model defined by (4),
which amounts to learning the parameters θ of the dynamical oper-
ator fθ . However, as the component yt of the latent state ut is never
observed, this identification requires the joint optimization of the
model parameters θ as well as of the hidden component yt. For-
mally, this problem is stated as the following minimization of the
forecasting error on the observed variables:

θ̂ = arg min
θ

min
{yt}t

T∑

t=1

‖xt − M
−1
(G

(
8θ ,t (ut−1))

)
‖2,

subject to

{
ut = 8θ ,t(ut−1),
M(G(ut)) = xt,

(5)

with 8θ ,t being the one-step-ahead diffeomorphic mapping associ-
ated with operator fθ such that

8θ ,t(ut−1) = ut−1 +

∫ t

t−1

fθ (uw)dw.

In (5), the loss to be minimized involves the one-step-ahead fore-
casting error for the observed variable xt. The constraints state that
the augmented state ut is composed of observed component and
G(ut) should be a solution of the ODE (4). Here, we numerically
minimize the equivalent formulation

min
θ

min
{yt}t

T∑

t=1

‖xt − M
−1
(G

(
8θ ,t (ut−1))

)
‖2

+ λ‖ut −8θ ,t(ut−1)‖
2 (6)

where uT
t = [M(xT

t ), y
T
t ] and λ is a weighting parameter. The term

‖ut −8θ ,t(ut−1)‖
2 may be regarded as a regularization term such

that the inference of the unobserved component yt−1 of the aug-
mented state ut−1 is not solved independently for each time step.

Using a neural-network parametrization for the ODE opera-
tor fθ , the corresponding forecasting operator 8θ ,t is also stated as a
neural network based on a numerical integration scheme formula-
tion (typically a 4th-order Runge–Kutta scheme). This architecture,
quite similar to a ResNet,21 allows very accurate identification of
ODE models.6,31 Hence, for a given observed state series {x0, . . . , xT},
we minimize (6) jointly with respect to θ and unobserved variables
{y0, . . . , yT}. In the experiments reported in Sec. IV, we consider
bilinear architectures.6 However, the proposed framework applies to
any neural-network architecture.

C. Links to manifold embedding theorems

Whitney’s embedding theorem guarantees that a generic map
H : R

s −→ R
dE is an embedding of the manifold in R

dE as long as
dE > 2d + 1. However, from an experimentalist perspective, being
able to observe a large number of independent quantities (typi-
cally 2d + 1) is usually impossible. The Takens delay embedding
theorem overcomes this issue by using time delay coordinates of a
single generic variable (under some technical assumptions) as an
embedding of the manifold in R

dE . However, and as stated above,
modeling the delay embedding attractor is not straightforward. In
the proposed framework, the embedded attractor is learned jointly
with the data driven dynamical model, which makes us to find the
most appropriate embedding for a given architecture of the data
driven model. Furthermore, and supposing that the model archi-
tecture is representative enough (typically nonlinear), the learned
latent space can be considered a generic observation basis of the
underlying dynamics which, corresponding to Whitney’s theorem,
and similarly to Takens’ embedding theorem, forms an embedding
of the unseen attractor.

D. Application to forecasting

We also apply the proposed framework to the forecasting of
the observed states xt. Given a trained latent dynamical model (4),
forecasting future states for xt relies on the forecasting of the entire
augmented latent state ut. The latter amounts to determining an ini-
tial condition of the unobserved component yt and performing a
numerical integration of the trained ODE (4).

Let us denote by xn
t , t ∈ {t0, . . . , T} a new series of observed

states. We aim to forecast future states xn
t , t ∈ {T + 1, . . . , T + δT}.

Following (6), we infer the unobserved component ŷT of latent state
Xn

T at time T from the following minimization:

ŷ
n
T = arg min

yn
T

min
{yn

t }t<T

T+δT∑

t=T+1

‖xn
t − M

−1
(G

(
8θ ,t

(
un

t−1)
))

‖2

+ λ‖un
t −8θ ,t(u

n
t−1)‖

2. (7)

Here, we minimize only with respect to latent variables {yn
t } given

the trained forecasting operator 8θ ,t. This minimization relates to
a variational assimilation issue with partially observed states and
known dynamical and observation operators.40 Similarly to the
learning step, we benefit from the neural-network parameterization
of operator 8θ ,t and from the associated automatic differentiation
tool to compute the solution of the above minimization using a
gradient descent.
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We may consider different initialization strategies for this min-
imization problem. Besides a simple random initialization, we may
benefit from the information gained on the manifold spanned by the
unobserved components during the training stage. The basic idea
comes to assume that the training dataset is likely to comprise state
trajectories which are similar to the new one. As the training step
embeds the inference of the whole latent state sequence, we may pick
as initialization for minimization (7) the inferred augmented latent
state in the training dataset which leads to the observed state tra-
jectory that is the most similar (in the sense of the L2 norm) to the
new observed sequence xn

t . The interest of this initialization scheme
is twofold: (1) speeding-up the convergence of minimization (7) as
we expect to be closer to the minimum and (2) considering an ini-
tial condition which is in the basin of attraction of the reconstructed
limit-cycle. The latter may be critical as we cannot guarantee that
the learned model does not involve other limit-cycles than the ones
truly revealed by the training dataset, which may lead to a conver-
gence to a local and poorly relevant minimum. Reaching the global
minimum of the optimization problem of Eq. (6) (which is the actual
governing equations and attractor of the system) would cancel this
issue. However, reaching the global minimum only knowing par-
tial observations of the system is almost deterministically impossible
since it depends on the parametrization of the approximate dynam-
ical model and the initialization of the latent states. In this context,
we may also argue that given partial observations of the system,
several models can reflect the variability of the observed variables
while being diffeomorphic to the actual governing dynamics in the
attractor spanned by the observations (not necessarily away from
the attractor as the approximate model may involve several limit-
cycles other than the one spanned by the observations). Given these
considerations, we can retrieve most of the time a relevant local min-
imum, which reflects the topological properties of the initial model
and attractor.

IV. NUMERICAL EXPERIMENTS

In this section, we report numerical experiments to illustrate
the key features of proposed framework. We consider three case-
studies: a linear ODE case-study; a chaotic system, namely, Lorenz-
63 dynamics, and real upper ocean data.

A. Application to a linear ODE

In order to illustrate the key principles of the proposed frame-
work, we consider the following linear ODE in the complex domain:

{
żt = αzt,

zt0 = z0,
(8)

with α = −0.1 − 0.5j, j2 = −1, and z0 = 0.5. As α ∈ C with
Real(α) < 0 and z0 6= 0, the solution of this ODE is an ellipse in the
complex plane (Fig. 1).

As observation, we consider the real part of the underly-
ing state, i.e., the observation function H : C −→ R is given by
xt = Real(zt). This is a typical example, where the mapping between
two successive observations is not a one-to-one mapping since all
the states that have the same real part lead to the same observa-
tion. As explained in Sec. III, one cannot identify an autonomous
ODE model that will reproduce the dynamical behavior of the
observations in the observations space.

We apply the proposed framework to this toy example. We
consider a two-dimensional augmented state ut = [xt, y

1
t ] with

M = I1. As neural-network parametrization for operator fθ , we con-
sider a neural network with a single linear fully connected layer. We
use an observation series of 10 000 time steps as training data. As
illustrated in Figs. 1 and 2, given the same initial condition over the
observable state, the inferred latent state dynamics, though differ-
ent from the true ones, depict a similar spiral pattern. This result
is in agreement with geometrical reconstruction techniques11 of the
latent dynamics up to a diffeomorphic mapping. Overall, our model
learns a dynamical behavior similar to the true model represented by
an elliptic transient and an equilibrium point limit-set. Furthermore,
the projection of the augmented latent space and the true solution of
Eq. (8) in the real axis illustrate the relevance of the proposed frame-
work in forecasting the observations dynamics (mean square error
<1E − 6).

B. Lorenz-63 dynamics

Lorenz-63 dynamical system is a three-dimensional model that
involves, under some specific parametrizations,41 chaotic dynam-
ics with a strange attractor. We simulate chaotic Lorenz-63 state

FIG. 1. Illustration for a two-dimensional linear ODE. Forecasted augmented latent space (a) with respect to the true states given the same initial condition as the training
sequence. We illustrate both the prediction (forecast up to the end of the training time) of the trained model and the extrapolation (forecast beyond the training time)
performances with respect to the true trajectory. (b) [respectively, (c)] illustrates the forecasting of the observations (respectively, the inference of the imaginary part).
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FIG. 2. Illustration for a two-dimensional linear ODE. Forecasted augmented latent space (a) with respect to the true states given a new initial condition. Similarly to Fig. 1
given the initial condition we illustrate both the prediction and the extrapolation performances with respect to the true trajectory. (b) [respectively, (c)] illustrates the forecasting
of the observations (respectively, the inference of the imaginary part).

sequences with the same model parameters as proposed in Ref. 41
using the LOSDA ODE solver42 with a sampling time step of
0.01. We assume that only the first Lorenz-63 variable is observed
xt = zt,1 and we set M = I1. We apply the proposed framework to
this experimental setting using a training sequence of 4000 time
steps.

For benchmarking purposes, we perform a quantitative com-
parison with state-of-the-art approaches using delay embedding
representations.11 The parameters of the delay embedding represen-
tation, namely, the lag τ and the dimension dE of the augmented
space were computed using state-of-the-art techniques. Specifically,
the lag parameter was computed using both the mutual informa-
tion and correlation techniques,16 respectively, denoted as τMI and
τCorr. Regarding the dimension of the embedding representation,
we used the Whitney’s embedding condition dE = 2d + 1 with d
being the dimension of the hidden limit-cycle. The delay embed-
ding dimension was also computed using the false nearest neighbors
(FNN) method.17 We also tested arbitrary parameters for the delay
embedding dimension. Given the delay embedding representation,
we tested two state-of-the-art data-driven representations of the
dynamics: the analog forecasting (AF) technique which is based on
the nearest neighbors algorithm35 and the sparse regression (SR)
method on a second order polynomial representation of the delay
embedding states.

Regarding deep learning models, we compare our method to a
stacked bidirectional LSTM (RNN) and to the latent-ODE model.7

The proposed framework, referred to as Neural embedding for
Dynamical Systems (NbedDyn), was tested for different dimen-
sions of the augmented state space, namely, from 3 to 6 (please
refer to the Appendix for details on the considered neural network
architectures).

Figure 3 illustrates the learning process for the latent space
from the initialization to the last training epoch. The optimization
of the training criterion with respect to both the model parameters
and the latent states leads to a topologically similar spanned mani-
fold with respect to the truly unobserved high dimensional one. We
also illustrate the convergence of the training procedure in terms of
short term forecast and topological invariants of the learned embed-
ding and model as shown in Fig. 4. Our method is able to get similar
results as classical attractor dimension unfolding algorithms such as
FNN using both short and long term criterions since we show that

three dimensions of the latent state are enough to get a converged
architecture. Regarding the quantitative analysis, we report both the
analysis of short-term forecasting performance and the long-term
asymptotic behavior characterized by the largest Lyapunov expo-
nent of the benchmarked models in Table I. The proposed model
leads to significant improvements in terms of short term forecast-
ing performance with respect to the other approaches. Surprisingly,
the latent-ODE and RNN models lead to the poorest performance
in terms of both forecasting error and asymptotic behavior. This
is mainly due, in the latent-ODE case, to the fact that the latent
space is seen as a non-linear projection of the observed variables
through the optimization of the Evidence Lower Bound (ELBO)
loss.22 By contrast, our latent embedding formulation optimizes the
latent states to forecast the observed variables which explicitly con-
strain the latent space to be an embedding of the true underlying
dynamics. The RNN model in the other hand converges to a peri-
odic solution (please refer to the Appendix for forecasting figures)
with still a poor short term forecasting performance. Overall, these
results suggest that one should use such deep learning models with
care to reach satisfying performance. The SR model seems to lead to
better short term forecast using ad hoc parameters (τ = 6, dE = 3);
however, it does not capture well the chaotic patterns, which are
associated with a positive largest Lyapunov exponent. This may sug-
gest that the combination of the SR model and a delay embedding
may require additional investigation as a good geometrical recon-
struction of the phase space as stated in Takens’ theorem does not
guarantee the existence of a parametric ODE model based on the
corresponding delay embedding variables. Better performance is
reported using an analog forecasting approach. The performance,
however, greatly varies depending on the considered definition of
the delay embedding. Using ad hoc parameters (τ = 6, dE = 3), one
may retrieve the expected long-term chaotic behavior (λ1 = 0.87)
with a relatively low short-term forecasting error (8.0E − 4 for a
one-step-ahead forecast). When considering the proposed model,
we report for all the parametrizations of the dimension of the aug-
mented space from 3 to 6, performance at least in the same range
as the best analog forecasting setting. Besides, when increasing the
dimension of the augmented space, we significantly decrease the
short-term forecasting errors (<1.E − 4 for a one-step-ahead pre-
diction when considering the best fit for dE = 6, i.e., one order of
magnitude compared to the best benchmark model) while keeping
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FIG. 3. Evolution of the learned latent space. Starting from a random initialization of the augmented states y
i
, the latent space is optimized according to the minimization of

Eq. (6) to form a limit-cycle similar to the true Lorenz 63 attractor. We depict three-dimensional projections of the learned latent space for the proposed model with different
embedding dimensions from dE = 3 to dE = 6.
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(a) (b) (c)

FIG. 4. Convergence of the proposed NbedDyn architecture as a function of the dimension of the augmented space. Evolution of the short term forecast performances (a)
as well as the largest Lyapunov exponent (c) and Lyapunov dimension (b) of the NbedDyn attractor as a function of the dimension of the embedding. Our architecture is able
to unfold the underlying Lorenz dynamics given a sufficient dimension of the augmented state. We may note that the topological properties illustrated here were estimated
using iterative forecast of the trained model, only given an initial condition inside the basin of attraction of the spanned manifold. (The true Lyapunov dimension of the Lorenz
63 model is 2.06.43)

an appropriate chaotic long-term pattern (λ1 = 0.92). Finally, since
all the learned attractors (as long as dE > 2) are diffeomorphic to the
actual Lorenz 63 model, we show in Fig. 5 that we can map theme
to the actual Lorenz 63 attractor only using an affine transformation
(statistically, since some runs fail to be mapped to the true Lorenz
using an affine transformation. However, the proportion of these
runs is around 20% and they can be mapped to the true Lorenz
using a linear quadratic model instead). This result can be inter-
preted as follows. Given a single generic observation, we need only
three variables to model the Lorenz attractor (this result is shown
in the learning convergence figure above and can be easily verified

using state of the art techniques such as the FNN), one may expect a
strong relationship between the latent variables of different Nbed-
Dyn architectures with dE > 2. We show that this relationship is
linear (up to modeling errors) and more importantly is also linear
with respect to the true unseen underlying dynamics.

C. Modeling sea level anomaly (SLA)

The data driven identification of dynamical representations of
real data is an extremely difficult task especially when the underlying
processes involve non-stable behaviors such as chaotic attractors.

TABLE I. Forecasting performance on the test set of data-driven models for Lorenz-63 dynamics where only the first variable is observed. First two columns: mean RMSE for

different forecasting time steps, third column: the largest Lyapunov exponent of a predicted series of length of 10 000 time steps. (The true largest Lyapunov exponent of the

Lorenz 63 model is 0.91.43)

Model t0 + h t0 + 4h λ1

AF τMI = 16 dE(FNN) = 3 5.6E − 3 1.3E − 2 0.85
τMI = 16 dE(Takens) = 6 9.9E − 3 2.4E − 2 NaN
τCorr = 27 dE(FNN) = 3 8.9E − 3 2.3E − 2 12.35
τCorr = 27 dE(Takens) = 6 8.5E − 3 1.9E − 2 NaN
τ = 6 dE = 3 8.0E − 4 9.0E − 4 0.87
τ = 10 dE = 3 2.1E − 3 4.9E − 3 0.60

SR τMI = 16 dE(FNN) = 3 7.8E − 2 2.5E − 1 0.12
τMI = 16 dE(Takens) = 6 4.5E − 2 1.7E − 1 NaN
τCorr = 27 dE(FNN) = 3 1.4E − 1 4.6E − 1 NaN
τCorr = 27 dE(Takens) = 6 2.1E − 1 8.4E − 1 NaN
τ = 6 dE = 3 7.6E − 3 7.4E − 3 NaN
τ = 10 dE = 3 2.5E − 2 5.7E − 2 0.2535
Latent-ODE 6.9E − 2 ± 2.9E − 2 1.5E − 1 ± 3E − 2 NaN

RNN 6.9E − 2 ± 4.6E − 2 1.5E − 1 ± 1.1E − 1 −6.79 ± 0.0
NbedDyn dE = 3 3.2E − 4 ± 1.3E − 4 1.7E − 3 ± 7.5E − 4 0.81 ± 0.09

dE = 4 1.3E − 4 ± 5.2E − 5 7.3E − 4 ± 2.2E − 4 0.82 ± 0.06
dE = 5 3.8E − 4 ± 7.4E − 4 2.0E − 3 ± 3.4E − 4 0.80 ± 0.02
dE = 6 3.7E − 4 ± 2.8E − 4 2.0E − 3 ± 1.7E − 3 0.92 ± 0.02

dE = 6 (Best) 9.1E − 5 4.7E − 4 0.92
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(a) (b)

(c) (d)

FIG. 5. Mapping the NbedDyn attractors to the true Lorenz attractor. An affine transformation is trained to map the NbedDyn attractor to the true Lorenz attractor. (a)–(d)
highlight these projections given an NbedDyn attractor of dimensions 3, 4, 5, and 6, respectively. We show that the relationship between the embeddings unfolded by our
architecture for different dimensions of the augmented space is linear (up to modeling errors) and more importantly is also linear to the true unseen dynamics.
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This is mainly due to the fact that we do not have any exact knowl-
edge of the closed form of the equations governing the temporal
evolution of our variables. Furthermore, the measured quantity may
depend on other unobserved variables which makes the exploitation
of data-driven techniques highly challenging.

In this context, we report an application to SLA (sea level
anomaly) dynamics, which relate to upper ocean dynamics and are
monitored by satellite altimeters.44 Sea surface dynamics are chaotic
and clearly involve latent processes, typically subsurface and atmo-
spheric processes. The dataset used in our experiments is a SLA
time series obtained using the WMOP product.45 The spatial reso-
lution of our data is 0.05◦, and the temporal resolution h = 1 day.
We use the data from January 2009 to December 2014 as training
data, and we tested our approach on the last month of the year 2014.
The considered region is located on south Mallorca (2.5◦E–4.25◦E,
37.25◦N–39.5◦N). Finally, and in order to identify a ROM, we
mapped our data through a projection defined offline using a PCA
as follows: rt = M(xt) ∈ R

k with k = 15 which amounts to capture
92% of the total variance (here M is simply a linear PCA projection).

We report forecasting performance for our model and include
a comparison with analog methods (AF), sparse regression (SR),
LSTM (RNN), and a neural ODE setting (latent-ODE) in Table II.
(The results of the neural network based models were averaged over
five runs.) Regarding the proposed NbedDyn model, we consider
an augmented latent space with dE = 60. Our model clearly outper-
forms the three benchmarked schemes with a very significant gain
for the forecasting performance at 1 day (relative gain greater than
90%) and 2 days (relative gain greater than 90%). For a 4-day-ahead
forecasting, our model still outperforms the other ones though the
gain is lower (relative gain of 40%). In order to illustrate the influ-
ence of adding extra dimensions to define an augmented latent space
on real data, we show in Fig. 6 the convergence of the solution in
terms of forecasting performances as a function of the dimension
of the embedding. We also tested the proposed NbedDyn model
directly on the PCA space (dE = k = 15); this model is referred to as
NbedDynZERO and the influence of the latent components is clear
from the results given in Table II. We report a relative gain up to
90% with respect to the same model directly applied onto the PCA
space. We let the reader refer to Appendixes A–F for a more detailed

FIG. 6. Convergence of the proposed NbedDyn architecture in the SLA applica-
tion as a function of the dimension of the augmented space.

analysis of these experiments, including visual comparisons of the
forecasts.

V. DISCUSSION

In this work, we address the data-driven identification of latent
dynamics for systems which are only partially observed, i.e., when
some components of the system of interest are never observed. The
reported forecasting performance for Lorenz-63 dynamics is in line
with the forecasting performance of state-of-the-art learning-based
approaches for a noise-free and fully observed setting. This is of key
interest for real-world applications, where observing systems most
often monitor only some components of the underlying systems.
As a typical example, the SLA forecasting experiment clearly moti-
vates the proposed framework in the context of ocean dynamics for
which neither in situ nor satellite observing systems can provide
direct observations for all state variables (e.g., subsurface velocities
and fine-scale sea surface currents46).

TABLE II. SLA forecasting performance on the test set of data-driven models. RMSE and correlation coefficients for different forecasting time steps.

Model t0 + h t0 + 2h t0 + 4h

AF RMSE 0.036 0.049 0.067
Corr 98.93% 96.97% 93.99%

SR RMSE 0.014 0.021 0.037
Corr 99.42% 97.63% 90.91%

Latent-ODE RMSE 0.030 ± 0.05 0.031 ± 0.031 0.040 ± 0.040
Corr 98.20% ± 0.39% 97.39% ± 0.36% 93.42% ± 0.55%

RNN RMSE 0.026 ± 0.003 0.038 ± 0.007 0.053 ± 0.016
Corr 98.36% ± 0.40% 95.29% ± 1.73% 74.97% ± 5.75%

NbedDynZERO RMSE 0.016 ± 0.0 0.023 ± 0.0 0.038 ± 0.0
Corr 99.44% ± 0.0% 97.71% ± 0.0% 91.18% ± 0.0%

NbedDyn RMSE 0.002 ± 0.0003 0.006 ± 0.001 0.020 ± 0.004
Corr 99.99% ± 0.0017% % 99.91% ± 0.01% 99.01% ± 0.04%
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We may also further discuss how the proposed framework
relates to state-of-the-art dynamical system theory approaches. Most
of these approaches rely on delay embedding, as Takens’ theorem
states the existence of a delay embedding in which the topolog-
ical properties of the hidden dynamical system are equivalent to
those of the true systems up to a diffeomorphic mapping. Hence,
state-of-the-art approaches typically combine the selection of a delay
embedding representation within classic regression models to rep-
resent the one-step-ahead mapping in the considered embedding.
Here, we consider latent dynamics governed by an unknown ODE
(4) but we do not explicitly state the latent space. This is, however,
implicit in our forecasting framework. By construction, the consid-
ered forecasting model relies on the integration of the learned ODE
(4) from an initial condition given as the solution of minimization
(7). Let us consider the following embedding ψ :

ψ
(
{xt}t0 :T

)
= arg min

uT

min
{ut}t<T

T∑

t=1

‖xt − M
−1
(G

(
8θ ,t (ut−1))

)
‖2

+ λ‖ut −8θ ,t(ut−1)‖
2. (9)

Given this embedding, the resulting one-step-ahead forecasting for
the observed variable may be written as

xT+1 = M(G
(
8θ ,t

(
ψ

(
{xt}t=t0 :T

)))
). (10)

Hence,ψ defines a delay embedding representation implicitly stated
through minimization (7). In this embedding, the dynamics of the
observed system x is governed by the composition of observation
operator G and forecasting operator8θ ,t. Regarding the literature on
the Koopman operator theory, most approaches rely on the explicit
identification of eigenfunctions and eigenvalues of the Koopman
operator.23,47,48 Our framework relates to the identification of the
infinitesimal generator fθ of the one-parameter subgroup defined
by the Koopman operator through the ODE representation (4).
By construction, the Koopman operator associated with the iden-
tified operator fθ̂ is also diagonalizable such that the identification
of infinitesimal generator fθ̂ provides an implicit decomposition of
the Koopman operator of the underlying and unknown dynamical
system onto the eigenbasis of the learned latent dynamics governed
by ODE (4).

Future work will further explore methodological aspects, espe-
cially the application to high-dimensional and stochastic systems. In
the considered framework, the operator M is stated as an identity
operator on the observed component of state ut or as a simple PCA
projection. Although for the geosciences community, using PCA to
reduce the dimensionality is motivated by the Galerkin derivation
of reduced order models from complex high dimensional govern-
ing partial differential equations,49 using auto-encoders has shown
promising results in discovering optimal coordinates when trained
jointly with a dynamical system. The combination of the proposed
framework with the variational setting considered in the latent-ODE
model7 also appears as an interesting direction for future work.

The extension to stochastic systems through the identifica-
tion of a stochastic ODE is also of key interest, for instance,
for future applications of the proposed framework to geophysi-
cal random flows, especially to the simulation and forecasting of

ocean-atmosphere dynamics in which stochastic components nat-
urally arise.50
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APPENDIX A: PROOF OF PROPOSITION 1

This proposition can be easily extended to any observation
function that does not form an embedding of the initial unob-
served ODE. However, for the sake of simplicity, we will consider
the example given in Eq. (1).

Let us suppose a smooth ODE in the observation space that
governs the time evolution of x from Eq. (1),

{
ẋt = f(xt),

xt0 = x0.
(A1)

This ODE generates a flow xt = 9t(x0).
Since our observation operator is not one-to-one, we

can assume the existence of some t̂, t1, t2, where Real(8t̂(zt1))

= Real(8t̂(zt2)) with Real(zt1) 6= Real(zt2) [8 is the flow gener-
ated by the unobserved ODE illustrated in Eq. (1)]. Projecting this
equality to the observation space leads to 9t̂(xt1) = 9t̂(xt2) with
xt1 6= xt2 .

Since the above ODE is smooth (or continuously differen-
tiable), we can show that f is locally Lipschitz on any interval
containing t0,51 which guarantees by Picard’s existence theorem the
existence of a unique solution.39 Formally, for the times t̂, t1, t2,
9t̂(xt1) = 9t̂(xt2) if and only if xt1 = xt2 . This contradicts the

assumption that xt1 6= xt2 , and thus there is no existence of t̂ such
that Real(8t̂(zt1)) = Real(8t̂(zt2)) with Real(zt1) 6= Real(zt2).

APPENDIX B: DIMENSIONALITY ANALYSIS OF THE

NbedDyn MODEL

One of the key parameters of the proposed model is the dimen-
sion of the latent space. Despite the fact that it is extremely challeng-
ing to get a prior idea of the dimension of the model in the case of
real data experiments, and similarly to the performance analysis of
the NbedDyn model illustrated, for instance, in Figs. 4 and 6, one
can analyze the spanned manifold of the learned latent states to get
an idea of the true dimension of the underlying model (true here
stands for a sufficient dimension of the latent space). The idea here
is to compute the modulus of the eigenvalues of the Jacobian matrix
for each input of the training data. An eigenvalue does not influence
the temporal evolution of the latent state if it has a modulus that
tends to zero. The number of non-zero eigenvalues can then be seen
as a sufficient dimension of the latent space.
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(a) (b)

(c)

FIG. 7. Analysis of the eigenvalues of the NbedDyn model Jacobian matrix. Lorenz-63 case-study with dE = 6. We illustrate the real part in (a), the imaginary part in (b),
and the modulus in (c) of the eigenvalues of the Jacobian matrix.

FIG. 8. Analysis of the eigenvalues of the NbedDyn model Jacobian matrix. Sea level anomaly case-study with dE = 60. We illustrate the real part in (a), the imaginary part
in (b), and the modulus in (c) of the eigenvalues of the Jacobian matrix.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 9. Forecasted SLA states of the proposed models. We illus-
trate the forecasted SLA fields using analog forecasting in (b),
sparse regression in (c), latent-ODE model in (d), RNN in (e),
NbedDynZERO in (f), and the proposed architecture in (g) with
respect to the true field illustrated in (a).
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FIG. 10. Generated time series of the proposed models. Given an initial condition, we generated a time series of 1000 time steps using the proposed architecture in (a). We
also show the forecasting performances, given the same initial condition, of the state-of-the-art models [(b)–(e)].

Chaos 30, 103121 (2020); doi: 10.1063/5.0019309 30, 103121-14

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0019309/14629011/103121_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Regarding the identification of an ODE model governing the
first state variable of the Lorenz 63 model, Fig. 7 illustrates the eigen-
values of the Jacobian matrix and their modulus for a dimension of
the latent space dE = 6. Interestingly, only three eigenvalues have
non-zero modulus and are effectively influencing the underlying
dynamics. This result shows that one can use a three-dimensional
latent-space as a sufficient dimension to identify an ODE model
governing the first state of the Lorenz 63 system, which is the same
dimension as the true Lorenz 63 model.

The analysis of the eigenvalues of the sea level anomaly model
in the other hand is not as straightforward as in the case of the
Lorenz model since we do not have any idea on the analytical form
of the underlying dynamical model. Figure 8 illustrates that using
a 60-dimensional latent space for the NbedDyn model, only 50
eigenvalues have non-zero modulus and thus are effectively influ-
encing the underlying dynamics. The conclusion in this case is
that the observed SLA data evolve in a 50-dimensional latent space
parametrized by the dynamical model fθ .

APPENDIX C: ADDITIONAL FIGURES OF THE SEA

LEVEL ANOMALY EXPERIMENT

Forecasted states of the sea level anomaly are illustrated in
Fig. 9. The visual analysis of the forecasted SLA states emphasizes
the relevance of the proposed NbedDyn model. While state of the art
approaches generally overestimate the time evolution of some struc-
tures such as eddies, our model is the only one to give near perfect
forecasting up to 4 days.

APPENDIX D: ADDITIONAL FIGURES OF THE LORENZ

63 EXPERIMENT

We illustrate the forecasting performance of the tested mod-
els for the Lorenz-63 experiment through an example of forecasted
trajectories in Fig. 10. Our model with dE = 6 leads to a trajectory
similar to the true one up to seven Lyapunov times, when the best

FIG. 11. Forecasted Lorenz 63 state sequence given noisy and partial observa-
tions. Given noisy and partial observations, our model optimizes Eq. (7) to infer
an initial condition that minimizes the forecasting of the observations.

alternative approach diverge from the true trajectory beyond four
Lyapunov times.

An other interesting experiment is to find the initial condi-
tion for new observation data. This issue is addressed as presented
in Sec. III as follows. Given a new noisy and partial observation
sequence (Fig. 11), we first look for a potential initial condition in
the inferred training latent state sequence. This initial condition
is then optimized using the cost function described by Eq. (7) to
minimize the forecasting error of the new observation sequence.

APPENDIX E: SCOPE AND LIMITATIONS

1. Constraining limit cycles

The proposed augmented ODE formulation does not suppose
any prior knowledge on the underlying dynamics responsible for
the temporal evolution of the observations. This can lead in some
cases (especially when working on chaotic dynamics) to output a
dynamical representation that has several attracting regions in addi-
tion to the one leading to the observations limit cycle. This can
lead to inappropriate results when trying to find an initial condition
that forecasts a given observation sequence. The idea of using the
manifold spanned by the augmented training data allows to bypass
this issue but we believe that adding additional constraints (energy
preserving constraints, known symmetries in the models, etc.) can
significantly improve the quality of the learned dynamical models.

APPENDIX F: NEURAL NETWORKS’

HYPERPARAMETERS

1. Lorenz 63 experiments’ hyperparameters

Tables III–V show the RNN, Latent-ODE and the NbedDyn
parameters in the Lorenz 63 experiment.

TABLE III. RNN parameters in the Lorenz 63 experiment.

Parameter Value

Number of LSTM layers 10
Hidden size 10

Sequence length 30
Learning rate 0.001

Optimizer Adam
Training data 4000

TABLE IV. Latent-ODE parameters in the Lorenz 63 experiment, please refer to Ref. 7

for more details.

Parameter Value

Latent dimension 4
Hidden size 15

RNN hidden size 100
Learning rate 0.01

Optimizer Adam
Training data 4000
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TABLE V. NbedDyn parameters in the Lorenz 63 experiment, please refer to Ref. 6

for more details.

Parameter Value

Augmented latent dimension 6
Number of bilinear layers 6
Number of linear layers 6

Integration scheme Runge–Kutta 4
Learning rate 0.001

Optimizer Adam
Training data 4000

2. SLA experiments’ hyperparameters

Tables VI–VIII show RNN parameters in the SLA experi-
ment, latent-ODE parameters in the SLA experiment, and NbedDyn
parameters in the SLA experiment.

TABLE VI. RNN parameters in the SLA experiment.

Parameter Value

Number of LSTM layers 5
Hidden size 20

Sequence length 40
Learning rate 0.001

Optimizer Adam
Training data 2000

TABLE VII. Latent-ODE parameters in the SLA experiment, please refer to Ref. 7 for

more details.

Parameter Value

Latent dimension 60
Hidden size 70

RNN hidden size 200
Learning rate 0.01

Optimizer Adam
Training data 2000

TABLE VIII. NbedDyn parameters in the SLA experiment, please refer to Ref. 6 for

more details.

Parameter Value

Augmented latent dimension 60
Number of bilinear layers 60
Number of linear layers 60

Integration scheme Runge–Kutta 4
Learning rate 0.001

Optimizer Adam
Training data 2000

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1T. L. Lai and C. Z. Wei, “Least squares estimates in stochastic regression models
with applications to identification and control of dynamic systems,” Ann. Stat. 10,
154–166 (1982).
2H. D. I. Abarbanel and U. Lall, “Nonlinear dynamics of the great salt lake: System
identification and prediction,” Clim. Dyn. 12, 287–297 (1996).
3J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285,
69–94 (1995).
4T. C. Koopmans, “Identification problems in economic model construction,”
Econometrica 17, 125–144 (1949).
5S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” Proc. Nat.
Acad. Sci. 113, 3932–3937 (2016).
6R. Fablet, S. Ouala, and C. Herzet, “Bilinear residual neural network for the iden-
tification and forecasting of geophysical dynamics,” in 2018 26th European Signal
Processing Conference (EUSIPCO) (IEEE, 2018), pp. 1477–1481.
7T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordi-
nary differential equations,” in Advances in Neural Information Processing Systems
(NeurIPS, 2018), pp. 6571–6583.
8D. Nguyen, S. Ouala, L. Drumetz, and R. Fablet, “Em-like learning
chaotic dynamics from noisy and partial observations,” arXiv:1903.10335[cs.LG]
(2019).
9M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino, “Data assimilation as a
learning tool to infer ordinary differential equation representations of dynamical
models,” Nonlinear Process. Geophys. 26, 143–162 (2019).
10J. Brajard, A. Carassi, M. Bocquet, and L. Bertino, “Combining data assim-
ilation and machine learning to emulate a dynamical model from sparse and
noisy observations: A case study with the Lorenz 96 model,” arXiv:2001.01520
(2020).
11F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems
and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer,
Berlin, 1981), pp. 366–381.
12H. D. I. Abarbanel, “Modeling chaos,” in Analysis of Observed Chaotic Data
(Springer, New York, NY, 1996), pp. 95–114.
13J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, and R. Pin-
telon, “Identification of nonlinear systems using polynomial nonlinear state space
models,” Automatica 46, 647–656 (2010).
14J. Frank, S. Mannor, and D. Precup, “Activity and gait recognition with time-
delay embeddings,” in Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI’10 (AAAI Press, 2010), pp. 1581–1586.
15A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain, “Sup-
port vector regression with chaos-based firefly algorithm for stock market price
forecasting,” Appl. Soft Comput. 13, 947–958 (2013).
16H. D. I. Abarbanel, “Choosing time delays,” in Analysis of Observed Chaotic
Data (Springer, New York, NY, 1996), pp. 25–37.
17H. D. I. Abarbanel, “Choosing the dimension of reconstructed phase space,” in
Analysis of Observed Chaotic Data (Springer, New York, NY, 1996), pp. 39–67.
18Z. Ghahramani and S. T. Roweis, “Learning nonlinear dynamical systems
using an EM algorithm,” in Advances in Neural Information Processing Systems
(NeurIPS, 1999), pp. 431–437.
19J. Wang, A. Hertzmann, and D. J. Fleet, “Gaussian process dynamical mod-
els,” in Advances in Neural Information Processing Systems (NeurIPS, 2006),
pp. 1441–1448.
20P. Mirowski and Y. LeCun, “Dynamic factor graphs for time series modeling,”
in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (Springer, 2009), pp. 128–143.
21K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv:1512.03385[cs] (2015).
22R. G. Krishnan, U. Shalit, and D. Sontag, “Structured inference networks for
nonlinear state space models,” arXiv:1609.09869[cs,stat] (2016).

Chaos 30, 103121 (2020); doi: 10.1063/5.0019309 30, 103121-16

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0019309/14629011/103121_1_online.pdf

https://aip.scitation.org/journal/cha
https://doi.org/10.1214/aos/1176345697
https://doi.org/10.1007/BF00219502
https://doi.org/10.1017/S0022112095000462
https://doi.org/10.2307/1905689
https://doi.org/10.1073/pnas.1517384113
http://arxiv.org/abs/arXiv:1903.10335[cs.LG]
https://doi.org/10.5194/npg-26-143-2019
http://arxiv.org/abs/arXiv:2001.01520
https://doi.org/10.1016/j.automatica.2010.01.001
https://doi.org/10.1016/j.asoc.2012.09.024
http://arxiv.org/abs/arXiv:1512.03385[cs]
http://arxiv.org/abs/arXiv:1609.09869[cs,stat]


Chaos ARTICLE scitation.org/journal/cha

23B. O. Koopman, “Hamiltonian systems and transformations in hilbert space,”
Proc. Nat. Acad. Sci. U.S.A. 17, 315–318 (1931).
24The word smooth here stands for continuously differentiable or C

1
.

25T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” J. Stat. Phys. 65, 579–616
(1991).
26M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” Science 324, 81–85 (2009).
27Y. Yuan, X. Tang, W. Zhou, W. Pan, X. Li, H.-T. Zhang, H. Ding, and
J. Goncalves, “Data driven discovery of cyber physical systems,” Nat. Commun.
10, 1–9 (2019).
28W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, “Predicting catas-
trophes in nonlinear dynamical systems by compressive sensing,” Phys. Rev. Lett.
106, 154101 (2011).
29S. Wiewel, M. Becher, and N. Thuerey, “Latent-space physics: Towards learning
the temporal evolution of fluid flow,” arXiv:1802.10123[cs.LG] (2018).
30M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural networks
for data-driven discovery of nonlinear dynamical systems,” arXiv:1801.01236
(2018).
31S. Ouala, A. Pascual, and R. Fablet, “Residual integration neural network,”
in ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (IEEE, 2019), pp. 3622–3626.
32G. Shen, J. Kurths, and Y. Yuan, “Sequence-to-sequence prediction of spa-
tiotemporal systems,” Chaos 30, 023102 (2020).
33J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction of large
spatiotemporally chaotic systems from data: A reservoir computing approach,”
Phys. Rev. Lett. 120, 024102 (2018).
34W. Gilpin, “Deep reconstruction of strange attractors from time series,”
arXiv:2002.05909[cs.LG] (2020).
35R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, “The analog data
assimilation,” Mon. Weather Rev. 145, 4093 (2017).
36E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural ODEs,”
arXiv:1904.01681 (2019).
37H. Zhang, X. Gao, J. Unterman, and T. Arodz, “Approximation capabilities of
neural ordinary differential equations,” arXiv:1907.12998 (2019).
38K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven
discovery of coordinates and governing equations,” arXiv:1904.02107 (2019).

39E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations
(Tata McGraw-Hill Education, 1955).
40P. Lynch and X.-Y. Huang, “Initialization,” in Data Assimilation: Making Sense
of Observations, edited by W. Lahoz, B. Khattatov, and R. Menard (Springer,
Berlin, 2010), pp. 241–260.
41E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141
(1963).
42A. C. Hindmarsh, “ODEPACK, a systematized collection of ODE solvers,”
IMACS Trans. Sci. Comput. 1, 55–64 (1983).
43J. C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, Inc., New
York, NY, 2003).
44S. Calmant, F. Seyler, and J. F. Cretaux, “Monitoring continental surface waters
by satellite altimetry,” Surv. Geophys. 29, 247–269 (2008).
45M. Juza, B. Mourre, L. Renault, S. Gómara, K. Sebastián, S. Lora, J. P. Beltran,
B. Frontera, B. Garau, C. Troupin, M. Torner, E. Heslop, B. Casas, R. Escud-
ier, G. Vizoso, and J. Tintoré, “Socib operational ocean forecasting system and
multi-platform validation in the western mediterranean sea,” J. Oper. Oceanogr.
9, s155–s166 (2016).
46F. d’Ovidio, A. Pascual, J. Wang, A. M. Doglioli, Z. Jing, S. Moreau, G. Grégori,
S. Swart, S. Speich, F. Cyr, B. Legresy, Y. Chao, L. Fu, and R. A. Morrow, “Frontiers
in fine-scale in situ studies: Opportunities during the swot fast sampling phase,”
Front. Mar. Sci. 6, 168 (2019).
47S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invari-
ant subspaces and finite linear representations of nonlinear dynamical systems for
control,” PLoS ONE 11, e0150171 (2016).
48J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz,
“On dynamic mode decomposition: Theory and applications,” J. Comput. Dyn.
1, 391–421 (2014).
49P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, “Galerkin projection,”
in Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cam-
bridge Monographs on Mechanics, 2nd ed. (Cambridge University Press, 2012),
pp. 106–129.
50B. Chapron, P. Dérian, E. Mémin, and V. Resseguier, “Large-scale flows under
location uncertainty: A consistent stochastic framework,” Q. J. R. Meteorol. Soc.
144, 251–260 (2018).
51H. H. Sohrab, Basic Real Analysis (Springer, 2003), Vol. 231.

Chaos 30, 103121 (2020); doi: 10.1063/5.0019309 30, 103121-17

Published under license by AIP Publishing.

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0019309/14629011/103121_1_online.pdf

https://aip.scitation.org/journal/cha
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.1007/BF01053745
https://doi.org/10.1126/science.1165893
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevLett.106.154101
http://arxiv.org/abs/arXiv:1802.10123[cs.LG]
http://arxiv.org/abs/arXiv:1801.01236
https://doi.org/10.1063/1.5133405
https://doi.org/10.1103/PhysRevLett.120.024102
http://arxiv.org/abs/arXiv:2002.05909[cs.LG]
https://doi.org/10.1175/MWR-D-16-0441.1
http://arxiv.org/abs/arXiv:1904.01681
http://arxiv.org/abs/arXiv:1907.12998
http://arxiv.org/abs/arXiv:1904.02107
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1007/s10712-008-9051-1
https://doi.org/10.1080/1755876X.2015.1117764
https://doi.org/10.3389/fmars.2019.00168
https://doi.org/10.1371/journal.pone.0150171
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1002/qj.3198

