A regret-based query selection strategy for the incremental elicitation of the criteria weights in an SRMP model - IMT Atlantique Access content directly
Journal Articles Operational Research Year : 2024

A regret-based query selection strategy for the incremental elicitation of the criteria weights in an SRMP model

Abstract

SRMP, which stands for "Simple Ranking Method using Reference Profiles", is a Multi-Criteria Decision Aiding model which aims at ranking alternatives according to the preferences of a Decision Maker (DM), according to the principles of outranking techniques. Determining the preference parameters of SRMP can be tiring for the DM, who is asked to compare several alternatives pairwisely during a preference elicitation process. It has been proposed in the literature to use an incremental elicitation process which selects informative pairs of alternatives which are submitted to the DM in sequence. The goal in such a process it to refine the SRMP model at each iteration, until a robust recommendation is determined. In this research, using a regret-based elicitation approach, we present a new heuristic for choosing the pairs of alternatives sequentially submitted for evaluation to the DM. We also provide a mixed-integer linear program for an efficient computation of regret values in practice. We limit our solution to the elicitation of the criteria weights, a subset of the SRMP model's parameters, and we demonstrate that in this setting, the suggested heuristic outperforms previously examined query selection algorithms.
Embargoed file
Embargoed file
0 3 13
Year Month Jours
Avant la publication
Saturday, September 28, 2024
Embargoed file
Saturday, September 28, 2024
Please log in to request access to the document

Dates and versions

hal-04519903 , version 1 (28-03-2024)

Licence

Public Domain

Identifiers

Cite

Arwa Khannoussi, Alexandru-Liviu Olteanu, Patrick Meyer, Nawal Benabbou. A regret-based query selection strategy for the incremental elicitation of the criteria weights in an SRMP model. Operational Research, 2024, 24 (2), pp.12. ⟨10.1007/s12351-024-00823-y⟩. ⟨hal-04519903⟩
32 View
3 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More