A low-complexity dual trellis decoding algorithm for high-rate convolutional codes - IMT Atlantique
Communication Dans Un Congrès Année : 2020

A low-complexity dual trellis decoding algorithm for high-rate convolutional codes

Résumé

Decoding using the dual trellis is considered as a potential technique to increase the throughput of soft-input soft-output decoders for high coding rate convolutional codes. However, the dual Log-MAP algorithm suffers from a high decoding complexity. More specifically, the source of complexity comes from the soft-output unit, which has to handle a high number of extrinsic values in parallel. In this paper, we present a new low-complexity sub-optimal decoding algorithm using the dual trellis, namely the dual Max-Log-MAP algorithm, suited for high coding rate convolutional codes. A complexity analysis and simulation results are provided to compare the dual Max-Log-MAP and the dual Log-MAP algorithms. Despite a minor loss of about 0.2 dB in performance, the dual Max-Log-MAP algorithm significantly reduces the decoder complexity and makes it a first-choice algorithm for high-throughput high-rate decoding of convolutional and turbo codes.
Fichier principal
Vignette du fichier
Dual_Min_Log_MAP_Final.pdf (365.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02502291 , version 1 (09-03-2020)

Identifiants

Citer

Vinh Hoang Son Le, Charbel Abdel Nour, Catherine Douillard, Emmanuel Boutillon. A low-complexity dual trellis decoding algorithm for high-rate convolutional codes. WCNC 2020 : IEEE Wireless Communications and Networking Conference, May 2020, Seoul, South Korea. ⟨10.1109/WCNC45663.2020.9120466⟩. ⟨hal-02502291⟩
126 Consultations
392 Téléchargements

Altmetric

Partager

More