Multi-task Learning for Maritime Traffic Surveillance from AIS Data Streams - IMT Atlantique
Pré-Publication, Document De Travail Année : 2018

Multi-task Learning for Maritime Traffic Surveillance from AIS Data Streams

Résumé

In a world of global trading, maritime safety, security and efficiency are crucial issues. We propose a multi-task deep learning framework for vessel monitoring using Automatic Identification System (AIS) data streams. We combine recurrent neural networks with latent variable modeling and an embedding of AIS messages to a new representation space to jointly address key issues to be dealt with when considering AIS data streams: massive amount of streaming data, noisy data and irregular time-sampling. We demonstrate the relevance of the proposed deep learning framework on real AIS datasets for a three-task setting, namely trajectory reconstruction, anomaly detection and vessel type identification.
Fichier principal
Vignette du fichier
Multitask Learning for Maritime Traffic Surveillance from AIS Data Streams.pdf (19.51 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01808176 , version 1 (05-06-2018)
hal-01808176 , version 2 (13-06-2018)
hal-01808176 , version 3 (07-08-2018)
hal-01808176 , version 4 (15-10-2018)

Identifiants

  • HAL Id : hal-01808176 , version 1

Citer

van Duong Nguyen, Rodolphe Vadaine, Guillaume Hajduch, René Garello, Ronan Fablet. Multi-task Learning for Maritime Traffic Surveillance from AIS Data Streams. 2018. ⟨hal-01808176v1⟩
1779 Consultations
865 Téléchargements

Partager

More