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Montréal, Canada

frederic.cuppens@polymtl.ca

Nora Boulahia Cuppens
Computer Engineering and Software Engineering

Polytechnique Montréal
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Abstract—We introduce an extension of the Random Distor-
tion Testing (RDT) framework which allows its use when the
noise variance is estimated. This asymptotic extension, named
AsympRDT, shows that we asymptotically retain the level of the
RDT test as the estimate of the noise variance converges to its
real value. The validity of this approach is justified through both
theoretical and simulation results. We make use of AsympRDT
to develop a change-in-mean detection method for time series.
It features three parameters: the size of the processed blocks,
the maximum desired false alarm rate and a tolerance. We then
show a use-case for this method in cybersecurity for Industrial
Control Systems (ICS) as part of an anomaly and cyberattack
detection system, where it can be used for segmenting signals
and learning normal behaviors.

Index Terms—Random Distortion Testing, Change point detec-
tion, anomaly detection, time series analysis, cybersecurity

I. INTRODUCTION

A frequently encountered problem in statistical decision
theory is the issue of deciding whether a parameter 𝜃 is equal
to a given value 𝜃0 or not. This problem is often formulated
as testing the simple null hypothesis H0 : 𝜃 = 𝜃0 against
the composite alternative hypothesis H1 : 𝜃 ≠ 𝜃0 given some
observation that depends on 𝜃. In general there is no Uniformly
Most Powerful (UMP) test to solve this problem, but it is
sometimes possible to find optimal tests among a restricted
class of tests (e.g. the Wald test [1]).

Testing whether 𝜃 = 𝜃0 may be sometimes too restrictive, and
it can be more reasonable to instead test if 𝜃 lies close enough
to 𝜃0 given some user-controlled tolerance. This problem is
addressed with Random Distortion Testing (RDT) [2], which
consists in deciding whether an unknown random signal Θ lies
close enough to a known deterministic model 𝜃0. The signal
is assumed to be observed in presence of independent additive
Gaussian noise 𝑋 with known covariance matrix 𝐶. For this
problem, [2] exhibits an optimal test for any desired level 𝛾 ∈
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(0, 1) among the tests which respect the invariance properties
of the noise 𝑋 . In practice however, it is common not to have
access to the covariance matrix of the noise. An estimate is
often used instead of the real matrix, and we do not necessarily
retain optimality in this case. To address this, we establish an
extension of the RDT framework named AsympRDT that takes
the noise variance estimation into account. We show that the
desired false alarm rate 𝛾 is asymptotically respected as the
noise variance estimate improves. The study of the asymptotic
detection probability and its optimality is in-progress and will
be presented in a forthcoming paper. In the following, we only
consider the case where the noise components are independent
and identically distributed (i.i.d.), hence the noise covariance
matrix can be reduced to a single parameter. This asymptotic
result is confirmed through simulations, which also hint at a
potential further extension where both the noise variance and
the model 𝜃0 are estimated. This extension, along with the
study of the asymptotic power of the test and the case of a
general noise covariance matrix, are postponed to future work.

Using this result, we then present a new method for change-
in-mean detection in time series. The method proposed can
be regarded as a continuation and a formalization of works
initiated and presented in [3]. The method relies on estimating
the current mean and noise variance of the signal, and using
the RDT test to detect whether the mean of the next block of
samples has changed or not. The tolerance defined in the RDT
test is used to specify the minimum amplitude of changes
that should be detected, allowing the user to only detect
relevant changes. The change-in-mean detection method we
propose asymptotically inherits the false-alarm rate guarantee
of the RDT test. Using this method, we then show a potential
application in cybersecurity for industrial systems to help
segment signals obtained from sensors. This segmentation step
is part of a work in progress to build a model of the normal
behavior of a system that can then be used to detect anomalies
and attacks. Learning and using this model is beyond the scope



of this paper; we will only demonstrate that we can use this
change-in-mean detection method to segment signals measured
on an industrial system.

Section II will introduce the RDT framework and the main
results as presented in [2]. We then present the AsympRDT
extension in Section III with both theoretical and simulation
results. Section IV will then introduce our change-in-mean
detection algorithm based on these results and an application
to cybersecurity for Industrial Control Systems (ICS) in the
context of water treatment, where it is used to help learn the
normal behavior of the system.

Notations and terminology: All random variables and vectors
are defined on the same probability space (Ω,Σ, P), and
M(Ω,R𝑑) denotes the set of all R𝑑-valued random vectors
defined on Ω. For any positive definite 𝑑 × 𝑑 matrix 𝐶,
the Mahalanobis norm defined on R𝑑 with respect to 𝐶 is
denoted by 𝜈𝐶 . Hence, for any vector 𝑦 ∈ R𝑑 , we have
𝜈𝐶 (𝑦) =

√︁
𝑦𝑇𝐶−1𝑦. ‖ · ‖2 denotes the Euclidean norm in

R𝑑 . For any 𝜏 > 0, 𝑄𝑑/2 (𝜏, ·) denotes the generalized
Marcum function [4], which is the complementary cumulative
distribution function (cdf) of the square root of any random
variable that follows the non-central 𝜒2 distribution with 𝑑

degrees of freedom and non-centrality parameter 𝜏2. Given
𝜃0 ∈ R𝑑 and a positive definite 𝑑 × 𝑑 matrix 𝐶, for any 𝜌 > 0,
we define Υ𝜌 as the set Υ𝜌 = {𝑦 ∈ R𝑑 : 𝜈𝐶 (𝑦 − 𝜃0) = 𝜌}, and
set 𝔉 = {Υ𝜌 : 𝜌 > 0}. For any 𝑡 > 0, we define the thresholding
test T𝑡 by:

T𝑡 : R𝑑 −→ {0, 1}

𝑦 ↦−→
{

1 if 𝜈𝐶 (𝑦 − 𝜃0) > 𝑡

0 otherwise

(1)

II. RDT FRAMEWORK

A. Problem statement

We briefly introduce the RDT problem and the main related
results. A full presentation of the RDT framework can be found
in [2]. Consider an unknown random vector Θ ∈ M(Ω,R𝑑)
representing a quantity of interest, for example some physical
phenomenon, of which we have a measurement 𝑌 in presence of
independent additive Gaussian noise 𝑋 ∼ N(0, 𝐶) with known
covariance matrix 𝐶. Given 𝜔 ∈ Ω and the observation 𝑌 (𝜔),
the RDT problem consists in deciding whether the quantity
Θ(𝜔) is close enough to a given model 𝜃0 ∈ R𝑑 with respect
to a specified tolerance 𝜏 > 0:

RDT :


Observation :


𝑌 (𝜔) = Θ(𝜔) + 𝑋 (𝜔)
𝑋 ∼ N(0, 𝐶)
Θ and 𝑋 independent

Null event : 𝜈𝐶 (Θ(𝜔) − 𝜃0) ≤ 𝜏

Alternative event : 𝜈𝐶 (Θ(𝜔) − 𝜃0) > 𝜏

(2)

Unlike many other statistical decision problems, this decision
problem is not about the model which generates the observation,
but instead about a property of the realization Θ(𝜔) of the
unknown random vector Θ.

B. The Deterministic Case: a UMPI Test

We define the power function 𝛽T : R𝑑 → [0, 1] and the size
𝛼T of any given test T : R𝑑 → {0, 1} as:

∀𝜃 ∈ R𝑑 , 𝛽T (𝜃) = P[T (𝜃 + 𝑋) = 1]
𝛼T = sup

𝜃 ∈R𝑑 : 𝜈𝐶 (𝜃−𝜃0) ≤𝜏
𝛽T (𝜃) (3)

Note that 𝜃 is deterministic in these definitions. Using these
definitions of size and power, we can attempt to find an optimal
test in the sense of a Uniformly Most Powerful (UMP) test of
level 𝛾 ∈ (0, 1), i.e. a test 𝔗∗ such that 𝛼𝔗∗ ≤ 𝛾 and which
verifies for any other test T :

∀𝜃 ∈ R𝑑 , 𝜈𝐶 (𝜃 − 𝜃0) > 𝜏 ⇒ 𝛽𝔗∗ (𝜃) ≥ 𝛽T (𝜃)

Unfortunately, there exists no UMP test among all tests defined
on R𝑑 . Since we have no knowledge on the random vector Θ,
we consider the invariance properties of the noise 𝑋 , whose
probability density function (pdf) can be written as a function of
the Mahalanobis norm 𝜈𝐶 . The RDT problem is invariant by any
transformation preserving the Mahalanobis norm. Therefore,
we restrict our search for an optimal test to the set of tests
that respect this invariance. Among these tests, which can be
written as functions of 𝜈𝐶 [5], it has been shown that the
thresholding test T𝜆𝛾 (𝜏) is Uniformly Most Powerful Invariant
(UMPI) with size 𝛾, where 𝜆𝛾 (𝜏) > 0 is the unique positive
real number verifying the equation 𝑄𝑑/2 (𝜏, 𝜆𝛾 (𝜏)) = 1 − 𝛾.

C. The Random Case: a 𝛾-MCCP Test

We can go further and show that this test is optimal among a
larger class of tests. The UMPI criterion relies on our definition
of size and power function, which involve a deterministic
parameter 𝜃 only, and do not take into account the fact that
the RDT problem concerns a random vector Θ. Appropriate
notions of size and power, involving conditional probabilities,
can be introduced to bypass this limitation. These notions can
then be linked to those introduced in Eq. (3), before recalling
the main result of [2]. In this regard, the following lemma
will prove useful in the sequel. In particular, the left hand side
in Eq. (4) below can be regarded as a natural definition for
the size of a test with respect to the RDT problem of Eq. (2).
Lemma 1 establishes a direct connection between this notion
of size and the size as defined in Eq. (3).

Lemma 1. For any test T : R𝑑 → {0, 1}, we have:

sup
Ξ∈M(Ω,R𝑑) : P[𝜈𝐶 (Ξ−𝜃0) ≤𝜏 ]≠0

P[T (Ξ + 𝑋) = 1 | 𝜈𝐶 (Ξ − 𝜃0) ≤ 𝜏] = 𝛼T (4)

Definition 1 (Constant conditional power function given
Ξ ∈ Υ𝜌). Let 𝜌 > 0, and let Ξ ∈ M(Ω,R𝑑) be a random
vector independent of 𝑋 ∼ N(0, 𝐶). A test T is said to have
constant conditional power function given Ξ ∈ Υ𝜌 if:

∀𝜃 ∈ Υ𝜌, P[T (Ξ + 𝑋) = 1 | Ξ ∈ Υ𝜌] = 𝛽T (𝜃)

Lemma 2. A test T has constant power function on every
Υ𝜌 ∈ 𝔉 if and only if, for any Ξ ∈ M(Ω,R𝑑), the test T has
constant conditional power given Ξ ∈ Υ𝜌 for P𝜈𝐶 (Ξ − 𝜃0)−1-
almost every 𝜌 ∈ R.



The criterion used to find an optimal test for the RDT
problem is the following:

Definition 2 (𝛾-MCCP test). Given 𝜏 ∈ R and 𝛾 ∈ (0, 1),
a test 𝔗∗ is said to have level 𝛾 and Maximum Conditional
Constant Power (MCCP) — and we say that 𝔗∗ is 𝛾-MCCP —
if:
• (Level) 𝛼T ≤ 𝛾;
• (Constant conditional power function) For any Ξ ∈
M(Ω,R𝑑) and for P(𝜈𝐶 (Ξ − 𝜃0))−1-almost every 𝜌 > 𝜏,
𝔗∗ has constant conditional power function given Ξ ∈ Υ𝜌;

• (MCCP) For any Ξ ∈ M(Ω,R𝑑), for P𝜈𝐶 (Ξ − 𝜃0)−1-
almost every 𝜌 > 𝜏, and for any test T ∈ K𝛾 with
constant conditional power function given Ξ ∈ Υ𝜌 we
have:

P[𝔗∗ (Ξ+ 𝑋) = 1 | Ξ ∈ Υ𝜌] ≥ P[T (Ξ+ 𝑋) = 1 | Ξ ∈ Υ𝜌] (5)

We now state the main result of [2]:

Theorem 1. The test T𝜆𝛾 (𝜏) is 𝛾-MCCP.

III. ASYMPTOTIC RDT

In the following, we consider the case when the covariance
matrix 𝐶 of the noise 𝑋 can be written 𝐶 = 𝜎2

0 𝐼𝑑 . We present
here an extension to the RDT framework in which the noise
variance 𝜎2

0 is estimated instead of being perfectly known.

A. Problem statement

The problem statement remains the same as in Eq. (2), but
unlike the previous section, we do not have access to 𝜎2

0 and
we have to rely on an estimate instead. For example, we may
have access to a representative time series (𝑅𝑛)𝑛∈N that can
be used to estimate the noise variance via the usual maximum
likelihood estimator:

∀𝑛 ∈ N, �̂�𝑛 =
1
𝑑 𝑛

𝑛∑︁
𝑖=1

(
‖𝑅𝑖 − 𝑚𝑅 ‖22

)
(6)

with 𝑚𝑅 the mean of (𝑅𝑛)𝑛∈N. For the asymptotic RDT
problem, we assume that we have a sequence of random
variables (�̂�𝑛)𝑛∈N ∈ M(Ω, (R))N that converges in distribution
to 𝜎0. The objective is to show that the test is asymptotically of
level 𝛾 when we consider the sequence

(
T̃𝜆𝛾 (𝜏) (·, 𝜃0, �̂�𝑛)

)
𝑛∈N,

where T̃𝑡 is defined for any 𝑡 > 0 by:

T̃𝑡 : R𝑑 × R𝑑 × (0,∞) −→ {0, 1}

(𝑦, 𝜃, 𝜎) ↦−→


1 if
‖𝑦 − 𝜃‖2

𝜎
> 𝑡

0 otherwise

(7)

One can note that, for any 𝜃 ∈ R𝑑 and any 𝜎 ∈ (0,∞), the
application T̃𝑡 (·, 𝜃, 𝜎) is a test.

B. Theoretical results

Let (�̂�𝑛) ∈ M(Ω,R)N be a sequence of random variables
that converges in distribution to 𝜎2

0 such that for all 𝑛 ∈ N,
𝑌 and �̂�𝑛 are independent. Let S = {Ξ ∈ M(Ω,R𝑑) : ∀𝑛 ∈
N,Ξ and �̂�𝑛 are independent}.

Theorem 2.

lim sup
𝑛

sup
Ξ∈S : P[ ‖Ξ−𝜃0 ‖2≤𝜎0𝜏 ]≠0

P
[
T̃𝜆𝛾 (𝜏) (Ξ+𝑋, 𝜃0, �̂�𝑛) = 1 | ‖Ξ−𝜃0‖2 ≤ 𝜎0𝜏

]
≤ 𝛾

(8)

Proof. Let Ξ0 ∈ S such that P[‖Ξ0 − 𝜃0‖2 ≤ 𝜎0𝜏] ≠ 0.

P
[
T̃𝜆𝛾 (𝜏) (Ξ0 + 𝑋, 𝜃0, �̂�𝑛) = 1 | ‖Ξ0 − 𝜃0‖2 ≤ 𝜎0𝜏

]
=

∫
P
[
T̃𝜆𝛾 (𝜏) (Ξ0 + 𝑋, 𝜃0, 𝜎) = 1 | ‖Ξ0 − 𝜃0‖2 ≤ 𝜎0𝜏

]
P�̂�−1

𝑛 (d𝜎)

≤
∫

sup
Ξ∈M(Ω,R𝑑) : P[ ‖Ξ−𝜃0 ‖2≤𝜎0𝜏 ]≠0
P
[
T̃𝜆𝛾 (𝜏) (Ξ + 𝑋, 𝜃0, 𝜎)=1 | ‖Ξ−𝜃0‖2 ≤𝜎0𝜏

]
P�̂�−1

𝑛 (d𝜎)

From Lemma 1, since T̃𝜆𝛾 (𝜏) (·, 𝜃0, 𝜎) is a test, we have:

sup
Ξ∈M(Ω,R𝑑) : P[ ‖Ξ−𝜃0 ‖2≤𝜎0𝜏 ]≠0

P
[
T̃𝜆𝛾 (𝜏) (Ξ + 𝑋, 𝜃0, 𝜎) = 1 | ‖Ξ − 𝜃0‖2 ≤ 𝜎0𝜏

]
= sup

𝜃 ∈R𝑑 : ‖𝜃−𝜃0 ‖2≤𝜎0𝜏

P
[
T̃𝜆𝛾 (𝜏) (𝜃 + 𝑋, 𝜃0, 𝜎) = 1

]
Therefore:

P
[
T̃𝜆𝛾 (𝜏) (Ξ0 + 𝑋, 𝜃0, �̂�𝑛) = 1 | ‖Ξ0 − 𝜃0‖2 ≤ 𝜎0𝜏

]
≤
∫

sup
𝜃 ∈R𝑑 : ‖𝜃−𝜃0 ‖2≤𝜎0𝜏

P
[
T̃𝜆𝛾 (𝜏) (𝜃 + 𝑋, 𝜃0, 𝜎) = 1

]
P�̂�−1

𝑛 (d𝜎)

≤
∫

sup
𝜃 ∈R𝑑 : ‖𝜃−𝜃0 ‖2≤𝜎0𝜏

P

[
‖𝜃 + 𝑋 − 𝜃0‖2

𝜎
> 𝜆𝛾 (𝜏)

]
P�̂�−1

𝑛 (d𝜎)

Let 𝑊 = 𝜃 + 𝑋 − 𝜃0 ∼ N(𝜃 − 𝜃0, 𝜎
2
0 𝐼𝑑). We have:

P

[
‖𝑊 ‖2
𝜎

> 𝜆𝛾 (𝜏)
]
= P

[
‖𝑊 ‖2
𝜎0

>
𝜎

𝜎0
𝜆𝛾 (𝜏)

]
= 𝑄𝑑/2

(
‖𝜃 − 𝜃0‖2

𝜎0
,
𝜎

𝜎0
𝜆𝛾 (𝜏)

)
The function 𝑄𝑑/2 is continuous and increases with its first
argument, therefore:

sup
𝜃 ∈R𝑑 : ‖𝜃−𝜃0 ‖2≤𝜎0𝜏

𝑄𝑑/2

(
‖𝜃 − 𝜃0‖2

𝜎0
,
𝜎

𝜎0
𝜆𝛾 (𝜏)

)
= 𝑄𝑑/2

(
𝜏,

𝜎

𝜎0
𝜆𝛾 (𝜏)

)
Hence:

P
[
T̃𝜆𝛾 (𝜏) (Ξ0 + 𝑋, 𝜃0, �̂�𝑛) = 1 | ‖Ξ0 − 𝜃0‖2 ≤ 𝜎0𝜏

]
≤
∫

𝑄𝑑/2

(
𝜏,

𝜎

𝜎0
𝜆𝛾 (𝜏)

)
P�̂�−1

𝑛 (d𝜎)

This inequality is valid for any Ξ0 ∈ S such that P[‖Ξ0−𝜃0‖2 ≤
𝜎0𝜏] ≠ 0, and the right-hand side does not depend on Ξ0.
Therefore:

sup
Ξ∈S : P[ ‖Ξ−𝜃0 ‖2≤𝜎0𝜏 ]≠0

P
[
T̃𝜆𝛾 (𝜏) (Ξ + 𝑋, 𝜃0, �̂�𝑛) = 1 | ‖Ξ − 𝜃0‖2 ≤ 𝜎0𝜏

]
≤
∫

𝑄𝑑/2
(
𝜏,

𝜎

𝜎0
𝜆𝛾 (𝜏)

)
P�̂�−1

𝑛 (d𝜎)

The function 𝜎 ↦→ 𝑄𝑑/2
(
𝜏, 𝜎

𝜎0
𝜆𝛾 (𝜏)

)
defined on [0,∞) is

uniformly continuous, since it is continuous and has a finite
limit as 𝜎 tends to infinity. This function is also bounded by
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Fig. 1. Measured false alarm rate vs. parameter 𝛾 using 𝑁 samples to estimate
𝜎0 (𝜏 = 0, 𝑑 = 1).

definition of 𝑄𝑑/2. Therefore, from the Portmanteau theorem
[6], since (�̂�𝑛)𝑛∈N converges in distribution to 𝜎2

0 , and by
definition of 𝜆𝛾 (𝜏), we have:

lim
𝑛

∫
𝑄𝑑/2

(
𝜏,

𝜎

𝜎0
𝜆𝛾 (𝜏)

)
P�̂�−1

𝑛 (d𝜎) = 𝑄𝑑/2
(
𝜏, 𝜆𝛾 (𝜏)

)
= 𝛾

Hence:

lim sup
𝑛

sup
Ξ∈S : P[ ‖Ξ−𝜃0 ‖2≤𝜎0𝜏 ]≠0

P
[
T̃𝜆𝛾 (𝜏) (Ξ+𝑋, 𝜃0, �̂�𝑛) = 1 | ‖Ξ−𝜃0‖2 ≤ 𝜎0𝜏

]
≤ 𝛾

which is the desired result. �

C. Simulation results

We now illustrate the result stated in Theorem 2 with
simulation results. These simulations were conducted with
mono-dimensional signals only (𝑑 = 1). The objective is to
show empirically that, as we get a better estimate of the noise
variance, the measured false alarm rate tends to become lower
than the specified false alarm rate 𝛾. In these simulations,
we first generate 𝑁 independent Gaussian distributed samples
(𝑅1, ..., 𝑅𝑁 ) with variance 𝜎0

2. These samples are used to
estimate 𝜎0

2 via the maximum likelihood ratio estimator of
Eq. (6). This yields an estimate 𝜎0

2 of the noise variance. Then
we generate one sample 𝑌 ∼ N(𝜃0, 𝜎

2
0 ) for a given value of

𝜃0 and the detection result is given by T̃𝜆𝛾 (𝜏)
(
𝑌, 𝜃0, 𝜎0

2) .
Figure 1 shows the measured false alarm rate for different

values of the parameter 𝛾 and with different number of samples
𝑁 used for estimating 𝜎2

0 . We can see that for every value of
𝛾, the measured false alarm rate decreases and tends to 𝛾 as 𝑁

increases. Figure 2 confirms this behavior, where we see the
evolution of the measured false alarm rate with 𝑁 for several
values of 𝛾.

We also considered an extension of AsympRDT to the case
when, in addition to estimating the noise variance, we also
estimate the model 𝜃0 by using the samples (𝑅𝑛). The detection
is then performed using the estimated model �̂�0 = 1

𝑁

∑𝑁
𝑖=1 𝑅𝑖

instead of 𝜃0. The simulation results when both 𝜃0 and 𝜎0
are estimated are presented in Fig. 3. We observe the same
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Fig. 2. Measured false alarm rate vs. number of samples 𝑁 used to estimate
𝜎0 (𝜏 = 0, 𝑑 = 1).
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Fig. 3. Measured false alarm rate vs. parameter 𝛾 using 𝑁 samples to estimate
both 𝜃0 and 𝜎0 (𝜏 = 0, 𝑑 = 1).

behavior as in Fig. 1: the measured false alarm rate tends to 𝛾

as 𝑁 increases. As can be expected since two parameters were
estimated instead of one only, we can notice a slight increase
in the measured false alarm rate in comparison to the results
of Fig. 1.

These results motivate an extension of the theoretical
framework of Section III above to the case when both 𝜃0
and 𝜎0 are estimated and strongly suggest that Theorem 2 is
likely to remain valid in that context.

IV. CHANGE-IN-MEAN DETECTION METHOD

A. Method description

We now introduce our change-in-mean detection algorithm
based on AsympRDT presented before. We consider a 𝑑-
dimensional time series (𝑌𝑛)𝑛∈N ∈ M(Ω,R𝑑)N where every
sample 𝑌𝑛 can be written as 𝑌𝑛 = Θ𝑛 + 𝑋𝑛 with 𝑋𝑛 ∼
N(0, 𝜎2

0 𝐼𝑑) independent of Θ𝑛 ∈ M(Ω,R𝑑). The principle
of our method is to process the signal sequentially in blocks
of 𝐵 samples and test if the mean of each of these blocks is
close enough to the current estimated model (�̂�0 and 𝜎0

2). If



no change has been detected, we can then update the estimated
model to improve our estimates of 𝜃0 and 𝜎2

0 .
This algorithm has three parameters to be set by the user:

• the block-size 𝐵,
• the tolerance 𝜏,
• the desired false alarm probability 𝛾,

and can be decomposed in three steps:

1) model initialization;
2) test;
3) model update.

We start by estimating the initial model of the signal on
a first block of 𝐵 samples (𝑌𝑛) 0≤𝑛<𝐵, yielding a first model
(𝜇, 𝜎0

2). Then we test if the empirical mean of the next block
(𝑌𝑛)𝐵≤𝑛<2𝐵 lies close enough to 𝜇 given the tolerance 𝜏.

Since the value of interest to be tested in this algorithm is
the mean of a block of samples, the testing is a Block-RDT
problem [7], that is, an RDT problem where the observation
is the empirical mean of a given block of samples and the
model is the mean 𝜃0 of the process. The optimal test for
the Block-RDT problem is thus T

𝜆𝛾 (𝜏
√
𝐵)/
√
𝐵

applied to the
empirical mean of the observed samples. However this test
is only usable when 𝜃0 and 𝜎0 are known, which is not the
case here. AsympRDT and the pertaining simulations above
show that we can replace the test T

𝜆𝛾 (𝜏
√
𝐵)/
√
𝐵

with the test

T̃
𝜆𝛾 (𝜏

√
𝐵)/
√
𝐵

(
·, 𝜇, 𝜎0

2) , which guarantees the false-alarm rate

𝛾 as long as the estimated model (𝜇, 𝜎0
2) is good enough.

Consequently, we use the following test to decide on the
presence or the absence of a change:���� 1𝐵 2𝐵−1∑︁

𝑖=𝐵

𝑌𝑖 − 𝜇

����
𝜎0

no change
≶

change

𝜆𝛾

(
𝜏
√
𝐵
)

√
𝐵

(9)

If the threshold is not exceeded, we update the model estimate
using the samples (𝑌𝑛)𝐵≤𝑛<2𝐵. We then repeat the test phase
with the next 𝐵 samples of (𝑌𝑛). Otherwise, if the threshold is
exceeded, a change in the mean of the signal has been detected.
In this case, we forget the model estimated up to this point and
estimate the new mean and variance from the next 𝐵 samples.
We then resume the testing with the block following these
samples. It is worth noticing that we do not estimate the new
model with the samples in which the change has been detected,
since all the samples in this block do not necessarily have the
same statistical properties. Figure 4 recapitulates the different
steps of this algorithm.

It is also worth mentioning that by definition (see Eq. (2)),
𝜏 represents the maximum deviation allowed from the model
normalized by the noise variance 𝜎0. One may instead want to
choose a tolerance that does not depend on the noise variance. If
we denote this desired tolerance as 𝜏′, the only required change
in the algorithm is to replace the threshold 𝜆𝛾 (𝜏

√
𝐵)/
√
𝐵 with

𝜎0𝜆𝛾 (𝜏′
√
𝐵/𝜎0)/

√
𝐵, and recompute the latter whenever the

noise variance estimate is updated.

Input: Time series 𝑌𝑛, block size 𝐵, tolerance 𝜏, desired false
alarm probability 𝛾

Output: Estimated instants of change
𝑇 ← 𝜆𝛾 (𝜏

√
𝐵)/
√
𝐵 (Threshold)

𝜇← mean(𝑌0, ..., 𝑌𝐵−1) (Initial mean estimate)

𝜎0
2 ← var(𝑌0, ..., 𝑌𝐵−1) (Initial variance estimate)

𝑛← 𝐵 (Number of samples in the current segment)

𝑖𝑠 ← 0 (Index of the first sample of the current segment)

repeat
𝑠← mean(𝑌𝑖𝑠+𝑛, ..., 𝑌𝑖𝑠+𝑛+𝐵−1) (Current block mean)

𝑧 ← |𝑠 − 𝜇 |/𝜎0 (Test statistic)

if 𝑧 ≤ 𝑇 then
𝑛← 𝑛 + 𝐵 (Extend the current segment)

𝜇← mean(𝑌𝑖𝑠 , ..., 𝑌𝑖𝑠+𝑛+𝐵−1) (Update the mean estimate)

𝜎0
2 ← var(𝑌𝑖𝑠 , ..., 𝑌𝑖𝑠+𝑛+𝐵−1) (Update the variance estimate)

else
Notify that a change has been detected between indices
𝑖𝑠 + 𝑛 and 𝑖𝑠 + 𝑛 + 𝐵 − 1
𝑖𝑠 ← 𝑖𝑠 + 𝑛 + 𝐵 (Start the next segment after the end of the current

block)

𝜇← mean(𝑌𝑖𝑠 , ..., 𝑌𝑖𝑠+𝐵−1) (Initial mean estimate)

𝜎0
2 ← var(𝑌𝑖𝑠 , ..., 𝑌𝑖𝑠+𝐵−1) (Initial variance estimate)

𝑛← 𝐵

end if
until end of 𝑌𝑛 reached

Fig. 4. Proposed change-in-mean detection algorithm

B. Cybersecurity Application: Industrial Control Systems

In this section, we present an application of our algorithm
for cybersecurity. We focus here on industrial control systems,
comprising a physical process controlled by programmable
logic controllers with sensors and actuators to monitor and
affect its physical components [8]. These systems are at the
core of many critical infrastructures and can be high-value
targets for attackers. Stuxnet [9] is one of the first case of such
an attack and demonstrated that many industrial systems are
potentially vulnerable to these types of attacks as these systems
are increasingly complex and connected, whereas security is
not always part of their design.

In this respect we present some results of experiments
conducted on the SWaT (Secure Water Treatment) dataset
[10], which was recorded on a test bed aimed at reproducing
a water treatment plant. Figure 5 displays the evolution during
six hours under normal conditions of a water level sensor
situated in a tank. The sampling rate is 1 Hz. We can see that
this signal is piecewise linear and can be decomposed in four
different phases repeated over time. The state of the water
level (slow increase, fast increase, stationary, or fast decrease)
depends directly on the state of the inflow and outflow pumps
connected to this tank.

We want to build a reference model of the system normal
operating conditions, for further use to detect anomalies and
attacks. A first step towards this goal is to identify the different
phases of each signal involved in the water treatment process.
In the case of Fig. 5, this can be done by applying our change-
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Fig. 5. Water level measurement in a water tank of the SWaT system under
normal operating conditions (sensor LIT101).
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Fig. 6. Sensor LIT101 derivative and tracked mean using the algorithm
described in Fig. 4 (𝛾 = 0.01, 𝜏 = 0.1, 𝐵 = 40).

detection method to its derivative, which is piecewise constant
as can be seen in Fig. 6. The orange signal is the output
of our algorithm and exhibits the different phases that have
been detected and the mean value of each phase. Comparing
this output with the original signal in Fig. 5, we can see that
it matches the variations of the signal. Out of 484 changes
present in this signal, 466 have been detected and no false alarm
occurred. Missed changes seem to occur when the amplitude
of the change is small and if the change is temporary, i.e. the
signal quickly returns to its previous value.

V. CONCLUSION AND PERSPECTIVES

Theorem 2 and our simulation results show that we can
get asymptotic performance guarantees when replacing the
known noise variance 𝜎2

0 with an estimate. Based on this,
we have built a change-detection method that inherits this
property by design and can therefore asymptotically respect a
given false-alarm rate. This approach opens many prospects,
notably in cybersecurity. Indeed, it makes it possible to perform
signal segmentation to describe the behavior of the system, for
example by computing the expected variation or length of each
phase.

However, a few points still need to be addressed to design
a fully asymptotically optimal method. First, as mentioned in
Section III-C, we can extend our theoretical study to the case
where both 𝜃0 and 𝜎0 are estimated. Second, the result proved

in Theorem 2 only concerns the size of the sequence of tests
T̃𝜆𝛾 (𝜏) . In order to have optimality, we also need to study its
asymptotic power. Third, the performance in terms of mean-
time between false alarms and mean-time before correct change
detection remains an open issue because of the estimators
involved. Finally, regarding cybersecurity applications, although
we require more data to refine our analysis and performance
measurements in practice, a full anomaly and attack detection
system based on the results presented in this paper is currently
in the works.
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