END-TO-END PHYSICS-INFORMED REPRESENTATION LEARNING FOR SATELLITE OCEAN REMOTE SENSING DATA: APPLICATIONS TO SATELLITE ALTIMETRY AND SEA SURFACE CURRENTS - IMT Atlantique
Article Dans Une Revue ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Année : 2021

END-TO-END PHYSICS-INFORMED REPRESENTATION LEARNING FOR SATELLITE OCEAN REMOTE SENSING DATA: APPLICATIONS TO SATELLITE ALTIMETRY AND SEA SURFACE CURRENTS

Résumé

Abstract. This paper addresses physics-informed deep learning schemes for satellite ocean remote sensing data. Such observation datasets are characterized by the irregular space-time sampling of the ocean surface due to sensors’ characteristics and satellite orbits. With a focus on satellite altimetry, we show that end-to-end learning schemes based on variational formulations provide new means to explore and exploit such observation datasets. Through Observing System Simulation Experiments (OSSE) using numerical ocean simulations and real nadir and wide-swath altimeter sampling patterns, we demonstrate their relevance w.r.t. state-of-the-art and operational methods for space-time interpolation and short-term forecasting issues. We also stress and discuss how they could contribute to the design and calibration of ocean observing systems.
Fichier principal
Vignette du fichier
isprs-annals-V-3-2021-295-2021.pdf (1.92 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03349917 , version 1 (21-09-2021)

Licence

Identifiants

Citer

Ronan Fablet, M. Amar, Q. Febvre, M. Beauchamp, B. Chapron. END-TO-END PHYSICS-INFORMED REPRESENTATION LEARNING FOR SATELLITE OCEAN REMOTE SENSING DATA: APPLICATIONS TO SATELLITE ALTIMETRY AND SEA SURFACE CURRENTS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, V-3-2021, pp.295-302. ⟨10.5194/isprs-annals-V-3-2021-295-2021⟩. ⟨hal-03349917⟩
257 Consultations
177 Téléchargements

Altmetric

Partager

More