Asymptotic Random Distortion Testing for Anomaly Detection
Résumé
In connection with cybersecurity issues in ICS, we consider the problem of detecting yet unknown attacks by presenting a theoretical framework for the detection of anomalies when the observations have unknown distributions. We illustrate the relevance of this framework with experimental results.
Fichier principal
ARCI_2021_15_Asymptotic Random Distortion Testing for Anomaly Detection_version_finale.pdf (313.39 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|