Asymptotic Random Distortion Testing for Anomaly Detection - IMT Atlantique
Communication Dans Un Congrès Année : 2021

Asymptotic Random Distortion Testing for Anomaly Detection

Résumé

In connection with cybersecurity issues in ICS, we consider the problem of detecting yet unknown attacks by presenting a theoretical framework for the detection of anomalies when the observations have unknown distributions. We illustrate the relevance of this framework with experimental results.
Fichier principal
Vignette du fichier
ARCI_2021_15_Asymptotic Random Distortion Testing for Anomaly Detection_version_finale.pdf (313.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03261082 , version 1 (15-06-2021)

Identifiants

  • HAL Id : hal-03261082 , version 1

Citer

Dominique Pastor, Guillaume Ansel. Asymptotic Random Distortion Testing for Anomaly Detection. 1st IFSA Winter Conference on Automation, Robotics & Communications for Industry 4.0 (ARCI’ 2021), Feb 2021, Chamonix, France. ⟨hal-03261082⟩
57 Consultations
58 Téléchargements

Partager

More