Asymptotic Random Distortion Testing and Application to Change-in-Mean Detection - IMT Atlantique
Communication Dans Un Congrès Année : 2021

Asymptotic Random Distortion Testing and Application to Change-in-Mean Detection

Résumé

We introduce an extension of the Random Distortion Testing (RDT) framework which allows its use when the noise variance is estimated. This asymptotic extension, named AsympRDT, shows that we asymptotically retain the level of the RDT test as the estimate of the noise variance converges to its real value. The validity of this approach is justified through both theoretical and simulation results. We make use of AsympRDT to develop a change-in-mean detection method for time series. It features three parameters: the size of the processed blocks, the maximum desired false alarm rate and a tolerance. We then show a use-case for this method in cybersecurity for Industrial Control Systems (ICS) as part of an anomaly and cyberattack detection system, where it can be used for segmenting signals and learning normal behaviors.
Fichier principal
Vignette du fichier
article_v10.pdf (249.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03238994 , version 1 (27-05-2021)

Identifiants

Citer

Guillaume Ansel, Dominique Pastor, Frédéric Cuppens, Nora Boulahia Cuppens. Asymptotic Random Distortion Testing and Application to Change-in-Mean Detection. ISIVC'2020: 10th International Symposium on Signal, Image, Video and Communications, Apr 2021, Saint-Étienne (virtual), France. ⟨10.1109/ISIVC49222.2021.9487550⟩. ⟨hal-03238994⟩
92 Consultations
117 Téléchargements

Altmetric

Partager

More