EddyNet: A Deep Neural Network For Pixel-Wise Classification of Oceanic Eddies
Résumé
This work presents EddyNet, a deep learning based architecture for automated eddy detection and classification from Sea Surface Height (SSH) maps provided by the Copernicus Marine and Environment Monitoring Service (CMEMS). EddyNet consists of a convolutional encoder-decoder followed by a pixel-wise classification layer. The output is a map with the same size of the input where pixels have the following labels {'0': Non eddy, '1': anticyclonic eddy, '2': cyclonic eddy}. Keras Python code, the training datasets and EddyNet weights files are open-source and freely available on https://github.com/redouanelg/EddyNet.