Réseaux de neurones artificiels pour la prédiction et la reconstruction de dynamiques océanographiques
Résumé
En raison de la disponibilité d'importantes bases de données d'observations à grande échelle acquisses lors des différentes missions spatiales d'altimétrie, les modèles basés donnés apparaissent comme des représentations pertinentes de systèmes géophysiques pour un large éventail d'application. Dans ce travail, nous étudions la pertinence des représentations basées réseaux de neurones, pour la prédiction et la reconstruction de champs géophysiques à partir de données de télédétec-tion satellitaires. La validation de nos modèles est démontrée sur un champ de température de la mer au large de l'Afrique du Sud, une zone qui implique une dynamique océanique intense et complexe. Nos expériences numériques démontrent que les représentations à base de réseaux de neurones surpassent les autres-modèles, y compris les schémas analogues, en matière de prédiction et d'interpolation des données manquantes avec un gain relatif allant jusqu'à 50%.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...