Impact of massive parallelization on two-photon absorption micro- and nanofabrication - IMT Atlantique
Communication Dans Un Congrès Année : 2020

Impact of massive parallelization on two-photon absorption micro- and nanofabrication

Résumé

The use of two-photon absorption (TPA) for polymerization, also known as 3D Lithography, Direct Laser Writing, or High-Precision 3D Printing is gaining increasing attraction in industrial fabrication of micro- and nanostructures. Mainly due to its vast freedom in design and high-resolution capabilities, TPA enables the fabrication of designs which are not feasible or far too complicated to be achieved with conventional fabrication methods. TPA is a scanning technology and fabrication in 3D requires axial overwritings. High industrial throughput fabrication can be achieved by intelligent fabrication strategies combined with an excellent material basis. Further boosting the throughput can be achieved by multispot exposure strategies. In this paper, massive parallelization is demonstrated which was realized by using a beam splitting diffractive optical element (DOE). Simultaneous fabrication using commercially available acrylate-based hybrid resin with 121 parallel focal spots arranged as 11 x 11 array is reported. Structures fabricated by a single laser beam and by 121 parallel beams are compared to each other with regard to shape and polymerization threshold. It was found that polymerization is strongly increased when parallel beams are used, especially for the central beams. As a result, polymerization threshold is lower in the center of the 11 x 11 array compared to the edges of the array. Furthermore, structures at the center of the 11 x 11 array are bigger compared to structures at the edges of the array when assigning equal intensity to all diffracted beams. These results are attributed to diffusion of photo initiators, quenchers, and radicals.
Fichier principal
Vignette du fichier
Paper_11271-4_ImpactOfMassiveParallelization.pdf (348.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03104057 , version 1 (26-05-2021)

Identifiants

Citer

Fabian Hilbert, Jonas Wiedenmann, Benedikt Stender, Willi Mantei, Ruth Houbertz, et al.. Impact of massive parallelization on two-photon absorption micro- and nanofabrication. SPIE LASE 2020, Feb 2020, San Francisco, CA, United States. pp.1127105, ⟨10.1117/12.2545788⟩. ⟨hal-03104057⟩
113 Consultations
214 Téléchargements

Altmetric

Partager

More