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Chapter 1

FOREWORD

General context. This manuscript presents an overview of the research activities I conducted from
2015 to 2024, and outlines research perspectives for the upcoming years. Choices and compromises
were necessary to deliver a digest and concise summary. Thus, I modestly strive to synthesize my past
contributions and anticipate future prospects on medical image analysis with artificial intelligence,
towards better clinical decision support. At the interface between image processing, artificial intelli-
gence and applied mathematics, this manuscript mainly emphases on medical image segmentation,
multi-modal information fusion, medically-sound computational modeling and longitudinal follow-up.

In current clinical practice, the accuracy of disease detection, diagnosis, characterization and moni-
toring from medical images hinges on the proficiency of individual clinicians. However, this dependence
can result in considerable inter-reader variability in the interpretation of medical images. To address
this challenge, numerous computer-aided medical image analysis techniques have been developed in
the past decades to benefit from precise, reproducible and objective measurements performed by com-
puters. By transitioning from grids of millions of voxels to the understanding of the intricacies of the
human body, these tools strive to support clinicians in effectively interpreting medical images and en-
hancing clinical decision-making. The underlying rationale is that employing computer-aided medical
image analysis systems can mitigate the difficulties faced in clinical settings, including variations in
clinical skills, potential fatigue of human experts or insufficient medical resources.

In recent years, supervised methodologies have become increasingly popular in the field of medical
image analysis by involving the use of training data to develop computer-aided systems. Pattern recog-
nition and machine learning approaches enabled a shift from systems that were completely designed by
humans to systems that are trained from training data from which feature vectors are extracted. These
algorithms ascertain the optimal decision boundary in high-dimensional feature space. A crucial step
in the design of such systems is the extraction of discriminant features from medical images. Instead
of designing handcrafted features, a logical next step has been to let computers learn the features that
optimally represent the available data, for the problem at hand. This concept lies at the basis of many
deep learning algorithms. Resulting models are composed of many layers that transform input data
to the targeted output while learning increasingly higher level features, in an automated fashion.

Past research activities. In this context, my research work has focused, starting from 2014, on
the analysis of medical images through machine and deep learning techniques. The integration of
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artificial intelligence technologies has revolutionized the landscape, offering unprecedented insights
into human anatomy understanding and pathology characterization. A key breakthrough in this field
was the application of deep learning techniques for medical image segmentation purposes (Chap.2).
The ability to accurately delineate and classify anatomical or pathological structures within medical
images is substantial to achieve anatomically accurate representations and enhance clinical decision-
making processes in diagnosis, treatment planning or disease monitoring.

Many medical imaging protocols often involve the use of various imaging information (e.g. multi-
view, multi-domain, multi-modal). However, while deep learning techniques based on convolutional
neural networks have become very popular in medical image analysis, a common practice is to de-
velop modality-specific (i.e. marginal) computational anatomical models, without explicitly taking into
account the multi-modal nature of the underlying imaging data. Marginal processing may leave po-
tentially valuable cross-modality information unused and as a consequence hamper the performance in
downstream applications. By leveraging transfer learning and multi-modal analysis (Chap.3), my con-
tributions aimed at exploiting cross-domain or cross-modal information for improved image processing
performance, especially in medical image detection and segmentation.

By providing a summary of my past research activities into two distinct parts (Chap.2 and 3),
Part.I highlights the progression from the foundational aspects of medical image segmentation to more
advanced techniques that involve leveraging the transferability of knowledge across different modalities
and integrating information from various sources. While Chap.2 focuses on achieving precise segmen-
tation of medical images using artificial intelligence, Chap.3 explores how insights gained from one
modality or domain can be effectively transferred and fused with information from others, leading to
enhanced analysis and interpretation of medical imaging data.

On-going and future research activities. The manuscript continues in Part.II with the presenta-
tion of my current projects, perspectives and future directions which will guide my research activities
over the coming years. Thus, Chap.4 delves into the development of computational tools and algo-
rithms to aid surgeons in planning surgical procedures, optimizing surgical outcomes and minimizing
risks. It also addresses the need for decision support systems that facilitate the monitoring during
the post-treatment phase, assisting clinicians in assessing treatment efficacy and making informed
decisions regarding further interventions or adjustments to the treatment plan. The strong hypothesis
is that the development of tools based on artificial intelligence and dedicated to the characterization
and the prediction of pathological tissue evolution can provide further guidance for clinicians, towards
early biomarker extraction as well as improved surgical and therapy planning and management.

Finally, the ending part of the manuscript provides a curriculum, a list of publications and patents as
well as a summary of the conducted supervision and teaching activities.

3



Part I

Overview of past research activities
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Chapter 2

ANATOMICALLY-SOUND MEDICAL IMAGE

SEGMENTATION

2.1 Introduction

The increased volume of medical data to be interpreted by clinicians for diagnosis, therapeutic or
surgical planning purposes has encouraged the development of computer-aided image analysis tools to
leverage accurate, fast, and repeatable measurements facilitated by computational resources. Among
existing analysis tasks, medical image segmentation whose goal is to extract the boundaries of anatom-
ical or pathological structures from medical images is crucial. Also commonly used in computer vision
[1], semantic segmentation is a key step for many medical imaging workflows since the information
arising from the resulting voxel-wise delineations can help clinicians to diagnose disorders, assess dis-
ease progression, plan therapeutic interventions or monitor treatment effects. Core feature of many
computer-aided detection and diagnosis systems, segmentation is involved in the analysis of many
modalities including computed tomography (CT) and magnetic resonance (MR) imaging.

Delineating anatomical or pathological structures from medical images is traditionally performed
manually. This task is time-consuming and requires suitable clinical expertise to get clinically-relevant
contours. This is therefore not applicable to large volumes of data produced in clinical routine. Given
the potential fatigue of human experts and the wide variations in expertise, manual segmentation is
prone to strong intra- and inter-expert variability. Irregularities of the targeted structures, morpho-
logical variations or pathological deformities between patients as well as the potential lack of clearly
visible boundaries with the surrounding anatomy further affect the non-agreement between operators.

Mathematical models and low-level image processing have been extensively exploited for segmenta-
tion before the rise of machine and deep learning techniques. In particular, model-based segmentation
incorporating statistical shape models has been used in various clinical contexts [2]. These models have
been further improved by exploiting prior knowledge of shape information, e.g. by relying on shape
fitting to guide the delineation process [3]. Conversely, aligning and merging manually segmented im-
ages into a specific atlas coordinate space have been developed as a reliable alternative to statistical
shape models. In this context, various single- and multi-atlas methods have been proposed relying on
non-linear registration [4]. Some hybrid methods relying on statistical shape models constrained with
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Chapter 2 – Anatomically-sound medical image segmentation

IWI IAR IEV ILV liver mask

Figure 2.1 – Registered dynamic contrast-enhanced CT scans with ground truth liver segmentation.

probabilistic atlases have also been investigated. Medical image segmentation has also been performed
through graph-based methods [5], clustering [6], region growing [7] or active contours [8].

However, these methodologies are not perfectly suited for high inter-subject shape variability, weak
boundaries and significant differences in tissue appearance. In most cases, their robustness does not
meet the intrinsic challenges of medical images (e.g. noise, non-uniform contrasts, motion artifacts).
Moreover, many of these methods are semi-automatic and require prior knowledge, associated with
high computational costs. This has motivated the development of novel paradigms based on machine
and deep learning techniques to exploit image characteristics in a data-driven manner. The remaining
part of this chapter describes some of my contributions in this context, in a mono-modal setting.

2.2 Machine learning and hierarchical supervoxels

My post-doctoral work at ICube laboratory1 mainly focused on machine learning approaches for
the segmentation of healthy and pathological liver tissues from dynamic contrast-enhanced (DCE)
images (Fig.2.1). This study looked at pre-operative locoregional treatments (PLT) for hepatocellular
carcinoma (HCC), a primary form of liver cancer, which delay tumor progression through necrosis.
Standard evaluation scores (e.g. RECIST [9]) used to predict the PLT response do not provide sufficient
results [10]. A more efficient HCC patient follow-up can be reached through tumor necrosis (TN) rate
(i.e. percentage of necrotic tissue in tumors) which provides more significant correlation with survival
rates, as shown after transplantation [11] or resection [12]. However, calculating the TN rate requires
distinguishing tumors from healthy liver tissues and segmenting tumoral active and necrotic areas.

Medical image segmentation covered in an interactive perspective through random forests (RF)
[13] has grown in popularity from the 2010s. Nevertheless, one key aspect was how to accurately
capture long-range spatial context by means of conditional random fields regularization, context-rich
features [14], entangled decision forests or auto-context [15]. Alternatively, the idea came in [16], [17]
to extend the use of RF from voxels to supervoxels, visual primitives generated by aggregating neigh-
boring voxels sharing similar characteristics [18]. The aim was to improve sample representativeness,
regularize features over consistent areas and reduce the computational complexity. Performed in a
single-scale fashion, methodologies from [16], [17] were limited in their ability to deal with spatial

1. https://icube.unistra.fr
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Figure 2.2 – Hierarchical multi-scale supervoxel decomposition [19] of the liver area in CT modality.

adaptivity. Indeed, the spatial extent of two different structures may highly differ and intrinsic tis-
sue properties may emerge at some specific scales only. This justified the need for robust multi-scale
feature representations in RF-based supervoxel classification.

In this regard, we proposed two main contributions [19]2 with liver tissue segmentation as appli-
cation. First, we proposed to combine RF and supervoxel decomposition by exploiting multi-phase
supervoxel-based features extracted from registered DCE-CT scans (Fig.2.1) acquired before contrast
agent injection (WI) and after, at arterial (AR), early (EV) and late venous (LV) phases [20]. Second,
to deal with multiple spatial extents and appearance heterogeneity of tumoral tissues, we extended
this baseline by combining RF and a hierarchical multi-scale tree resulting from a recursive supervoxel
decomposition [21]. Our motivation was to describe each leaf supervoxel as a sequence of supervoxels
belonging to its ascendant hierarchy. By concatenating features across the hierarchical tree, RF can
find itself the best data sampling without explicitly choosing how to combine the different scales.

More precisely and contrary to supervoxel decomposition defined on one single scale, we relied on
a hierarchical multi-scale supervoxel representation. The liver area Ωl was decomposed into a set of
K + 1 partitions Pk = {rki } defined at scale k ∈ {0, . . . ,K} where 0 and K denote respectively the
coarsest and finest scales (Fig.2.2). Each partition {Pk} was a collection of 3D connected SLIC [18]
supervoxels {rki } built at scale k such that rki ∩ rkj 6=i = ∅ and ⋃

i r
k
i = Ωl. As illustrated in Fig.2.3, the

resulting sequence of partitions {Pk} was encoded in the layers of a multi-resolution treeM = {Mk}
where layerMk maps each supervoxel rki ∈ Pk to a set of child supervoxels {rk+1

j } ⊂ Pk+1 such that
rki = ⋃

j r
k+1
j . This representation was obtained through a recursive supervoxel generation process.

Instead of merging supervoxels in a fine-to-coarse strategy starting from individual voxels, we first
generated an initial coarse partition P0 by dividing Ωl into a small set of large supervoxels. Each of
these supervoxels r0

i of P0 was then split into Ks supervoxels {r1
j} ⊂ P1 using SLIC applied on the

area formed by voxels of r0
i . Once built, each r1

j was split into Ks children and this procedure was
repeated iteratively in a coarse-to-fine fashion.

Once M built, we started by assigning multi-phase supervoxel-based visual features θ(rk) to all
supervoxels rk in each partition Pk. Visual features were multi-phase supervoxel-based, relying on
spatial intensity, spatial gradient and tissue dynamic. Then, we associated to each supervoxel rK (i.e. at
the finest scaleK) all the supervoxels of decreasing scale belonging to its ascendant hierarchy including

2. references in bold highlight co-authored publications
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Ωl k = 0

k = 1 k = 2 M

Figure 2.3 – Hierarchical multi-scale supervoxel representation [19] on a binary classification example
with K = 2 and Ks = 2. Expected labels are displayed into squared boxes.

itself: E(rK) = {rk}k∈[0,...,K] (Fig.2.3). Finally, we defined a new feature vector γ(rK) associated
to each rK of PK as the concatenation of all visual features θ assigned to supervoxels of E(rK).
Concatenating all visual features across M reached a powerful multi-scale description of finest scale
supervoxels. A tissue classification based on supervoxels of scale K was carried out using RF based
on the features stacked into γ(rK). Internal node parameters were optimized with respect to SK =
{rKi , c(rKi )}i∈{1,...,Ku}, a set of Ku finest scale training supervoxels {rKi } manually labeled by the
clinician. Label prediction for rK ∈ PK\SK was performed as follows:

c(rK) = arg max
cl

1
T

T∑
t=1

|{rKi , c(rKi )} ∈ Slt | c(rKi ) = cl|
|Slt |

(2.1)

where Slt is the partition of SK received by leaf node lt of the tth tree, c(rKi ) the ground truth label
of supervoxel rKi among classes cl (i.e. parenchyma, tumoral active and necrotic tissues).

As suggested by qualitative results (Fig.2.4), our multi-phase hierarchical multi-scale supervoxel-
based classification method (hSLIC) outperformed both voxel-wise (Vx) and single-scale supervoxel-
wise (sSLIC) RF for delineating parenchyma, active and necrotic areas. In addition, we outlined in [19]
the benefits reached by multi-phase features exploiting the temporal dynamics of tissues, HCC being
characterized by arterial enhancement followed by venous washout. While ensuring weak interaction
efforts, our methodology reached a TN rate error of 4.08% on a collected in-house DCE-CT dataset.

2.3 Deep learning: a paradigm shift

A crucial step to determine the optimal decision boundary in high-dimensional feature space is the
extraction of discriminant features from images. In a machine learning set-up (Sect.2.2), this process
is performed by humans building so-called handcrafted features. In recent years, the logical next step
has been to let computers learn the features that optimally represent the data under investigation
[22]. This concept lies at the basis of deep learning whose foundations are described in this section.

8
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slice Vx sSLIC hSLIC ground truth

� parenchyma � active tumor � necrosis

Figure 2.4 – Liver tumor segmentation results from [19] via multi-phase voxel-wise (Vx), single-scale
supervoxel-wise (sSLIC) and hierarchical multi-scale supervoxel-wise (hSLIC) random forest.

2.3.1 Problem formulation

Let X be a set of images xxx ∈ RH×W×D where H, W and D are the image dimensions in x-, y- and
z- axis while the annotation set Y ⊂ [0, 1]H×W×D×C contains for each xxx ∈ X a map yyy of H ×W ×D
one-hot vectors indicating the ground truth class for all voxels. In a fully-supervised setting, a deep
segmentation network φ aims at approximating a mapping function φ : xxx → φ(xxx; Θφ) = ŷyy between
intensity xxx and class labels yyy images from N training samples {xxxn, yyyn}1≤n<N by optimizing a loss

function Lφ(yyy, ŷyy) = 1
N

N∑
n=1

`φ(yyyn, ŷyyn) with ŷyyn = φ(xxxn) through an optimizer. The parameters of φ,

namely Θφ, are optimized during training. A stochastic gradient descent scheme aims at finding the
optimal weights Θ∗φ such that Θ∗φ = arg min

Θφ
Lφ(yyy, ŷyy). Network weights are iteratively updated in the

direction of the steepest descent to reach the local minimum:

Θφ ← Θφ − α∇ΘφLφ (2.2)

9
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where the learning rate α is a hyper-parameter controlling the step size at each iteration. Tuning α is
of paramount importance to find a good trade-off between convergence speed and stable optimization.
Back-propagation deals with gradient computation, while the gradient descent algorithm, based on
this gradient, aims at performing the learning procedure. `φ is a per-image loss function which is
usually the cross-entropy loss defined, in a multi-class scenario with C classes, following:

`CE(yyyn, ŷyyn) = 1
|C ||Ω|

∑
c∈C

∑
u∈Ω
−yyyn,c,u log(ŷyyn,c,u) (2.3)

where Ω is the image grid and c ∈ C = {0, ..., C} indexing the structures of interest and the back-
ground. A wide variety of loss functions exist [23]: distribution-based (e.g. cross-entropy), region-based
(e.g. Dice), compound (e.g. DiceCE) or boundary-based (e.g. Hausdorff distance). To date, the most
widely used architectures deal with convolutional neural networks (CNN). Mainly composed of convo-
lutional and pooling layers, CNN have become the state-of-the-art in numerous image analysis tasks
due to their ability to learn hierarchical representations of image features in a purely data-driven way.

2.3.2 From seminal works to UNet

The simplest and early attempts to perform segmentation using CNN consisted in classifying each
pixel individually in a patch-based manner [24]. Since input patches from neighboring pixels have
large overlaps, the same convolutions were computed many times. By replacing fully-connected layers
with convolutional layers, fully convolutional networks (FCN) gave the opportunity to take entire
images as inputs and produce likelihood maps instead of single-pixel outputs. It removed the need
to select representative patches and eliminated redundant calculations. To avoid outputs with far
lower resolution than input shapes, FCN were applied to shifted versions of images [25]. The multiple
outputs were stitched together to get results at full resolution. Further improvements were proposed
with architectures comprising a regular FCN to extract features, followed by an up-sampling part that
enables the recover the input resolution using up-convolutions. Compared to patch or shift-and-stitch
methods, a precise localization was possible in a single pass while considering the full image context.
This motivated the interest for convolutional encoder-decoders among which UNet [26] is the most
widely used thank to its ability to output detailed contours using a quite low amount of training data.

Among existing convolutional encoder-decoders architecture, most deep learning-based medical
image segmentation models rely on UNet [26] or its 3D counterpart VNet [27]. UNet is a symmetrical
architecture comprising an encoder that gradually reduces spatial dimensions using pooling layers, a
decoder progressively recovering object details and initial resolution as well as skip-connections (i.e.
long-range shortcuts) which concatenate features between contracting and expanding paths to help in
improving localization accuracy and convergence speed. The contracting path encoder of a standard
UNet consists of sequential layers including 3×3 convolutional layers followed by batch normalization
(BN) and rectified linear unit (ReLU) activations (Fig.2.5). Spatial size is reduced using 2 × 2 max-
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Figure 2.5 – VNet inspired [27] convolutional encoder-decoder for medical image segmentation.

pooling layers. The first convolutional layer typically generates 32 or 64 channels. This number doubles
after each pooling as the network deepens. The encoder finally projects each input image xxxn to a
latent representation (zzzn in Fig.2.5). On its turn, the decoder is built symmetrically with respect to
the encoder, except that max-pooling layers are replaced by up-sampling operations (e.g. transpose
convolution). In a binary (multi-class) problem, a final 1×1 convolutional layer with sigmoid (softmax)
activation achieves pixel-wise segmentation ŷyyn = φ(xxxn), at native resolution. VNet inspired models
may more suffer from higher computational cost and GPU memory usage than their 2D counterparts.

2.4 Multi-organ segmentation using deep learning

The development of non-invasive imaging technologies over the last decades has opened new hori-
zons in studying the abdominal anatomy. Computational abdominal analysis from CT or MR scans
has become a crucial task for various applications: computer-assisted diagnosis, surgery planning
(e.g. organ pre-evaluation for resection) or image-guided interventions [28]. However, despite intensive
developments in deep learning, it remained difficult to judge the effectiveness of deep networks for
abdominal multi-organ segmentation since they are mainly assessed on one single organ (liver most
often), one single modality (usually CT) and relatively small or private datasets. Their robustness to
delineate multiple abdominal structures from different modalities and to manage inter-subject variabil-
ity was therefore under-investigated. In this direction and in conjunction with the organization of both
Combined Healthy Abdominal Organ Segmentation (CHAOS) [29] and Fast and Low GPU memory
Abdominal oRgan sEgmentation (FLARE) [30] challenges, my research activities have focused on
abdominal multi-organ segmentation (e.g. liver, kidneys, spleen) with deep learning. Two methodolog-
ical avenues were mainly studied: adversarial training with cascaded generators using auto-context
(Sect.2.4.1) as well as deep supervision towards fast and low-GPU-memory algorithms (Sect.2.4.2).

2.4.1 Cascaded convolutional and adversarial networks

Conditional generative adversarial networks (GAN) are known to be a general-purpose solution
for image-to-image translation [31]. Applied to segmentation purposes, conditional GAN architectures
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comprise a generator aiming at providing segmentation masks through encoding and decoding layers
as well as a discriminator which assesses if a given segmentation mask is synthetic or real. The adver-
sarial network learns to discriminate real from synthetic delineations, i.e. ground truth masks versus
those arising from the generator. This enforces the generative part to create increasingly plausible
segmentation masks. During the training process, the generated delineations are gradually close to the
ground truth, to the point of being able to deceive the discriminator.

As generator φ, conditional GAN pipelines may use any type of UNet [26] inspired architecture. The
inputs of the discriminator D are the concatenation of source images and ground truth or predicted
masks to be evaluated. Defined between 0 (i.e. fake) and 1 (i.e. plausible or real), the output of D is
an array where each value corresponds to the degree of segmentation likelihood for a given image crop
and its associated segmentation mask. Let φ(xxx) and D(xxx, φ(xxx)) be the outputs of φ and D respectively.
The loss function Lφ(Θφ,ΘD) for the generator φ can be defined as the following combination:

Lφ(Θφ,ΘD) = 1
N

N∑
n=1

`CE(φ(xxxn), yyyn) + λ× `adv(φ(xxxn), yyyn) (2.4)

where λ is an empirically set weighting factor, Θφ and ΘD the trainable parameters of φ and D, re-
spectively. The adversarial term `adv(φ(xxxn), yyyn) equals to − log(D(xxxn, φ(xxxn))). Minimizing `CE tends
to provide rough predictions whereas maximizing logD(xxxn, φ(xxxn)) aims at improving contour delin-
eations. Conversely, the optimizer typically fits D through cross-entropy using estimated and ground
truth masks. The loss function LD(Θφ,ΘD) for D is defined as:

LD(Θφ,ΘD) = 1
N

N∑
n=1
− log(D(xxxn, yyyn))− log(1−D(xxxn, φ(xxxn))) (2.5)

Optimizing LD(Θφ,ΘD) means maximizing loss values for ground truth, log(D(xxx,yyy)), and minimiz-
ing loss values for generated masks, − log(1 − D(xxx, φ(xxx))). The optimization process is performed
sequentially by alternating gradient descents on φ and D, at each batch.

To further improve the ability of conditional GAN architectures to extract the targeted structures,
we performed investigations on more robust generators than the traditional UNet [26]. In particular,
we extended in [32] standard segmentation networks to a cascade of partially pre-trained deep con-
volutional encoder-decoders exploiting multi-level contextual information through auto-context and
end-to-end training. Such model was used as generator φ in a conditional GAN to further encour-
age the generative part to provide plausible organ delineations. More precisely, instead of increasing
ad-infinitum the network depth to exploit larger receptive fields which is not suitable for memory
and computational issues, we combined two scale-specific and partially pre-trained networks with
auto-context [15], i.e. using posterior probabilities resulting from the first network as features for
the second one. The sigmoid activation of the first networks used in the last convolution layer was
replaced by a linear function to generate continuous output maps. These maps were normalized, con-
catenated to source images and given as inputs of the second network which was trained to give final
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Figure 2.6 – Liver CT and abdominal multi-organ MR (T1-DUALin/out, T2-SPIR) segmentation
using the methodology proposed in [32]. Liver, right kidney, left kidney and spleen ground truth
delineations are superimposed in red, green, blue and yellow colors, respectively.

organ delineations. Making the first network generating continuous instead of binary outputs propa-
gated pixel-wise confidence information to the second network and postponed the final decision to the
pipeline ending part. Instead of training both models separately, our pipeline was trained end-to-end to
exploit simultaneous multi-level segmentation refinements. Each network of the cascade was partially
pre-trained on ImageNet [33] since encoder fine-tuning from a large amount of non-medical images is
known [34] to improve predictive performance while alleviating data scarcity limitations.

Employed for healthy liver, kidneys and spleen segmentation, our pipeline provided promising
results (Fig.2.6) by outperforming state-of-the-art encoder-decoder schemes [32]. Followed for the
CHAOS3 challenge organized in conjunction with the IEEE International Symposium on Biomedical
Imaging (ISBI) 2019, it gave us the first rank for three competition categories: liver CT, liver MR
and multi-organ MR segmentation [29]. This achievement further proved that combining cascaded

3. https://chaos.grand-challenge.org
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Figure 2.7 – Convolutional encoder-decoder with deep supervision used for the FLARE challenge [30].
The overall loss combines losses estimated at different decoder levels. C is the number of classes.

convolutional and adversarial networks strengthens the ability of deep learning segmentation pipelines
to automatically delineate multiple abdominal organs, with good generalization capability.

2.4.2 Fast and low-GPU segmentation using deep supervision

My participation in the FLARE4 challenge, organized as part of the International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI) 2021, led to address multi-
organ segmentation from abdominal multi-center, multi-phase, multi-vendor and multi-disease CT
examinations using deep learning [30]. To meet clinical requirements while obtaining a deep model
at low computational cost, the deep architecture was built around a lightweight encoder from the
VGG family [35] and a symmetrically-designed decoder. To improve the gradient flow, promote the
extraction of discriminative features and reach a good compromise between computational complexity
and performance, our model (Fig.2.7) was based on multi-level deep supervision.

Introduced in the context of holistically-nested edge detection [36], additional convolutional opera-
tions can be applied at different levels of the decoder branch to exploit a deep supervision mechanism
(Fig.2.7) able to boost the segmentation performance. Companion objective functions were estimated
at some hidden layers of the network and added to the output loss. In practice, feature maps as outputs
of each intermediate decoder blocks were up-sampled to the size of the input image, similarly to [37].
These maps then went through deep supervision modules to encourage learning more useful represen-

4. https://flare.grand-challenge.org
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� liver
� kidneys
� spleen
� pancreas

Figure 2.8 – Abdominal multi-organ CT segmentation using the approach developed for the FLARE
challenge [30]. Results display, from left to right, source images, ground truth and predictions.

tations. After having performed the concatenation of these intermediate outputs, convolutional layers
followed by softmax activation finally achieved multi-label segmentation to delineate liver, kidneys,
spleen and pancreas organs. The overall loss function Lφ was defined as the weighted sum of the
cross-entropy losses estimated at different decoder levels involving supervision:

Lφ(Θφ) =
M∑
j=1

wj × LjCE + wf × LfCE (2.6)

where wj and LjCE denote the weight and loss for the points of supervision at level j of the decoder,
wf and LfCE the weight and loss computed at the final network output. By using VGG-13 [35] and
M = 4 intermediate decoder levels, we used w1 = 0.8, w2 = 0.7, w3 = 0.6, w4 = 0.5 and wf = 1 where
level j = 1 is closer to the network ending part than level j > 1. Our approach enabled us to reach
accurate delineations (Fig.2.7) and to take the 8th place of the challenge, with honorable mention.

2.5 Prior knowledge embedding

Regularization plays a key role in deep learning since it tends to increase robustness and gener-
alizability of deep models when applied to unseen data. One common strategy consists in adding a
regularization term into the loss function to get more accurate and plausible results [38]. The regular-
ization term Rφ deals with adding some prior knowledge to the model φ and its regularization effect
is achieved by incorporating the scaled regularizer λ × Rφ to the loss function Lφ to ensure further
consistency between predictions φ(xxx) and targets yyy. The resulting loss function is expressed as follows:

Lφ(Θφ) = 1
N

N∑
n=1

`φ(φ(xxxn), yyyn) + λ×Rφ (2.7)
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Figure 2.9 – Integration of shape priors into a deep segmentation pipeline [39]. Shape priors-based
regularization is performed using a shape encoder F arising from a convolutional auto-encoder.

Many different types of information can be incorporated as prior knowledge into deep frameworks:
shape constraints [39], topology specifications [40], adjacency rules between regions [41]... Nevertheless,
integrating shape priors remains one of the most commonly used strategies towards anatomically mean-
ingful predictions. Especially, the relevancy of using a convolutional auto-encoder to learn anatomical
shape variations from medical images has been demonstrated in multiple applications [39], [42]. A
convolutional auto-encoder is a deep network made of an encoder F : yyy 7→ F (yyy; ΘF ) and a decoder
G : F (yyy; ΘF ) 7→ G(F (yyy; ΘF ); ΘG) where ΘF and ΘG correspond to the learnable parameters of F and
G. F maps the input to a low-dimensional feature space whereas G reconstructs the original input
from the compact representation. To avoid the auto-encoder to copy the input, F is usually designed to
be under-complete such that the latent space is much smaller than the input dimension. By penalizing
the reconstruction G ◦ F (yyy), the cross-entropy loss can be used to optimize the auto-encoder:

Θ∗F ,Θ∗G = arg min
ΘF ,ΘG

1
N

N∑
n=1

`CE((G ◦ F )(yyyn), yyyn) (2.8)

with Θ∗F and Θ∗G the optimal weights for the encoder and decoder. By training the auto-encoder
on ground truth segmentation masks, its encoder finally acts as a non-linear shape model which
can project any predicted (φ(xxx)) or ground truth (yyy) segmentation to a shape manifold space. Once
the auto-encoder trained, its encoder component (i.e. F ) can be integrated into the segmentation
pipeline (Fig.2.9). A regularizer Rφ that penalizes the deviation between predicted and ground truth
segmentation masks fed as inputs of the learned shape model F is included into the global loss (Eq.2.7).
A Euclidean distance between both latent shape representations [39] is usually employed, following:

Rφ = `shape(ŷyy,yyy) = 1
N

N∑
n=1
‖F (yyyn; Θ∗F )− F (φ(xxxn); Θ∗F )‖22 (2.9)
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Figure 2.10 – Segmentation framework built in [43] around AttUNet [44] and exploiting cross-entropy
loss `CE , shape priors-based `shape and adversarial `adv regularizations.

2.5.1 Shape priors and adversarial regularization

In this direction and as part of the PhD thesis work of A. Boutillon, we have conceived a novel op-
timization scheme to train a segmentation network with two regularization terms into the loss function
[43]. First, in order to obtain globally consistent predictions, we incorporated a shape priors-based
regularization, derived from a non-linear shape representation learnt by an auto-encoder [39]. Second,
an adversarial regularization computed by a discriminator (Sect.2.4.1) was integrated to encourage
precise delineations. Thus, the framework comprised a segmentation network φ, an auto-encoder whose
encoder component F was employed to benefit from shape priors as well as a discriminatorD for adver-
sarial training. The proposed regularized segmentation framework (Fig.2.10) was based on attention
UNet [44] (AttUNet) and exploited cross-entropy loss `CE (Eq.2.3), shape priors-based `shape (Eq.2.9)
and adversarial `adv regularizations respectively computed by a shape encoder F with fixed weights
and a discriminator D trained in competition with AttUNet. The shape encoder corresponds to the
encoder of an auto-encoder previously optimized on ground truth delineations, while the discrimina-
tor learns the plausibility of segmentation masks conditioned by their corresponding intensity image.
Combining shape priors-based and adversarial regularizations led to the following loss formulation:

Lφ(Θφ) = 1
N

N∑
n=1

`CE(φ(xxxn), yyyn) + λ1 × `shape(φ(xxxn), yyyn) + λ2 × `adv(φ(xxxn), yyyn) (2.10)

where the adversarial term `adv(φ(xxxn), yyyn) equals to − log(D(xxxn, φ(xxxn))) whereas λ1 and λ2 are two
empirical weighting hyper-parameters. Our method was evaluated for multi-bone segmentation on
two scarce pediatric MR imaging datasets from ankle and shoulder joints, comprising pathological and
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Figure 2.11 – Segmentation of ankle/shoulder bones via regularized segmentation networks based on
AttUNet [44] exploiting cross-entropy `CE (Baseline), shape priors `shape (ShapReg) [39], adversarial
`adv [32] (AdvReg) and combined [43] (ComReg) regularizations. Ground truth in red ( ), calcaneus,
talus, tibia, humerus and scapula in green ( ), blue ( ), yellow ( ), magenta ( ) and cyan ( ).

healthy examinations. Comparisons between regularization approaches (Fig.2.11) proved the relevancy
of combining shape priors-based and adversarial regularizations.

2.5.2 Adversarial shape priors

To go further, the PhD thesis of A. Boutillon led to the design of a shape code discriminator trained
in an adversarial fashion against the segmentation network [45]. Our shape priors-based adversarial
contribution encouraged the segmentation network to follow global anatomical properties of the shape
representation by guiding prediction masks closer to ground truth segmentation in latent shape space.
Thus, we adapted the standard adversarial regularization (Sect.2.5.1) to the latent shape represen-
tation arising from segmentation masks instead of segmentation masks themselves. In particular, we
designed a novel shape code discriminator D : zzz 7→ {0, 1} which assesses if an input latent shape code
zzz (i.e. F (yyy) or F (φ(xxx))) corresponds to a synthetic or real delineation mask. The architecture of such
discriminator consisted of a succession of convolutional filters followed by BN, max-pooling and ReLU
layers with a final sigmoid activation layer computing the likelihood of zzz being fake (0) or real (1).

The training scheme optimized the shape code discriminator and the segmentation network al-
ternatively (Fig.2.12). The discriminator was trained to differentiate latent codes using binary cross-
entropy `D = − log(1 − D(ẑzz)) − log(D(zzz)) with ẑzz = F (φ(xxx)) and zzz = F (yyy). At the segmentation
network optimization step, the shape code discriminator computed the shape priors based adversarial
regularization term `SPAR(ŷyy) = − log(D(ẑzz)) which represents the probability that the network con-
siders the generated shape codes to be ground truth latent codes. Thus, the segmentation training
strategy was modified as follows: `φ = `CE(ŷyy,yyy) + λ× `SPAR(ŷyy) with λ a weighting hyper-parameter.
The optimization of `SPAR enforced φ to fool the discriminator and generate delineations whose latent
representation is close to the ground truth shape representation.
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Figure 2.12 – Segmentation framework proposed in [45] based on UNet, a shape representation learnt
from a convolutional auto-encoder and a shape code discriminator. The segmentation network exploits
cross-entropy `CE and shape priors-based adversarial regularization `SPAR.

Promising results were obtained in [45] for multi-structure ankle bone MR segmentation, with
gradual improvements from the UNet baseline to the shape priors-based adversarial regularization.

2.5.3 Semi-overcomplete shape priors

Several approaches had recently focused on the exploration of more sophisticated deep architectures
than the standard UNet [26]. Especially, overcomplete architectures [48] have appeared with the goal
of projecting data onto higher dimensions to constrain the receptive field to be small and therefore
capture finer low-level features details. The ability of over-complete architectures to encode small
anatomical structures appeared of high interest for vessel extraction purposes. Since modeling small
vascular structures with standard convolution auto-encoders [39] [43], [45] does not guarantee a fully
efficient shape representation in latent space, we proposed in the framework of the PhD thesis of
A. Sadikine to integrate into the segmentation framework the encoder of a novel semi-overcomplete
convolutional auto-encoder (S-OCAE, Fig.2.13) with a multi-path encoder leveraging both non-linear
under and overcomplete representations of the multi-scale vascular tree geometry [46].

Compared to standard auto-encoder, an overcomplete convolutional auto-encoder is obtained by
replacing max-pooling by up-sampling layers and vice-versa. In this scenario, intermediate layers are
projected to a higher dimensionality than the input, giving to the model a better flexibility to encode
small details. In practice, we designed a multi-path encoder composed of both undercomplete and
overcomplete branches (Fig.2.13). Since an overcomplete encoder would have been too expensive in
terms of memory, we proposed a semi-overcomplete branch which does not take the input image
as input but features from an intermediate hidden layer. A specific block named communication
block (CB) was designed to communicate features between both branches. To combine the outputs
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Figure 2.13 – Semi-overcomplete convolutional auto-encoder network proposed in [46] with multi-path
encoder made of undercomplete and overcomplete branches.
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Figure 2.14 – Hepatic portal veins segmentation on 3D-IRCADb [47] using UNet [26] with standard
[39] and semi-overcomplete [46] shape priors. Ground truth in green, predictions in blue.
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from undercomplete and overcomplete encoding branches, a fusion block (FB) was introduced at the
bottleneck of the network to compute a latent code zzz. The encoder of the S-OCAE architecture was
integrated in the segmentation pipeline, as in Fig.2.9, by replacing the standard encoder F by the
designed multi-path encoder. The effectiveness of our semi-overcomplete shape priors was illustrated
for liver vessel extraction (Fig.2.14). A better ability to extract small structures was revealed.

2.5.4 Joint shape and topological priors

Most existing works related to prior knowledge embedding focus on incorporating prior knowledge
of a single type (e.g. shape priors [39] [45], [46] or topology constraints [40] only). Conversely, si-
multaneously incorporating multiple priors in medical imaging segmentation has not received much
attention to date. Incorporating multiple anatomical prior-based loss functions into the segmentation
pipeline typically requires the use of multiple individual non-linear encodings. The viability of such
strategy may pose challenges as it necessitates training multiple auto-encoders and tuning multiple
hyper-parameters for the prior penalty terms in the loss function. In addition, it can lead to higher
memory consumption during training. To address these drawbacks, we developed in the framework of
the PhD thesis of A. Sadikine a novel approach referred to as joint multi-prior encoding (JMPE) that
involved learning both shape and topological connectivity priors within a unified manifold [49].

Topological connectivity refers to the arrangement and connection of components within the struc-
ture to segment. It involves analyzing how different parts of the structure are connected (e.g. bifur-
cations or endpoints in vessel delineation). This connectivity can be effectively captured by using the
Euclidean distance transform (EDT) to convert any ground truth mask yyyn into a grayscale image TTTn
where the voxel values represent the distance from that voxel to the nearest boundary voxel.

The pursuit of learning multiple priors in a unified compact representation zzz stands as a more
efficient alternative than employing separate encodings. This challenge was addressed through a con-
volutional auto-encoder ξ trained in a multi-task learning fashion (Fig.2.15). ξ comprised a single
encoder F and multiple decoders Dp, all sharing the same latent code representation zzz and offering a
streamlined approach to jointly managing multiple priors representation in a single latent space. The
optimization of the multi-task auto-encoder ξ was performed following:

ξ(yyy) = {Ds(zzz) = ỹyy,Dt(zzz) = T̃TT | zzz = F (yyy)} (2.11)

where Ds and Dt are dedicated to the tasks of reconstruction and regression, respectively. The optimal
model ξ was achieved by minimizing the following loss across both training tasks:

LJMPE(yyy, ỹyy) = αs
∑
yyy

`L1(yyyn, ỹyyn) + αt
∑
TTT

`L1(TTTn, T̃TTn) (2.12)

where αp weighting factors balance both tasks during training with p ∈ {s, p}. `L1 was a smooth l1
distance function. Once ξ trained, F was integrated in the segmentation pipeline (Fig.2.9). Applied for
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Figure 2.15 – Multi-task convolutional auto-encoder ξ for joint multi-prior encoding (JMPE) [49].

liver vessel segmentation on 3D-IRCADb [47], it delivered robust performance in topological assessment
through the clDice metric [50], positioning it as a promising topology-aware segmentation model.

2.6 Multi-task segmentation networks

Multi-task learning deals with jointly training a single model to perform multiple related tasks
simultaneously. By sharing representations across tasks, it can effectively exploit commonalities among
various objectives, thus facilitating improved generalization and reducing overfitting. As suggested in
Sect.2.5.4, joint training of multiple tasks can also mitigate issues related to data scarcity since sharing
network parameters can enable the model to learn a more efficient and compact representation of the
data. This section present two of my past research works involving multi-task segmentation networks.

2.6.1 Scale-specific auxiliary multi-task contrastive learning

Despite a good ability to extract visceral organ contours [32], the ability of deep network to delin-
eate vascular systems from medical images still remains a challenge due to their complex multi-scale
geometry. Additionally to contributions related to prior knowledge embedding [46], [49] (Sect.2.5),
the PhD of A. Sadikine also investigated in [51] how to integrate information arising from multiple
scales (Fig.2.16) to enable the extraction of relevant information from different levels of granularity
and ensure a more nuanced representation of complex structures such as vessel trees.

Typically, blood vessel extraction with deep learning is tackled without taking advantage of multi-
task learning whose aim is to improve generalization, learning efficiency and prediction accuracy by
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Figure 2.16 – Scale-specific auxiliary multi-task contrastive learning [51]. To increase the discrimina-
tive power of the shared representation, a contrastive loss Lc is applied to zzzs from each decoder Ds.

leveraging domain-specific information from related tasks. Further, the network architectures related to
multi-task learning are diverse and adjusted depending on the specific concerns under investigation [53].
In the setting of single-input and multi-output network, the encoding stage shares its layers to learn a
generic representation which is then used as input of independent task-specific decoders. Nevertheless,
multi-scale geometry, as an intrinsic characteristic of vascular trees, has been weakly investigated in
the literature. This motivated us to design in [51] a novel approach considering multiple sub-tasks
and providing a strong focus on the different scales arising from vascular networks. Thus, we proposed
a multi-scale clustering methodology allowing vasculature decomposition into size-related classes (e.g.
small, medium and large vessels) by relying on inherent statistics and estimated branch radii of the
vascular tree (Fig.2.17a). Based on such multi-scale vessel clustering, we designed an end-to-end deep
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(a) (b)

Figure 2.17 – (a) Example of 3-scale vasculature clustering applied on a synthetic vasculature [52].
(b) Qualitative liver vessel CT segmentation results on 3D-IRCADb [47] dataset using 3D ResUNet
in binary and multi-class settings as well as the proposed approach [51] with contrastive learning.

multi-task segmentation framework (Fig.2.16) involving multi-scale contrastive learning [54], with the
ability to discriminate intra-scale compactness and inter-scale separability.

We denoted D = {(xxxn, {yyysn}s)} as the training dataset where s ∈ {0, ..., S} indexes task referring
to different scales, xxxn a greyscale volume and {yyysn}Ss=0 the multiple sets of ground truth vasculature
segmentation masks. In our case, we defined s as a specific vascular scale that belongs to the binary
mask yyy = ∪Ss=1yyy

s where yyy0 reflects the initial scale (i.e. yyy0 = yyy). In this setting, supervised multi-task
segmentation with a single input, multiple outputs and S learning tasks {Ts} consisted of approxi-
mating a mapping function φ : xxx→ φ(xxx) = {ŷyys}Ss=0 from D, through a deep multi-task convolutional
network φ (Fig.2.16) comprising a contracting path encoder E projecting xxx to a latent representation
zzz and S + 1 decoders Ds, such that:

φ(xxx) = {Ds(zzz) = ŷyys | zzz = E(xxx)}Ss=0 (2.13)

where D0(zzz) = Dmt(zzz) and {Ds(zzz)}Ss=1 refer respectively to the main (mt stands for main task) and the
auxiliary tasks decoders. Furthermore, the model parameters were estimated by learning both main
and auxiliary tasks jointly through the optimization of the following objective function:

L = Lmt(yyy, ŷyy) +
S∑
s=1

λs × Ls(yyys, ŷyys) + λc × Lc (2.14)

where Lmt and Ls combine Dice and weighted cross-entropy. λs and λc are hyper-parameters that
regulates the strength of each loss. Ls is a contrastive loss which encourages features representation
zzzsn, belonging to an anchor set A from the same scale to be aligned and separate features from different
scales apart in order to ensure uniformity. Since it is difficult to make the distinction between the latent
representation of each auxiliary task at zzz, we define the compact representation derived from the first
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layer of the decoder Ds, for each task Ts. The representations zzzsi from the same scale (resp. different
scale) belong to the set Pi (resp. Ni). From this, the contrastive loss was defined as:

Lc = 1
|A|

∑
i∈A

1
|Pi|

∑
j∈Pi

log
exp(zzzsi>zzzsj/τ)

exp(zzzsi>zzzsj/τ) + ∑
k∈Ni exp(zzzsi>zzzsk/τ)

(2.15)

where zzzs is a l2-normalized vector and τ > 0 a scalar temperature hyper-parameter. The effectiveness
of our pipeline based on scale-specific auxiliary multi-task contrastive learning was illustrated for liver
vessel extraction with S = 3, on the 3D-IRCADb [47] dataset. Especially, we compared 3D ResUNet
in binary and multi-class settings as well as the proposed approach without and with contrastive learn-
ing. The ablation study demonstrates the effectiveness of integrating multi-scale contrastive learning,
especially in clDSC, illustrating the connectivity improvement (Fig.2.17b) reached by our method.

2.6.2 Dual-task segmentation with Transformers

Another facet of my research activities involving semantic segmentation has focused on the analysis
of MR images acquired from patients with autosomal-dominant polycystic kidney disease (ADPKD), a
systemic genetic disorder affecting 12.5 million people worldwide [55]. This pathology is characterized
by the enlargement of kidneys due to the progressive development of renal cysts. Fourth leading
cause of kidney failure, it requires dialysis or kidney transplantation for the majority of patients [55].
ADPKD, whose degree of phenotypic variability among affected individuals is extremely broad, can
also manifest with extra-renal symptoms (e.g. presence of cysts in the liver). The continuous growth
of cysts in ADPKD leads to a progressive increase in total kidney volume (TKV). TKV is the most
important imaging biomarker for quantifying the severity of ADPKD and predicting future renal
function decline [56]. TKV is used in clinical care to assess the risk of individual disease progression
or as primary or secondary end-point to assess treatment effects [57].

Polycystic kidney delineation from MR data has predominantly relied on CNN architectures so
far [59]. However, recent developments in medical image analysis have demonstrated the potential
of Transformer-based models, which have shown superior performance in various computer vision
applications. Vision Transformer (ViT) models have especially gained significant attention in medical
image segmentation [60]. Unlike CNN models, Transformers do not require any convolution or pooling
operations but instead rely on self-attention mechanisms to model the relationships between different
image areas. This approach has shown to be effective for capturing global context information in
medical images, which can be critical to reach sufficiently efficient delineations. In addition to model
architecture, multi-task learning has also become increasingly important in image analysis, with a
great potential to improve dense prediction tasks such as semantic segmentation [53]. However, in the
context of polycystic kidney segmentation, the potential benefits of multi-task strategies had not been
fully explored, representing a significant gap in current studies.
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Figure 2.18 – BO, IND and DT learning schemes compared in [58] for kidney segmentation in patients
with ADPKD. For sake of clarity, skip-connections are not displayed.

With the aim of designing the best possible polycystic kidney delineation system from MR scans,
the stakes of the collaboration with the nephrology department of University Hospital of Brest were
two-fold. First, evaluate and compare various purely CNN-based, Transformers-based, and hybrid
CNN/Transformers-based networks in the context of polycystic kidney segmentation. Second, extend
these backbones with an effective dual-task learning scheme involving a common feature extractor fol-
lowed by per-kidney decoders. Indeed, each left or right kidney is present in a different spatial context,
close to different anatomical structures (e.g. right kidney in interaction with the liver, left kidney in
the vicinity of the spleen). In addition, the spatial distribution and heterogeneity of cysts can greatly
vary from one kidney to another. In this context, three learning schemes were considered (Fig.2.18)
towards polycystic kidney segmentation with deep learning. First, the « both organs » (BO) configura-
tion exploited a single deep network segmenting both left and right kidneys, without any distinction
between them. The network made of one single encoder fBK(·) followed by one single decoder gBK(·)
performed a binary segmentation task distinguishing between renal and non-renal tissues, whatever
the laterality. Second, the « independent » (IND) strategy involved two separate encoder-decoder net-
works: fLK(·) followed by gLK(·) for left kidney and fRK(·) followed by gRK(·) for right kidney. Each of
them performed a binary segmentation task without any weight sharing. Last, the « dual-task » (DT)
scheme made use of a single network comprising one single encoder fLK+RK(·) and two task-specific
decoders gLK(·) and gRK(·), one for each kidney. Features arising from the encoder were common to
both task. In IND and DT configurations, results were fused through a simple union operator.

In practice, we explored the use of different deep models for polycystic kidney segmentation: CNN-
based (v19pUNet [34]), hybrid CNN/Transformer-based (TransUNet [62], MedT [63], SwinUNetV2
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Figure 2.19 – Polycystic kidney segmentation using v19pUNet [34] and SwinUNetV2 [61] trained with
BO, IND and DT learning strategies [58]. Ground truth in green, predictions in red.

[61]) and Transformer-based (Segmenter [64]). Each architecture was employed in a single- (BO, IND)
and dual-task (DT) learning fashion. Three main findings arised from experiments (Fig.2.19). First,
task-specific decoders were better able to process features from a single joint encoder fLK+RK(·) (DT)
than from kidney-specific encoders (IND), i.e. fLK(·) and fRK(·). Second, exploiting decoding branches,
i.e. gLK(·) and gRK(·), respectively targeting left and right kidneys (DT), provided better results than
employing a single joint decoder gBK(·) (BO). Third, results underscored the substantial advancements
made by hierarchical Transformers (SwinUNetV2) whose ability to capture multi-scale information
and leverage hierarchical representations significantly contributed to their superior performance. The
hybrid TransUNet and the pure convolutional network (v19pUNet) also demonstrated competitive
performance, indicating the continued relevance and effectiveness of CNN-based approaches.

2.7 Semi-supervised learning with label propagation

While fully-supervised segmentation methods based on deep learning have been investigated with
sparse annotated 2D slices [34], a relatively significant number of training examples is required.
Conversely, learning from few examples (i.e. few-shot learning) remains an open issue. Especially,
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Figure 2.20 – Deep registration-based label propagation from an annotated slice to the next one,
toward 3D muscle segmentation. Refer to [65] for the description of notations.

interactive approaches have been investigated in the field of deep learning for image segmentation
purposes (e.g. point or scribble-based techniques) but may suffer from a lack of reproducibility and
require complex optimization procedures. As an alternative, intra-subject semi-automatic segmenta-
tion, which involves spreading annotated slices throughout a volume, enables to deal with the limited
amount of annotations. This technique is more commonly seen in the field of video segmentation,
when the first annotated frame is propagated throughout the sequence [66]. In medical image analysis,
morphological-based interpolation of distant annotated slices provides a fast strategy to propagate
labels over a 3D volume, but may require some interactions and fail on multi-structure objects [67].
[58]elies solely on segmentation contours, such strategy does not capture local structure variations.

In this context and to complement the fully-supervised segmentation approaches described so
far, the PhD thesis of N. Decaux enabled the development of a segmentation method relying on
registration-based label propagation to provide 3D muscle MR delineations from a limited number
of annotated 2D slices. The objective was to develop an intra-subject 3D segmentation method for
pediatric muscles based on very few manually annotated slices. To this end, we investigated in [65] the
use of an unsupervised deep learning-based registration framework to propagate 2D labels through the
full 3D volume (Fig.2.20). The registration approach relied on intensity similarity between successive
slices and on muscle shapes from annotated slices. A regularization term was introduced through
the definition of a dedicated loss from combined deformation fields. Propagated masks from different
manual segmentations were merged through a weighting technique based on image similarity measures.

Among various experiments, a challenging intra-subject segmentation scenario was considered with
only three annotated slices for each MR volume to segment (Fig.2.21). The middle slice allowed a fine
delineation of the muscle while the two other slices provided its spatial extent. It appeared that the
proposed label propagation was less sensitive to distance from the nearest annotated slice, compared
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Figure 2.21 – Averaged Dice over the NIH pediatric shoulder dataset [68], in a minimal supervision
setting [65]. Dice is displayed with respect to the normalized axial slice number. Vertical black lines
represents the location of annotated slices used for training. Colored areas deal with standard deviation.

to interpolation-based approaches [69], UNet [26] and VideoWalk [70]. Results also demonstrated a
higher overall robustness with the proposed method, as evoked in Fig.2.21 by standard deviations.

2.8 Conclusion

Deep learning has proven to be a powerful tool for medical image segmentation. Compared to
standard techniques including atlas-based, active contours, or machine learning (Sect.2.2), its ability
to automatically learn complex and hierarchical representations from data enables to achieve a high
level of robustness in segmentation tasks tackling various diseases, populations, anatomies and imaging
modalities. The availability of large datasets and open-source frameworks has facilitated the develop-
ment and deployment of deep learning-based segmentation algorithms, making them more accessible
to both researchers and clinicians. A tangible impact on diagnosis, surgery planning, therapeutic
follow-up (Chap.4), prognostic, dosimetric or radiomics applications at large is starting to witness.

Since the introduction of UNet (Sect.2.3) and U-shaped convolutional encoder-decoder derivatives
trained with data augmentation, various developments and methodological breakthrough have emerged
in the medical image analysis community [71]. Among current trends, the relevancy of conditional
generative adversarial networks, cascaded networks (Sect.2.4.1) and deep supervision (Sect.2.4.2) have
been proven to enable the improvement of segmentation accuracy for large (e.g. liver) and smaller
structures (e.g. kidneys). Regularization techniques embedding prior knowledge (Sect.2.5) such as
shape, topological or adjacency constraints tend to be democratized towards greater generalizability
of deep segmentation models. In particular, employing a convolutional auto-encoder to exploit geo-
metrical and/or topological constraints aims at encouraging models to follow the global anatomical
properties of the underlying anatomy via learnt non-linear representations. Additionally to novel ar-
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chitecture designs and the use of contraints during training, a strong focus has been recently devoted
to contrastive (Sect.2.5.4), multi-task (Sect.2.6) and semi-supervised (Sect.2.7) learning paradigms,
especially to alleviate issues related to the lack of annotated imaging data.

Despite recent successes, there are still challenges to the use of deep learning for medical image
segmentation. These challenges include the need for large amounts of labeled data for training, the
sensitivity of deep models to noise, non-uniform contrast and artifacts in medical images, the needed
incorporation of local and global context to benefit from both short- and long-range spatial dependen-
cies, the management of small structures and weak boundaries as well as the robustness to inter-subject
variability and various multi-center, multi-scanner intensity domains. Given these challenges, the use
of deep learning has shown great promise in line with the emergence of vision Transformers whose
ability to model long-range dependencies from 3D medical images appears similar or even better
than standard convolutional only architectures (Sect.2.6.2). Either hybrid when used in conjunction
with convolutional layers or purely Transformers-based, these approaches are still at an early stage.
More works in this direction are expected, especially in the context of information fusion (Chap.3)
comprising multi-view (Sect.3.3), multi-domain (Sect.3.4) and multi-modal (Sect.3.5) analysis.
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Chapter 3

FROM KNOWLEDGE TRANSFER TO

INFORMATION FUSION

3.1 Introduction

The core of medical image analysis revolves around information, which is inherently complex, multi-
modal and heterogeneous. The challenge lies not only in harnessing the wealth of information arising
from medical imaging data but also in effectively transferring knowledge across different domains. To
bridge the gap between learning paradigms and clinical needs, recent investigations have struggle with
novel transfer learning scenarios and information fusion strategies towards more efficient medical image
analysis models. The increasing popularity of knowledge transfer and information fusion is driven by
the need to capitalize on both complementary and redundancy across various conditions, viewpoints,
modalities, or anatomies when managing paired or unpaired multi-domain datasets.

As prime example, multi-modal segmentation with deep learning offers a powerful playground for
improving robustness and generalization across a wide range of applications. Robustness is improved
as the models can rely on complementary information, especially when the modalities provide in-
formation of a different nature. It also enables models to better generalize to diverse datasets since
robust representations can be learned across different data distributions. Going further, the synergy
of information from different modalities can lead to a more nuanced representation, enabling models
to capture intricate patterns and relationships within the data.

A special attention has been also paid in recent years to multi-domain segmentation strategies
which are far more relevant than focusing on multiple intensity domains separately. In this direction,
multi-task and multi-domain techniques with multiple anatomies as targets tend to overcome the
inherent scarcity of imaging data while leveraging shared features between imaging datasets.

This chapter presents some of my contributions in this context, by covering various architectures,
clinical contexts and learning paradigms including active learning, multi-task and contrastive learning.

3.2 Learning transferability

Learning transferability refers to the ability of a given model to generalize its knowledge across
different domains. In medical imaging, where diverse imaging technologies and anatomical variations
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exist, achieving robust and adaptable segmentation models is crucial. Transfer learning techniques
aim to leverage knowledge acquired from one dataset to enhance the performance on a target dataset
with potentially distinct characteristics. This concept is particularly significant in medical image seg-
mentation tasks as it addresses challenges related to data scarcity, domain shifts, and the need for
models able of handling various clinical settings. In this context, my research activities mainly ad-
dressed healthy versus pathological transferability (Sect.3.2.1), knowledge transfer from off-the-shelf
to specific lesions (Sect.3.2.2) as well as cross-dimensional transfer learning (Sect.3.2.3).

3.2.1 Healthy versus pathological transferability

The automatic segmentation of pathological shoulder muscles from MR scans collected from chil-
dren with musculoskeletal disorders is a context in which data scarcity raise huge challenges (Sect.2.7).
The purpose of a study made in collaboration with ILDYS5, University Hospital of Brest and NIH6

was to develop an automatic muscle segmentation pipeline, able to support new insights into the
evaluation and management of musculo-skeletal diseases [34]. In particular, our work addressed the
learning transferability from healthy to pathological data, focusing on how available data from both
healthy and pathological muscles can be jointly exploited for pathological shoulder muscle delineation.

Studying the learning transferability from healthy to pathological structures is key in musculo-
skeletal pathologies for two reasons. First, despite different shapes and sizes due to growth and atrophy,
healthy and pathological muscles may share common characteristics (e.g. anatomic locations, overall
aspects). Second, combining healthy and pathological data for deep learning-based segmentation can
act as a smart data augmentation strategy when faced with limited annoted data. In exploring the
combined use of healthy and pathological data for pathological muscle segmentation, determining
the optimal learning scheme was crucial. In practice, three different learning schemes were considered
(Fig.3.1). First, the « pathological only » (P) strategy consisted in exploiting ground truth annotations
made on impaired shoulder muscles only, making the hypothesis that features extracted from healthy
examinations are not suited enough for pathological anatomies. Second, the « transfer from healthy to
pathological » (HP) strategy dealt with transfer learning and fine tuning from healthy to pathological
muscles. In this context, a first UNet was trained using ground truth segmentations from unaffected
shoulders only. The weights of the resulting model were then used as initialization for a second UNet
network which was trained using pathological inputs only. Third, the « simultaneous healthy and
pathological » (A) configuration consisted in training a UNet with annotations made on both healthy
and pathological shoulder muscles to benefit from a more consequent dataset.

Built around a UNet model comprising a VGG-16 encoder pre-trained on ImageNet, the P, HP

and A learning schemes were evaluated on four shoulder muscles: deltoid, infraspinatus, supraspinatus,
subscapularis. Results showed that features extracted from unimpaired limbs were suited enough for

5. https://www.ildys.org/
6. https://www.nih.gov/
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Figure 3.1 – Different learning transferability schemes (P, HP, A) evaluated in [34] for deep learning-
based pathological shoulder muscle segmentation.
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Figure 3.2 – Pathological deltoid segmentation using UNet [26] comprising a VGG-16 encoder pre-
trained on ImageNet and embedded with learning schemes P, HP and A [34]. Groundtruth and estimated
muscle delineations are respectively in green and red.
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Figure 3.3 – Various training strategies employed in [72] for liver metastasis segmentation purposes.

pathological anatomies while acting as an efficient data augmentation scheme. Compared to transfer
learning, combining healthy and pathological data for training provided the best segmentation accuracy
(Fig.3.2), with outstanding delineation performance for muscle boundaries including insertion areas.

3.2.2 Knowledge transfer from off-the-shelf to specific lesions

Despite the progress of deep learning algorithms using Transformers (Sect.2.6.2), automatically
segmenting small hepatic metastases remains a persistent challenge, with key implications in surgery
planning and treatment follow-up (Chap.4). This can be attributed to the degradation of small struc-
tures due to the process of feature down-sampling inherent to many architectures as well as class
imbalance. While similar challenges have been observed for liver tumors originated from HCC [73],
their manifestation in the context of liver metastasis delineation remained under-investigated. Hence,
a study [72] conducted in the framework of the PhD thesis of M. Abbas revolved around integrating
a heterogeneous dataset (LiTS [74], referred to as D1) encompassing a broad spectrum of tumor types
with another dataset (MetaBrest, collected from University Hospital of Brest) solely concentrating on
hepatic metastases from colorectal cancer. MetaBrest was divided into two subsets (D2 for training, D3

for test) while maintaining an even distribution of lesion sizes. Our objective was to pinpoint the most
effective training strategies that can effectively combine these datasets, confronting the complexities of
dataset diversity and aiming to leverage the innate potential of transfer learning for the target task of
segmenting hepatic metastases from CT scans. Various approaches were designed to explore different
facets of model training, including the impact of domain-specific training and pre-training, the use of
extensive pre-training on a mega-dataset and the efficacy of training from scratch.
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(a) (b)

Figure 3.4 – (a) Scatter plot of tumor volume (mm3) versus mean intensity (HU) for LiTS [74] and
MetaBrest datasets. Each dot corresponds to a single lesion. (b) CT scans with overlapping metas-
tasis delineations. From left to right, ground truth is compared against strategy 1 and strategy 4
predictions, showcasing the superior performance of strategy 1 in segmenting small metastases [72].

Using SwinUNETR [75] as backbone and D3 as test set, seven training scenarios were designed
(Fig.3.3). As strategy 1, SwinUNETR was exclusively trained on D1. In strategy 2, we used the
pre-trained weights acquired from strategy 1 and subsequently trained them on D2 in a fine-tuning
fashion with the underlying goal to leverage the knowledge gained from D1 to D2. Strategy 3 consisted
in training SwinUNETR using D1 and D2 datasets to explore the benefits of joint training and its
impact on generalization to a known dataset. Strategy 4 was a straightforward training approach
using only D2 to investigate the direct knowledge transfer between data arising from MetaBrest only.
For the last three training scenarios, we aimed at assessing the impact of weight initialization through
self-supervised learning. Hence, we employed SwinUNETR weights arising from a training performed
on a mega-dataset of roughly 50,000 images encompassing MR, CT and histology images through self-
supervised learning [76]. The main objective was to investigate the advantages of weight initialization
in an ImageNet-like manner. Thus, we initialized the SwinUNETR architecture with the pre-trained
weights obtained from self-supervised learning and fine-tuned it using D1 for strategy 5. In strategy

6, the self-supervised pre-trained weights were used to train the model on D2. Finally, strategy 7

involved combined training on D1 and D2 datasets using the self-supervised pre-trained weights.
The conducted comparative analysis revealed a complex picture of the efficacy of different training

strategies towards liver metastasis CT segmentation. Contrary to the broader trends in deep learning
where pre-training often improves performance, our findings indicated that models trained from scratch
or with domain-specific pre-training reach greater proficiency. While strategy 3 reached the best
average Dice score, strategy 1 and 2 stood out as the top performers for both small (<1000mm3) and

35



Chapter 3 – From knowledge transfer to information fusion
—

—
(a
)

—
—

—
—

(b
)

Figure 3.5 – Cross-dimensional transfer learning strategies proposed in [77]: (a) weight transfer to
embed a 2D pre-trained encoder into a higher dimensional UNet, (b) dimensional transfer to expand
a 2D segmentation UNet into a higher dimension one.

medium (from 1000 to 25000mm3) liver metastases (Fig.3.4). Strategies employing self-supervised pre-
training did not perform as anticipated. This less satisfactory performance underscored the limitations
of transfer learning in scenarios where domain-specific features are crucial, emphasizing the significance
of dataset and task specificity in developing deep segmentation models.

3.2.3 Cross-dimensional transfer learning

The performance of 2D image classification networks, being trained on databases made of millions
of natural images, is constantly improving. Conversely, in the field of medical image analysis, the
progress is also remarkable but has mainly slowed down due to the relative lack of annotated data
and besides, the inherent constraints related to the acquisition process. These limitations are even
more pronounced given the volumetry of medical imaging data. In a research work conducted in
collaboration with University of Bejaia7, Algeria and University Hospital of Brest, we developed an
efficient way to transfer the efficiency of a 2D classification network trained on natural images for
2D, 3D uni- and multi-modal medical image segmentation purposes. In this direction, we designed
in [77] novel architectures (Fig.3.5) based on two key principles: weight transfer by embedding a
2D pre-trained encoder into a higher dimensional UNet and dimensional transfer by expanding a 2D
segmentation network into a higher dimension one. The proposed networks were tested on benchmarks
comprising different modalities including CT, MR and ultrasound. Through the strategic utilization of
pre-trained 2D image classification networks and the facilitation of inter-slice relationship extraction
within the depth dimension, both transfer learning paradigms outperformed state-of-the-art methods
on CHAOS [29], BraTS [78] and CAMUS [79] publicly-available datasets.

7. http://univ-bejaia.dz/en/
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3.3. Multi-view analysis

Figure 3.6 – Multi-task, multi-view mammography analysis for improved breast mass detection [80].
Green contours indicate ground truth delineations, red (yellow) boxes indicate false (true) detections.

Figure 3.7 – Combined matching and classification network proposed in [80]. Green and red patches
respectively correspond to positive and negative samples.

3.3 Multi-view analysis

Breast cancer screening routinely benefits from visual analysis of mammograms acquired from dif-
ferent viewpoints to improve decision-making. Similarly, the performance of computer-aided diagnosis
systems can be improved by the fusion of multi-view information. Based on this finding, contributions
were carried out within the SePEMeD joint laboratory8, as part of the PhD thesis of Y. Yan.

3.3.1 Better lesion detection with dual-view matching

To address the limitations of single-view processing, we took advantage of multi-view information
by developing in [80] a deep architecture exploiting both craniocaudal (CC) and mediolateral-oblique
(MLO) views from the same mammographic examination, towards fully-automated detection of breast
masses [80]. Rather than being limited to a single-view mass identification task [81], we exploited the

8. IMT Atlantique, LaTIM and Medecom (https://medecom.fr/en/)
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Figure 3.8 – Breast mass detection with YOLO (a), YOLO followed by (b) a classification-only model
or (c) our matching and classification network [80]. Red boxes are detected mass candidates. Green
represents ground truth annotations. Blue boxes show the pairs matched through dual-view matching.

multi-tasking properties of deep networks to jointly learn multi-view matching and classification of
suspicious areas (Fig.3.6) from candidate mass patches extracted with a You Only Look Once (YOLO)
detection model [82]. Patch level classification and matching were performed through a novel multi-task
Siamese network (Fig.3.7). Positive and negative patch samples of CC/MLO views were fed into a two-
branch feature extractor to compute robust patch representations. Going further, we not only jointly
learned representations from the two views but also simultaneously learned both patch matching and
classification to exploit the potential relationships between viewpoints. Compared to classification-
only schemes, the underlying goal was to make the matching task improving the robustness of the
classification task. Thus, the overall loss L was designed as the sum of three losses:

L = α× Lcls,CC + β × Lcls,MLO + γ × Lmat (3.1)

where Lcls,CC and Lcls,MLO are the classification losses for CC and MLO views. Lmat is the matching
loss which can be cross-entropy or contrastive loss. α, β and γ are coefficients balancing the loss terms.

We carried out experiments to highlight the contribution of dual-view matching for both patch-level
classification and examination-level detection scenarios. Results demonstrated that mass matching
highly improves the detection performance by outperforming conventional single-task models (Fig.3.8).
Our system further guides clinicians by providing accurate dual-view mass correspondences, acting as
a relevant second opinion to guide mammogram interpretation and breast cancer diagnosis.
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Figure 3.9 – Deep active learning workflow for dual-view mammogram analysis [83].

3.3.2 Active learning for dual-view analysis

Supervised learning requires a great deal of manual annotation, which is time-consuming and re-
quires considerable medical expertise. Active learning, on the other hand, aims at reducing annotation
efforts by adaptively selecting the most informative samples for labelling. The PhD thesis of Y. Yan
also led to the development of a new active learning approach for analyzing multi-view mammograms
[83], with use cases dedicated to breast mass detection and segmentation. Intuitively, if mass detection
or segmentation is carried out robustly, predictions achieved on the different views should be consis-
tent. Hence, exploiting this inter-view consistency appeared as a relevant way to guide the sampling
mechanism that iteratively selects the next pairs of images to be labeled by an oracle (Fig.3.9).

In this context, many latent relationships can be exploited as query factors including the number
of masses detected on both views, their size, position, shape, texture... In our work, we considered
the first two factors as consistency criteria since their correlation is more interpretable. In particular,
the number of identified masses from both views {NCC , NMLO} should be identical and their sizes
{SCC , SMLO} (i.e. number of pixels) should be similar. Thus, we defined the two following scores:

Snum = min(NCC , NMLO)
max(NCC , NMLO) , Ssize = min(SCC , SMLO)

max(SCC , SMLO) (3.2)

where Snum and Ssize varies from 0 (low) to 1 (high consistency). Correct predictions should meet the
above conditions simultaneously. The final consistency score S was calculated as S = min(Snum, Ssize)
to provide a rough estimation of the prediction quality. For comparison purposes, we implemented three
active learning strategies: random (rand), best (bestC) and worst consistency (worstC) selections. For
each cycle, rand strategy randomly selects mammogram pairs from the unlabeled set, while bestC

(worstC) selects pairs with the highest (lowest) consistency score S. Results revealed that worstC

was not superior to rand. In addition, bestC was consistently better than other strategies, suggesting
that picking examples with good prediction results helps to consolidate what has been learned while
avoiding corner cases. Experiments (Fig.3.10) also highlighted that achieving performance similar to
fully-supervised models is possible by employing only 6.83% (9.56%) of the labeled data for segmen-
tation (detection). The combination of multi-view image analysis and active learning showed promise
for contributing to the development of systems to help interpret mammograms.

39



Chapter 3 – From knowledge transfer to information fusion

8 16 24 32 40 48 56 64 72 80 88
Number of images

24

26

28

30

32

34

36

38

Di
ce

(%
)

24.61

28.54

31.44

33.29

35.38

24.61

30.55

32.72

34.92

37.00

24.61

27.39

30.62

31.95

34.37

37.59
Mass segmentation

rand
bestC
worstC

8 16 24 32 40 48 56 64 72 80 88
Number of images

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

St
an

da
rd

 E
rro

r

Mass segmentation Standard Error
rand
bestC
worstC

(a) (b)

8 16 24 32 40 48 56 64 72 80 88 96 104 112
Number of images

35

40

45

50

55

AP
(%

)

36.75 37.08

39.54

42.61

46.50
47.32

48.81

36.75

42.29

44.67

48.82
50.44

51.31
52.83

36.75

34.19
35.15

38.23
39.05

42.09
43.51

54.33

Mass detection

rand
bestC
worstC

8 16 24 32 40 48 56 64 72 80 88 96 104 112
Number of images

0

1

2

3

4

5

St
an

da
rd

 E
rro

r

Mass detection Standard Error
rand
bestC
worstC

(c) (d)

Figure 3.10 – Breast mass segmentation/detection performance with rand ( ), bestC ( ) and worstC
( ) active learning strategies [83]. Black dashed lines indicate results using the complete training set.
We report average Dice scores for segmentation (a,b) and average precision scores for detection (c,d).

3.4 Multi-task, multi-domain segmentation

In recent years, progress has been made in training models across multiple intensity domains (e.g.
multi-modal, multi-scanner, multi-center, multi-protocol). The objective is to capitalize on a larger
volume of training data by applying the same image analysis task [85]–[87]. These novel architectures
aim at exploiting inter-dependencies between intensity domains, enabling the acquisition of more
robust, domain-invariant feature representations. Following the trend to re-use and share an increasing
number of parameters, the resulting compact architectures [86], [87] reached superior performance for
multi-modal segmentation. However, such methodology was specific to a given anatomical region of
interest and the segmentation task involved the same structures across various intensity domains.

Furthermore, multi-task, multi-domain learning frameworks have been concurrently developed for
natural image analysis. In the context of semantic scene labeling, a single network was trained in
[88] over the union of multiple datasets to address the limited amount of annotated data. In this
approach, each dataset was characterized by its own task and domain. In the same direction, studies on
universal representations in computer vision proposed to employ a single model with agnostic kernels,
as visual primitives may be shared across tasks and domains, and dataset-specific layers which enable
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Figure 3.11 – Multi-task, multi-domain segmentation pipeline [84] with Inception UNet using shared
convolutional filters along with domain-specific batch normalization and multi-domain attention gates.

task and domain specialization [89]. Based on shared representations, these approaches performed
at par or better than independent models. However, multi-task, multi-domain learning has rarely
been applied to medical image analysis, with the exception of [90] where a single neural network was
developed to simultaneously segment multiple anatomies. Nevertheless, instead of generating pixel-
wise segmentation masks, the model relied on a computationally expensive tri-planar patches-based
approach predicting the class of single pixels. It also failed to account for the difference in intensity
distribution between domains, as evidenced by the absence of domain-specific feature normalization.

In the framework of the PhD thesis of A. Boutillon, we proposed to implement and optimize a sin-
gle segmentation network over the union of multiple pediatric imaging datasets arising from separate
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Figure 3.12 – Segmentation of ankle, knee, and shoulder bones employed in individual, shared+LMJSP,
and domain-specific layers (DSL) +LMSC + LMJSP [84] strategies. Ground truth delineations are in
red ( ) while predicted bones appear in green ( ) for calcaneus, blue ( ) for talus, yellow ( ) for tibia
(distal), orange ( ) for femur (distal), pink ( ) for fibula (proximal), light green ( ) for patella, light
blue ( ) for tibia (proximal), magenta ( ) for humerus, and cyan (–) for scapula.

anatomical regions [84]. Unlike previous methods that operate on individual musculoskeletal joint,
our framework simultaneously learned multiple intensity domains and segmentation tasks emerging
from distinct anatomical joints (Fig.3.11). This approach allows to overcome the inherent scarcity
of pediatric data while benefiting from more robust shared representations. More precisely, we for-
malized a segmentation model which incorporates a pre-trained encoder, shared convolutional filters,
multi-domain attention gates, domain-specific batch normalization, and domain-specific output lay-
ers (Fig.3.11). A multi-scale contrastive regularization was integrated during optimization to improve
the generalization capabilities. As opposed to classical contrastive approaches that operate on im-
age classes, we leveraged dataset label information to enhance intra-domain similarity and impose
inter-domain margins. Moreover, we extended the multi-task, multi-domain segmentation framework
by employing multi-joint shape priors (Sect.2.5) to encode the anatomical characteristics of multi-
ple joints and further constrain the delineation task. Overall, the training procedure integrated the
cross-entropy loss function LCE defined in a multi-task, multi-domain setting, a multi-scale contrastive
regularization LMSC to promote inter-domain separation in the shared representations and multi-joint
shape priors LMJSP previously learnt using a multi-joint auto-encoder on ground truth delineations.

These contributions were assessed for bone segmentation using three datasets of the ankle, knee,
and shoulder joints. Results demonstrated that the proposed approach outperforms individual, trans-
fer, and shared segmentation schemes with statistically sufficient margins. While the shared + LMJSP
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Figure 3.13 – Transformer-based segmentation models used in [91] in a multi-modal setting: (a) hybrid
CNN-Transformer encoder, (b) pure Transformer-based encoder, (c) full Transformer-based network.

model produced segmentation improvements over its individual counterpart, employing domain-specific
layers with LMSC and LMJSP regularizers was key to learn robust shared representations and achieve
precise bone shape predictions (Fig.3.12) on unseen images.

3.5 Multi-modal segmentation with Transformers

Multi-modal learning approaches have the potential to enhance overall segmentation performance
by leveraging both complementary and redundant information across modalities [92]. Unfortunately,
the majority of multi-modal medical image segmentation methods are usually limited to a straight-
forward modality concatenation at the input level [62]. It becomes challenging to uncover intricate
non-linear relationships between the low-level features of different modalities, particularly when these
modalities exhibit significantly different statistical properties. As an alternative, some studies opted to
employ multiple encoders to handle multi-modal information separately [93]. Then, the multi-pathways
are mid or late-fused to take advantage of latent correlations between modalities. Despite the success
of vision Transformers [60] (Sect.2.6.2), only a few works have been inspired by their intrinsic advan-
tages and scalability in modeling different modalities [94]. Concretely, they could encompass multiple
sequences of tokens where each sequence’s attribute represents a different modality, thus allowing a
multi-modal learning framework without architectural modification. Furthermore, learning per-modal
specificity and inter-modal correlation can be achieved by manipulating self-attention input patterns.
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Figure 3.14 – Numbers of parameters (a) and multiply-accumulate operations (MACs) (b) for various
convolutional, hybrid CNN-Transformers and pure Transformer segmentation networks compared in
a multi-modal setting [91]. Multi-parametric segmentation of brain tumors and multi-modal segmen-
tation of head and neck tumors respectivement correspond to Task 1 (T1) and Task 2 (T2).

In this context, the benefits of using one or multi-pathway CNN encoders, along with the inte-
gration with Transformers to leverage robust multi-modal features were unclear. Furthermore, the
question of whether using or not a pure Transformer-based encoder [95] to solve multi-modal image
segmentation tasks remained unanswered. To address these concerns, the post-doctoral work of G.
Andrade-Miranda focused on the implementation of multi-modal image segmentation networks based
on Transformers. The conducted work [91] aimed at comparing various convolutional, hybrid CNN-
Transformers and purely Transformers-based models (Fig.3.13) in a controlled environment using
well-labelled cross-modal datasets. We specifically looked into whether differences in performance can
be explained by convolutional or Transformer stems, one-path or multi-path CNN-based encoders, and
Transformer modality interaction schemes. Thus, we introduced a unified mathematical framework to
describe current Transformer-based architectures and conducted a series of experiments to analyze
different multi-modal segmentation networks. We additionally explored the gain variation in perfor-
mance depending on one-path versus multi-path CNN-based encoder. Finally, the impact of single-
and multi-stream (through cross-Transformer blocks) joint representations was also investigated.

Experiments on both multi-parametric segmentation of brain tumors and multi-modal segmenta-
tion of head and neck tumors showed that multi-path hybrid models combining convolutional layers
and Transformers improve delineation accuracy over traditional methods, but at the cost of increased
computation time and larger model size (Fig.3.14). Using 3D CNN feature tokenization (hybrid CNN-
Transformers encoder) appeared better than employing a 3D patchify tokenization (pure Transformers-
based encoder) strategy. Nevertheless, the performance of hybrid networks were primarily due to the
multi-path CNN encoders rather than the Transformer itself, in agreement with a similar finding
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3.6. Conclusion

recently made in [96]. In addition, we suggested caution while designing hybrid CNN-Transformers
networks, particularly given the influence of spatial downsampling on the capacity of Transformers to
describe long-range dependencies. No notable differences were found in the modality interaction scheme
between single- and multi-stream models, either for hybrid or pure Transformer-based networks.

3.6 Conclusion

To bridge the gap between learning paradigms and clinical needs, recent investigations have strug-
gle with novel and concrete emerging applications related to knowledge transfer and information
fusion across heterogeneous domains. Multi-domain segmentation strategies have gained in popularity
in order to fully exploit both complementary and redundancy across conditions (Sect.3.2), viewpoints
(Sect.3.3), anatomies (Sect.3.4) or modalities (Sect.3.5). Multi-task and multi-domain techniques with
multiple anatomies as targets appear as one promising avenue to be further investigated. Advances in
multi-modal segmentation with Transformers pave the way for effective cross-modal transfer learning,
where knowledge gained from one modality could be transferred to another. Given the complex-
ity of collecting and annotating a large amount of medical images, transfer learning (Sect.3.2), self-
supervised, semi-supervised (Sect.2.7) and active learning (Sect.3.3.2) are sub-fields of clear progress.
However, more research efforts are needed to maximize or avoid the time-consuming and costly man-
ual efforts made by clinical experts. Further research beyond the application of off-the-shelf solutions
are needed to enable a wider adoption of image segmentation with deep learning into clinical routine,
especially in surgery planning and longitudinal follow-up (Chap.4).

Overall, the potential for bias in deep approaches is a common concern across medical image
analysis tasks including segmentation. In this context, encouraging the collection of large and di-
verse datasets through collective work with various experts is highly recommended. The development
of challenges with publicly-available imaging data is an effort in this direction. Since medical data
is often sensitive and subject to strict regulations on sharing, federated learning also appears as a
promising field to develop since it offers the possibility for multiple hospitals and research institutions
to collaborate by training a shared model on their own local data while keeping the data private
and secure. Demonstrating a better reproducibility when designing deep learning pipelines could in-
crease the trust and confidence of clinicians and make them more suitable for large-scale clinical
applications. Finally, the development of lightweight models with few memory and computational re-
source requirements could be beneficial to ease the deployment of deep learning-based solutions on
computationally-limited platforms.
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Part II

On-going and future research activities
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Chapter 4

DECISION SUPPORT IN SURGERY PLANNING

AND THERAPEUTIC FOLLOW-UP

4.1 Introduction

Pre-operative planning and therapeutic follow-up are integral components of patient care, crucial
for ensuring optimal outcomes and long-term survival. With advancements in medical technology
and computational tools, decision support systems are emerging as invaluable aids for healthcare
professionals. Surgery planning involves decision-making processes that require careful consideration
of numerous factors, including patient-specific anatomy, disease features, surgical techniques, and
potential risks. In this area, medically-sound computational models can benefit from imaging and
clinical data to provide interpretable decision support and steadily push forward the integration of
realistic computer-aided systems into clinical practice. When surgery is not an option, therapeutic
follow-up entails monitoring patient longitudinally, assessing treatment efficacy, and making informed
decisions regarding further interventions or adjustments to the treatment plan. Despite the enthusiasm
generated by deep learning techniques for characterizing anatomical and pathological structures, the
longitudinal follow-up of patients through the analysis of sequences of consecutive examinations has
not been widely studied to date. However, modeling pathological evolution over time could enable a
better therapeutic management, tailored to each individual patient.

This chapter summarizes my on-going and future research activities by addressing various facets of
decision support systems in surgery planning and longitudinal follow-up, with a main focus on abdomi-
nal imaging. We start by exploring the intricate task of leveraging imperfect data in uncertainty-aware
patient-specific modeling (Sect.4.2) before delving into the field of computer-assisted pre-operative
planning, where we examine how computational tools can be employed to aid clinicians in optimiz-
ing surgical approaches such as liver resection (Sect.4.3). On its turn, therapeutic follow-up is first
described by shedding light on medical image analysis methodologies for automatically predicting
treatment response (Sect.4.4) and assessing immunotherapy eligibility (Sect.4.5). We lastly explore
disease progression modeling (Sect.4.6), discussing the use of computational models to predict disease
severity and model disease trajectories, towards improved patient outcomes.
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4.2 Leveraging imperfect data in patient-specific models

A fully-automated patient-specific cartography arising from sophisticated deep models is of interest
in surgical planning and therapeutic follow-up to guide image interpretation, ease decision making and
improve patient care. By harnessing cutting-edge deep learning methodologies, my on-going and future
developments aim at building accurate and thorough 3D maps of the patient anatomy from CT or
MR imaging data. In this perspective, making multi-structure segmentation more robust and able
to provide interpretable guidance tools is expected to gain the trust and benefit for both clinicians
and patients. This is especially true when managing patients with hepatic metastases from colorectal
cancer [97] where reaching a patient-specific liver cartography can assist clinicians in surgery planning
(Sect.4.3) or chemotherapy response assessment (Sect.4.4). Another clinical use-case deals with both
cystic liver and renal cartography to guide the follow-up of patients with polycystic kidney disease
[55], thereby expanding upon past research activities (Sect.2.6.2).

The efforts to reach patient-specific thorough cartographies are driven by the inherent challenges
of abdominal imaging, where variations in acquisition protocols, contrast agents, and lesion charac-
teristics present obstacles for conventional approaches. Notably, dealing with abnormality detection
given varying contrast enhancement levels, dissimilar resolutions and a large diversity in lesion type,
shape, size and texture still need to be overcome through the deep learning paradigm. Modeling
healthy organ tissues and lesions (e.g. tumors, metastases, cysts) is not always enough to provide a
full patient-specific cartography. Blood vessel modeling is also essential for its completion. As an ex-
ample, extracting and differentiating arterial, supra-hepatic and portal venous systems can divide the
liver into height functionally independent areas [98], known as the Couinaud scheme. In this way, we
transition from an intensity-based representation to a geometric and semantic description of the organ
sub-structures. However, as highlighted in Chap.2, vascular segmentation faces its own limitations
including class imbalance and appearance similarity with non-vascular tissues, complex multi-scale
geometry with decreasing diameter along tree-like networks or variability in branching patterns.

To ensure sufficient robustness with respect to clinical requirements, many of the methodologies
described in Chap.2 and 3 can be implemented. In particular, preserving both geometry and topology
of the targeted anatomy (e.g. metastatic liver, cystic kidneys) is key. In this direction, medically-driven
(Sect.2.5) or multi-scale (Sect.2.6.1) constraints within extended hybrid architectures leveraging high-
resolution spatial information from convolutional features and global context encoded by Transformers
(Sect.2.6.2) is one of the possible targeted avenues.

Leveraging external datasets. While such supervised learning methods may exhibit satisfactory
performance when provided with sufficient labeled data, their effectiveness could be further enhanced
by leveraging external but related labeled datasets. This brings us back to the issue of knowledge
transfer (Sect.3.2), where learning transferability strategies tend to generalize the predictive capability
of the network across different domains. A perspective in this area is to extend from MR to CT imaging
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Figure 4.1 – Mean-teacher model leveraging labeled and unlabeled data for vessel segmentation [100].

modality the dual-task Transformers-based segmentation pipeline (Sect.2.6.2) tailored for polycystic
kidney delineation. In particular, the idea would be to exploit CT imaging data from the related but
different task of tumor kidney CT segmentation from the KiTS23 dataset [99]. Extending the dual-task
architecture to a multi-task model comprising one single encoder and three task-specific decoders, one
for each kidney and a third one for the liver, represents another pathway for improvement.

Foundation models, pre-trained neural network architectures that are typically trained in a self-
supervised manner on massive datasets and designed to capture rich and general-purpose representa-
tions, can particularly benefit from external but related data sources [101]. Although vision foundation
models trained on large-scale natural image datasets can provide a strong starting point (e.g. prompt-
driven segment anything model [102]), organ or task-specific foundation model may provide better
accuracy as well as significantly reduce the amount of labeled data required for a given target model-
ing task, as it has already learned more specific features. An optimal trade-off between developmental
effort and practical efficacy must be found given the spectrum of emerging general [103] versus special-
ized [104] foundation models in medical image analysis. It is worth noting that future directions include
multi-modality foundation models, combining various data types and scales, from genome to anatomy.

Leveraging both labeled and unlabeled data. Another scenario deals with changing the training
paradigm and leveraging both labeled and unlabeled data through semi-supervised learning. Unlabeled
data, being easier to obtain as it does not necessitate annotations, offers a valuable resource. According
to [105], three distinct strategies can be followed: generating pseudo-labels to train a supervised model
[106], using unlabeled data to perform unsupervised regularization [107] or employing unlabeled data
to learn prior knowledge through self-supervised tasks [108]. The second category, which is the most
commonly used, typically employs a mean-teacher [107] framework and incorporates various schemes,

49



Chapter 4 – Decision support in surgery planning and therapeutic follow-up

whether it leverages consistency learning (Fig.4.1), co-training, adversarial learning or entropy mini-
mization. By exploiting the advantages of both labeled and unlabeled data, semi-supervised segmen-
tation techniques appear attractive in addressing the scarcity of labeled data. Such approach can not
only enhance model performance but also induce regularization to mitigate overfitting. Nevertheless, it
is crucial to include an adequate amount of labeled data to ensure the network comprehensively learns
anatomical concepts, with the sufficiency being contingent upon annotation quality. Consequently,
when faced with a new segmentation task, striking a balance between labeled data quantity, quality,
and the selected semi-supervised approach becomes paramount.

In this direction, an on-going collaboration with CREATIS9 and CReSTIC10 laboratories aims at
investigating the data dependency of deep learning methods within the context of imperfect data and
semi-supervised learning for cerebrovascular segmentation [100] (Fig.4.1). The goal of this study is to
compare various state-of-the-art semi-supervised methods based on unsupervised regularization and
to evaluate their performance in diverse quantity and quality data scenarios to provide guidelines for
the annotation and training of cerebrovascular segmentation models. We plan to benchmark the same
semi-supervised learning methodologies to improve polycystic kidney MR segmentation by taking ad-
vantage of unlabeled images provided by NIH and arising from CRISP and HALT clinical studies.

Leveraging imperfect annotations. The issue of imperfect annotations is intricately connected
with the problem of annotation scarcity. When faced with a shortage of labeled data, the lack of
diversity in annotations can lead deep learning models to overfit to specific concepts or noise present
in the training labels and introduce biases. Consequently, there is an interest in investigating these
issues together. In blood vessel segmentation, the obstacles posed by data scarcity, concept shift, and
noisy labels are more prominent than in other segmentation applications. As a result, these challenges
stand out as significant performance bottlenecks for supervised methods. Thus, we also aim at investi-
gating the impact of several common imperfection types found in ground truth labels such as missing
sub-structures, over- or under-delineation issues.

Leveraging partially-labelled datasets. Collectively, existing open datasets in medical image seg-
mentation offer extensive information on different target structures. However, each dataset is incom-
pletely labeled, in the sense that it contains annotations for certain structures only. Consequently,
achieving a thorough segmentation of all anatomical entities necessitates training numerous indepen-
dent models, one for each dataset. A multi-class approach able of simultaneously learning from multiple
partially-labeled datasets would offered several advantages: shared representation over datasets, en-
hanced robustness to changes in the field of view and significant reductions in both training and
inference time compared to multiple individual networks. Managing such avenue using dataset- and
class-adaptive loss functions would allow us to obtain an holistic whole-abdominal segmentation model.

9. https://www.creatis.insa-lyon.fr/
10. https://crestic.univ-reims.fr/
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4.3. Computer-assisted pre-operative planning

Leveraging uncertainty estimation. When employing deep learning for image segmentation, the
forward pass operates a deterministic process that assigns a unique label to each voxel. This apparent
determinism however fails to take into account the various sources of uncertainty that affect neural
network predictions. Understanding these uncertainties would be useful to detect potential segmenta-
tion errors. Therefore, there is a clear imperative to understand the limitations of segmentation models
through the evaluation of voxel-wise confidence measures. This objective underpins the application
of epistemic (model-related) and aleatoric (data-related) uncertainty quantification to segmentation
tasks [109]. Among the most widely used methods for measuring epistemic uncertainty is Monte-
Carlo dropout [110], which involves conducting multiple stochastic dropout forward passes of a model
equipped with dropout weights during training. Uncertainty modeling may also importantly be used
to directly improve segmentation performance, as with test-time data augmentation [111], an aleatoric
uncertainty estimation method where multiple forward passes are executed on inputs altered through
basic data augmentations. Uncertainty quantification being an emerging trend, more contributions are
expected to provide clinicians with results and associated confidence information.

4.3 Computer-assisted pre-operative planning

The management of patients with colorectal cancer, second leading cause of cancer death [97], is a
major public health issue. Half of the patients with colorectal cancer develop a distant recurrence. The
liver, through the development of liver metastases, is the most common spread site, accounting for 15-
25% of patients at diagnosis and a further 18-25% of patients within 5 years [112]. The objective is to
find a management adapted to each patient by integrating individual (e.g. age, comorbidity), tumoral
(e.g. number, size) and collective data. With an estimated 5-year survival rate from 37% to 58%,
hepatic resection consists of the complete removal of lesions, leaving at least 30% of the parenchyma.

In this context, a full patient-specific liver cartography including metastasis and vessel tree de-
lineations could make it possible to automatically report the number and size of metastases, their
location in relation to the vascular systems as well as their distribution for each functionally inde-
pendent Couinaud segment [98] derived from the vascular segmentation. This information can greatly
improve image interpretation guidance and ease the decision making process, especially to evaluate
the resectability status of each patient. Indeed, resectable patients are those whose metastases can
be completely removed, leaving at least 30% of healthy liver parenchyma to limit the risks of post-
operative failure. However, determining the feasibility of liver resection is prone to variability between
experts. Exploiting both automatic liver metastasis and vessel contours to predict with deep learning
the respectability status as a classification problem could act as a relevant second-opinion.

Apart from resectability status prediction, my future works aim at building a pre-operative liver
resection planning tool benefiting from a fully-automated liver cartography comprising precise metas-
tasis (Sect.3.2.2) and vessel (Sect.2.5.3, 2.5.4) delineations. Despite advances in chemotherapy and

51



Chapter 4 – Decision support in surgery planning and therapeutic follow-up

Figure 4.2 – Simulation of right hepatectomy by an experienced surgeon. Liver area remaining after
surgery is displayed in green, metastasis to be resected in yellow.

targeted therapies, only resection or destruction of lesions by local treatment can achieve complete re-
mission. Full recovery from major hepatic resection requires a healthy, well-perfused liver remnant able
to regenerate [113]. Besides, the percentage of functional parenchyma remaining after major resection
is an important predictor of post-operative dysfunction and morbidity [114]. A precise pre-operative
planning of the future liver remnant is hence crucial since accurately simulating the resection plan
(Fig.4.2) enables to predict the post-operative volume and optimize the remaining healthy areas [113].

Two virtual pre-operative resection methodologies are currently investigated, application which has
never been addressed with deep learning before, to our knowledge. The first strategy aims at defining
the resection plan around predicted metastases using simple geometric rules, taking into account both
identified vein and artery branches as well as appropriate safety margins [115]. As an alternative,
encoder-decoders derived from UNet [26] and integrating as inputs predicted metastatic and vascular
tissue location information can be trained to automatically infer the area to be resected.

To evaluate the feasibility of this latter strategy, a preliminary study conducted in collaboration
with University of Bejaia delved into the application of convolutional networks for the delineation
of future liver remnants in patients with colorectal liver metastases undergoing resection. Our ap-
proach utilized pre-operative segmentation masks, thereby presenting a paradigm shift in predicting
the resection area compared to conventional methodologies which often rely on Couinaud segments
only [116]. Our experiments involved a pre-operative CT scan along with binary ground truth masks
representing the liver, hepatic veins, portal veins, and metastases (Fig.4.3a) as inputs of a DX-Net
[77] segmentation model. Various combinations of input sets were explored to determine the most ac-
curate strategy through experiments performed on available simulations of hepatic surgical resections
collected from University Hospital of Brest and NIH11. The outcomes underscored the substantial
impact of the chosen input set. In particular, the input set encompassing liver, hepatic veins, portal
veins and tumoral masks achieved the highest Dice score. The exclusion of the CT scan did not hinder
but rather contributed to superior performance, underlying the robustness of the binary masks in
capturing the essential information for precise remnant delineation (Fig.4.3b).

11. https://www.cancerimagingarchive.net/collection/colorectal-liver-metastases/
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4.4. Treatment response assessment and prediction

(a) (b)

Figure 4.3 – (a) CT scan and delineation of liver (red), liver post-resection (yellow), metastasis (black),
hepatic (blue) and portal (green) veins. (b) Visualization of metastatic tissue (black) and futur liver
remnant (red) predictions using DX-Net [77].

Although the feasibility of such an approach has now been demonstrated, additional experiments
are required, especially by testing other deep networks (e.g. Transformers-based) and by using fully-
automated (instead of ground truth) metastasis and vessel segmentation masks. It is worth noting that
the accuracy of metastasis and vessel delineations are of critical importance to ensure an appropriate
guidance for pre-operative resection planning. This challenge need be overcome by relying on robust
segmentation methodologies (e.g. multi-task and adversarial training with Transformers, geometric and
topological constraint integration) to exploit discriminating contextual information, towards better
medically-driven representations of hepatic structures.

4.4 Treatment response assessment and prediction

When surgery is not an option due to the tumor burden, the therapeutic regimen for the manage-
ment of patients with cancer usually consists of palliative oncological treatments. In this context, CT
image analysis is a critical step in assessing the response to treatments. Most evaluation methods are
based on measures related to lesion size. In particular, the response evaluation criteria in solid tumours
(RECIST) 1.1 [9] criterion deals with a unidimensional assessment of lesions which are classified into
3 categories: target, non-target or new lesions. The existence of progression can be affirmed by a pro-
gression of the diameter of target lesions of 20% or more, in case of indisputable increase of non-target
lesions or when at least one new lesion has appeared. However, morphologic criteria are not suited
for treatments that give tumor necrosis (anti-angiogenic agents) or that provide an immune response
(immunotherapy) since density information is not taken into account. Moreover, these criteria require
identifying and segmenting tumoral areas (e.g. hepatic metastases) before measurement. Still largely
performed manually by clinicians, these time-consuming tasks are prone to strong intra and inter-
expert variability [117]. This finding also limits the option of extracting quantitative indices from CT
scans to determine the treatment response group in a radiomic fashion [118]. Fully automating both
assessment and prediction of the treatment response could allow clinicians to stop an unnecessary and
potentially toxic treatment and to substitute it for a more efficient therapeutic alternative.
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Figure 4.4 – Treatment response assessment and prediction for patients with liver metastases from
colorectal cancer [119]. Liver and liver metastases are respectively with pink and yellow boundaries.

Deep learning has been widely used in medical image analysis for a variety of diagnosis purposes
but fairly few in the domain of treatment response assessment. A first idea would be to validate
a measure of disease progression using tumor delineations performed on baseline and follow-up CT
scans through an automated deep learning-based segmentation pipeline (Chap.2, 3) and therefore
standardize both RECIST 1.1 [9] and radiomic [118] evaluations which may differ due to manual
contouring pre-requisites. Another key advantage of this avenue would be to consider all the detected
lesions (i.e. not just the main ones) and to fully exploit their 3D spatial extent.

Furthermore, the majority of studies concentrate on disease identification and evaluation via the
analysis of images obtained at a single time point. For example, a two-step approach was proposed in
[120] for predicting treatment response of liver metastases from CT scans. Untreated liver lesions were
identified and segmented before an Inception network was applied to predict the treatment response.
This method is fundamentally constrained in terms of evolution estimation since it does not account for
therapy-induced changes. Given the complexity of 3D volumetric data, there remains a great demand
for an approach that effectively captures the dynamic information from baseline and follow-up images.

More recent studies are taking the longitudinal fact into consideration. Pre- and post-treatment
MR images were exploited in [121] to predict the tumor response to chemotherapy in patients with
colorectal liver metastases through a 3D multi-stream deep convolutional network. Response prediction
was treated as a binary classification task by creating two synthetic groups (response versus non-
response), out of the 4 groups (complete response, partial response, progressive disease, stable disease)
defined by RECIST 1.1 [9]. This is prohibitive since in this scenario, clinicians would not have the
fine-grained division into multiple response groups, which is essential for patient-specific stratification.
None of existing studies fully address treatment response assessment which aims to evaluate the
response (considering all response groups from RECIST 1.1) of a certain time frame given a specific
chemotherapy regimen with pre- and post-treatment images. Further, treatment response prediction
whose goal is to predict the response after a certain time frame given a specific chemotherapy regimen
with the pre-treatment CT scan only is an issue that has not been widely addressed so far.
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Figure 4.5 – Chemotherapy response assessment (a) and prediction (b) pipelines from [119].

As a first attempt, we developed in [119] a deep learning-based treatment response assessment
pipeline and its extension for prediction purposes based on a newly designed 3D Siamese classification
network (Fig.4.5). Treatment response assessment was performed through a Siamese network built
upon a modified 3D ResNeXt-26 [122] architecture. The features extracted by each stream of the
Siamese network from CT scans acquired at both time stamps were fused through sequences of gated
recurrent units (GRU) and fully-connected layers. To predict the treatment response at time t + 1,
we adapted the previously defined pipeline by only feeding the model with the CT scan acquired
at time t and by stripped off the feature fusion mechanism. A single 3D ResNeXt branch was thus
required, instead of a Siamese-like architecture. By achieving 94.94% and 86.86% overall accuracy
scores respectively, the effectiveness of both treatment assessment and prediction frameworks was
illustrated on the PRODIGE 20 dataset12 [123] collected from a phase-II multi-center clinical trial
in metastatic colorectal cancer that evaluated chemotherapy alone or combined with Bevacizumab in
elderly patient during follow-up. GradCAM [124] was used to see what the model is focusing on to
make the decision (Fig.4.6). We noticed that the model learned to focus on the region of the largest
metastasis cluster inside the liver. The size of the primary metastasis cluster, as well as darker regions
(i.e. necrotic tissues), seemed to play a significant role in producing higher levels of activation.

As perspectives, new multi-stream Siamese networks based on Transformers could be proposed
to improve both assessment and prediction tasks. In particular, we plan to develop, in the same

12. provided by Fédération Francophone de Cancérologie Digestive (FFCD), https://www.ffcd.fr/
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Figure 4.6 – CT scans (a) and gradient-weighted class activation heat maps (b) with GradCAM [124]
for treatment response prediction [119]. Higher activation corresponds to reddish areas.

spirit as [125], a multi-task deep learning approach that allows simultaneous tumor segmentation
and response prediction. A longitudinal data augmentation strategy will be considered by taking into
account non-consecutive pairs of CT examinations. These developments will not only be evaluated on
PRODIGE 20 [123] (237 CT scans) but will also benefit from the availability of data12 arising from the
PRODIGE 9 [126] phase-III clinical trial (576 CT). It is worth noting that a parallel on-going study
in collaboration with University Hospital of Reims tends to confirm that organ atrophy is a marker
of therapeutic response to Bevacizumab in colorectal cancer patients. On a broader scale, typical
patterns of pathology evolution will be extracted from both PRODIGE datasets to find early markers
of chemotherapy response with, in fine, a possible gain in survival. The ultimate goal would be to build
a complete chemotherapy regimen recommendation system able to predict the best treatment for each
patient and which would include other organ assessment such as lungs, lymph nodes and bones.

4.5 Immunotherapy eligibility assessment

Immunotherapy is a treatment that is increasingly involved to stimulate the immune system. Can-
cer cells express negative molecules, called immune checkpoints, which block the action of the immune
system, especially lymphocytes. Immunotherapy works by freezing these negative immune checkpoints.
In oncology (e.g. in lung or gastric cancers), the expression of immune checkpoint inhibitors such as
programmed cell death-ligand 1 (PD-L1), protein determined by immunohistochemistry (IHC), is con-
sidered as a key factor to trigger the use of immunotherapy. However, obtaining the PD-L1 expression
status requires surgical or biopsied tumor specimens collected through invasive procedures, with as-
sociated risks of morbidities [127]. In addition, the process takes a long time and requires a strong
expertise from pathologists. Such analysis can be further affected by the tumor heterogeneity, which
does not fully guarantee reproducibility. Conversely, an alternative non-invasive method able to eval-
uate the PD-L1 status would have an important impact in clinical decision support, especially when
tissues are not available or when IHC fails [128]. Given the established correlation between imaging
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Figure 4.7 – PD-L1 status prediction based on CT and PET imaging data for lung cancer [132].

and lymphocyte infiltrate [129], we hypothesize that the analysis of CT and positron emission tomog-
raphy (PET) images can provide an alternative surrogate for reaching the PD-L1 expression status in
clinical practice. This represents a promising prospect for the management of poor prognosis diseases.

An emerging avenue deals with radiomics whose potential to uncover tumoral patterns and char-
acteristics that fail to be appreciated by the naked eye is encouraging. Standard radiomics approaches
consist in providing a radiomic signature derived from multi-parametric image analysis exploiting ho-
mogeneity, contours, texture, or density information from the investigator-defined primary lesion area
[130]. Additionally to the design of handcrafted imaging features which necessitates expert knowl-
edge, such assessment requires the manual contouring of the primary lesion which is time-consuming
and prone to expert variability between clinicians. Recently, deep convolutional models have been
recently integrated into radiomics frameworks. This integration can be done by automating the lesion
delineation task [32] or by extracting deep features from intermediate hidden layers. Compared to
handcrafted features, deep features contain more representative and high-level medical image informa-
tion and provide more predictive patterns to fully address the target task. In this context and with the
aim of extending current deep radiomics frameworks [131], my current research activities aim at devel-
oping medical image analysis pipelines acting as a digital biopsy and able to predict clinical variables
(e.g. PD-L1 expression) from PET/CT or CT-only images acquired before any systemic treatment,
with applications for immunotherapy eligibility assessment.

In the continuity of early studies [133], [134], a first step in this direction was to investigate a
variety of deep learning-based architectures to perform PD-L1 status prediction based on CT and
PET imaging data for non-small cell lung cancer (NSCLC), a significant source of disease-related
mortality. In [132], a study made in the framework of the post-doctoral position of R. Da-Ano, we
thus compared ResNet, DenseNet and EfficientNet models using different settings : CT only, PET
only and PET/CT fusion performed in an early fashion. The dataset comprised a cohort of 189
patients collected from University Hospital of Poitiers, with available PET and CT images along with
corresponding lung tumor delineations. Since it was essential to exclusively focus on the lung area,
we used a UNet model [26] trained on the LIDC-IDRI dataset [135] to create a bounding box around
the lungs. The resulting bounding boxes were given as inputs of the deep architectures (Fig.4.7) to
estimate the PD-L1 expression. Models were evaluated using the areas under the receiver operating
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characteristic curves (AUC) based from their 95% confidence intervals. Experiments showed that
the fusion architectures consistently outperformed the standalone modalities (CT only, PET only),
highlighting the benefit of integrating multi-modal information from both imaging modalities. Further,
early PET/CT fusion with ResNet and DenseNet as our first efforts to better categorize the PD-L1
status for lung cancer demonstrated encouraging results with 0.81 in mean AUC.

Regarding PET/CT data analysis, a strong focus is currently given to the way both modalities
can be fused. Apart from CT only, PET only and early PET/CT fusion, considering different schemes
comprising late PET/CT fusion without as well as with partially and fully shared weights is cur-
rently under investigation to determine the best fusion strategy. We also aim at comparing different
image configurations as inputs of the deep architectures, from broadly extended bounding boxes that
incorporate lung regions and surrounding tissues to low-range patches centered around the main lesion.

In the near future, both lesion delineation and PD-L1 expression assessment tasks will be simulta-
neously handled through multi-task learning. In addition, since Transformers are likely to become the
new horizon for image analysis applications beyond CNN architectures which do not fully explicitly
model long-range relations [60], hybrid models combining the complementary strengths of CNN and
Transformers will be investigated. Apart from non-invasive PD-L1 status measurement, our strategies
tend to be enough generic to be easily extended to the automated prediction of other clinical variables
(e.g. EGFR mutation status) as well as treatment response, progression-free and overall survivals, in
a wide range of clinical applications including gastric cancers. With the ultimate goal of identifying
a universal biomarker able to select patients eligible for immunotherapy, one can imagine building a
model considering images from different anatomies, pathologies or grades of severity.

4.6 Disease progression modeling

Longitudinal image analysis deals with capturing both static anatomical structures and dynamic
changes in disease progression, towards earlier and better patient-specific pathology management. In
clinical routine, radiologists often compare the current examination to prior studies from the same
patient. Although several studies [136], [137] attempted to automate the analysis of longitudinal im-
ages, conventional computer-aided diagnosis approaches typically do not effectively utilize longitudinal
information for decision-making purposes. However, the visual patterns predicting disease progression
that exist in follow-up images could be extracted through deep learning to improve the guidance in
clinical tasks (e.g. diagnosis, grading, therapeutic management) with respect to single-image strategies.

In my research activities, the topic of longitudinal follow-up has mainly taken place in the field
of ophthalmology, with a focus on diabetic retinopathy (DR), common and high-risk complication
of diabetes and leading cause of visual impairment and blindness worldwide [139]. Although regular
screening is crucial for preventing blindness, the expected increase in the number of patients with
diabetes means that the burden of screening and follow-up represents a substantial challenge [140]. In
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Figure 4.8 – Early (a), intermediate (b) and late (c) fusion strategies compared in [138] for diabetic
retinopathy severity grade change detection.

this context, exploiting follow-up color fundus photographs (CFP) to improve severity and progression
assessment by taking advantage of both past and current examinations is highly required.

Longitudinal fusion. A first step in this direction was reached during the PhD thesis of Y. Yan with
the development of deep information fusion frameworks exploiting two consecutive longitudinal studies
for the assessment of early DR severity changes [138]. In this regard, we aimed at integrating longi-
tudinal information of CFP images to help in predicting referable DR (moderate to severe) severity
changes. Specifically, we targeted the change detection between no DR/mild non-proliferative DR and
more severe DR by analyzing two consecutive follow-up examinations. To this end, we explored three
fusion methods that exploit current and prior studies: early fusion of input images, intermediate fusion
of feature vectors incorporating spatial transformer networks (STN) and late fusion of feature vectors
(Fig.4.8). We conducted a comprehensive evaluation by comparing these pipelines on the longitudinal
DR screening OPHDIAT dataset [141], a massive CFP database made of examinations acquired from
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101,383 patients between 2004 and 2017. To our knowledge, this work was the first to automatically
assess the early DR severity changes between consecutive images. Exhaustive experiments compared
with respect to no-fusion baselines validated that incorporating prior DR studies can improve referable
DR severity classification performance, especially through the late fusion scheme.

Longitudinal self-supervised learning. More recently, self-supervised learning hold great promise
to learn robust high-level representations by training on pre-text tasks [142] before solving a super-
vised downstream task. Current self-supervised models are largely based on contrastive learning [54].
However, the choice of the pre-text task to learn a good representation is not straightforward, and
the application of contrastive learning to medical images is relatively limited. To go further, the PhD
thesis of R. Zeghlache is currently investigating the benefit of exploiting self-supervised learning with a
longitudinal nature for DR diagnosis and progression prediction purposes. Longitudinal self-supervised
learning was initially introduced in the context of disease progression through pre-text tasks. Thus, by
considering consecutive image pairs as inputs, a Siamese-like model was trained in [143] to predict the
difference in time between the two examinations. Latter, additional efforts aimed at conceptualizing
longitudinal pre-text tasks as a way to comprehend the progression of diseases. In [144], longitudinal
self-supervised learning was integrated into an auto-encoder using pairs of consecutive scans as inputs.
A cosine alignment term was introduced alongside the traditional reconstruction loss to encourage the
latent space topology to adapt in accordance with longitudinal changes. The advantages are to avoid
any registration requirements, to leverage population-level data to capture longitudinal changes that
are shared across individuals and to offer the ability to visualize individual-level changes.

The first contribution of R. Zeghlache in this direction was to compare different longitudinal
self-supervised learning methods including a Siamese-like model trained in a self-supervised learning
fashion (with time prediction between examinations), an auto-encoder trained with a loss forcing the
trajectory vector in latent space to be aligned with the disease progression as well as longitudinal
neighborhood embedding to model the disease progression from longitudinal retinal CFP [145]. The
results obtained on the OPHDIAT dataset [141] suggested that the latent space arising from longitu-
dinal self-supervised learning enables to encode the dynamic of DR progression.

Neural ordinary differential equations. Since many temporal systems can be described by means
of ordinary differential equations (ODE), we made the connection between longitudinal self-supervised
learning and neural ordinary differential equations (NODE) [146], neural network architectures that
learn the dynamics of ODE through the use of neural networks. The approximation of an unknown
ODE is performed through a neural network φ that parameterizes the continuous dynamics of hidden
units z ∈ Rn over time with t ∈ R [147]. NODEs are able to model the instantaneous rate of change
of z with respect to t using φ with trainable parameters Θφ:

lim
h→0

zt+h − zt
h

= ∂z
∂t

= φ(t, z,Θφ) (4.1)
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The analytical solution of Eq.4.1 is given by:

zt1 = zt0 +
∫ t1

t0
φ(t, z,Θφ)dt = ODESolve(z(t0), φ, t0, t1,Θφ) (4.2)

where [t0, t1] represents the time horizon for solving the ODE. By using a black-box ODE solver
introduced in [147], we can solve the initial value problem (IVP) and calculate the hidden state at
any desired time (Eq.4.2). We can differentiate the solutions of the ODE solver with respect to the
parameters Θφ, the initial state zt0 at initial time t0 and the solution at time t. This can be achieved
by using the adjoint sensitivity method [147]. Through the latent representation of a given image, we
define an IVP that aims to solve the ODE from ti to a terminal time ti+1:

ż(t) = φ(z(t), t,Θφ) with initial value z(ti) = zti (4.3)

NODEs are ideally suited for solving time-related problems. In particular, irregular time series
[148], an inherent aspect of the disease progression context, can be leveraged by NODEs thanks to
their ability to deal with continuous time.

Longitudinal mixing training. Based on the NODE formalism, we extended in [149] mix-up [150]
and manifold mix-up [151] techniques to a longitudinal context referred to as longitudinal mixing
training. Mix-up was introduced in [150] as a simple regularization method to minimize overfitting
in deep neural networks. It linearly interpolates a mini-batch of random examples and their labels to
transform the training set. Manifold mix-up is an extension of mix-up to hidden representations [151].

Let V be a set of consecutive patient-specific image pairs. V contains all (xti ,xti+1) that are
from the same patient where xti is scanned before xti+1 with i ∈ [0,m − 2], m being the number of
acquired examinations. Let g1:n be a backbone with n layers, where g1:k denotes the part of the neural
network mapping the input data to the hidden representation at layer k. hl represents a classification
or regression head with index l, (y,y′) one-hot labels, Beta (α, α) the Beta distribution and `(.) the
cross-entropy loss. The mixing operator is defined by: Mixλ(a, b) = λ ·a+(1−λ) ·b with λ ∼ Beta (α, α)
∈ [0, 1]. With manifold mix-up, a random layer k from a set of eligible layers in the neural network is
selected. It processes two random data mini-batches (x,y) and (x′,y′), until reaching layer k. The mix-
up is then performed on these two intermediate mini-batches (gk (x) ,y) and (gk (x′) ,y′), continuing
the forward pass with the mixed representation until the ending layer n. These mixed representations
are then fed to a classification head hl and projected to the number of classes.

Conversely, the proposed longitudinal mixing training was set up as follows. Let us denote s(ti)
the severity grade of image xti . The function s(t) is the severity interpolation function between two
consecutive longitudinal pairs xti and xti+1 , defined in the linear case as: s(t) = t−ti

ti+1−ti ·(sti+1−sti)+sti .
In conventional mix-up training, the labels are mixed. Instead, we proposed in [146] to mix the time
between consecutive pairs tmix = Mixλ(ti, ti+1), then employ this tmix to evaluate s(t) and use this
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Figure 4.9 – Illustration of (a) longitudinal mixing training and (b) time-aware model training using
tmix [149]. (a) and (b) can be trained simultaneously or independently.

signal as supervision. During training, we one-hot encoded the value of interpolation at tmix to get our
soft label. Depending on the mix-up method, we obtained as latent representation of the mixed pair:

zmix =
{
g1:n(Mixλ(xti ,xti+1)) for mix-up
gk+1:n(Mixλ(g1:k(xti), g1:k(xti+1))) for manifold mix-up

(4.4)

In this context, g1:n was trained by considering a standard classification loss `(h1(zmix), s(tmix))
with h1 a classification head (Fig.4.9a) as well as an additional time consistency loss following:

Ltmix =‖ tmix − t̃mix ‖22=‖ tmix − h2(zmix) ‖22 (4.5)

where h2 is a regression head that predicts the value of the current tmix for a given pair (Fig.4.9a).
Inspired by [143], this term was motivated by [152] where manifold mix-up coupled with self-supervised
learning showed to enhance the quality of feature extraction. Longitudinal mixing training can be seen
both as a regularizer and as a pre-text task that encodes the disease progression in latent space.

To accurately predict the disease progression from a single image, we trained a NODE as time-
aware model using tmix. Instead of solving the ODE from ti to a terminal time ti+1 (Eq.4.3), we solved
it to the intermediate time tmix (Fig.4.9b). Then, we used this tmix to evaluate s(t) and take this signal
as supervision for training. In practice, the NODE was trained using xt and tmix as inputs through
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`(h3(zmix), s(tmix)) with h3 being a classification head (Fig.4.9b). It is worth noting that this approach
could be applied with any time-aware model. Using OPHDIAT [141], we demonstrated that we can
predict whether a patient would develop a severe DR in the following visit using a single image, with
an AUC of 0.798. Our results also indicated that our longitudinal pre-text task can learn the progres-
sion of DR disease and that introducing tmix augmentation is beneficial for time-aware models.

Current investigations in the framework of the PhD thesis of R. Zeghlache deals with longitudinal
representation learning in continuous-time models, especially by employing NODEs in extended self-
supervised learning SimCLR [54] and BYOL [153] paradigms or by making use of longitudinal masked
auto-encoder with time-aware position embedding and disease progression-aware masking.

Further investigations are needed to enable the creation of pathological trajectories in latent space
by taking into account the full temporal dynamic as well as multi-modal data (e.g. various imaging
modalities, clinical variables) to capture the complexity of disease progression comprehensively. Re-
search perspectives in disease progression modeling extend beyond the current clinical focus. I aim to
delve into other pathologies such as autosomal dominant polycystic kidney disease (ADPKD), known
for its significant clinical variability regarding the rate of renal function decline. By leveraging such
complexity into multi-modal modeling frameworks, we could enhance our understanding of disease
progression dynamics and potentially pave the way for more effective interventions and treatments.

4.7 Conclusion

In conclusion, the challenges and advancements discussed in this chapter represent significant
strides towards enhancing decision support in surgery planning and therapeutic follow-up. By lever-
aging various types of imaging data (e.g. external, unlabeled, imperfectly-annotated), we raised the
potential of fully-automated patient-specific thorough cartography to improve the effectiveness of pre-
operative planning. Uncertainty modeling is another important path to study as it may improve the
learning process and provide clinicians with locally-estimated confidence information.

Moving forward, continued research and innovation are essential for addressing the evolving chal-
lenges of therapeutic follow-up. As patient care continues to advance, there is an opportunity to
further refine deep learning methodologies to reach complete treatment regimen recommendation sys-
tems, leading to improved patient outcomes. In this direction, developing stronger artificial intelligence
methodologies able to integrate longitudinal data from various modalities while providing information
that can be understood by clinicians and complying with confidentiality standards remains key.

Beyond the technical aspects, it is essential to engage in a wider reflection aimed at defining
the place to be given to the machine in clinical routine. Two directions are emerging: one aimed at
facilitating the day-to-day work of radiologists, the other involving the automatic sorting of images
by level of interpretation complexity. Whatever the scenario, the design of novel evaluation metrics
reflecting the clinical applicability of artificial intelligence algorithms is a prospect to be developed.
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network », Artificial Intelligence in Medicine, vol. 132, p. 102 364, 2022.

− A. Touil, K. Kalti, P.-H. Conze, B. Solaiman, and M. Mahjoub, « A new collaborative classi-
fication process for microcalcification detection based on graphs and knowledge propagation »,
Journal of Digital Imaging, vol. 35, 6, pp. 1560–1575, 2022.

− S. Matta, M. Lamard, P.-H. Conze, A. Le Guilcher, V. Ricquebourg, A.-A. Benyoussef, P.
Massin, J.-B. Rottier, B. Cochener, and G. Quellec, « Automatic screening for ocular anomalies
using fundus photographs », Optometry and Vision Science, vol. 99, 3, pp. 281–291, 2022.

− G. Quellec, H. Al Hajj, M. Lamard, P.-H. Conze, P. Massin, and B. Cochener, « ExplAIn:
explanatory artificial intelligence for diabetic retinopathy diagnosis », Medical Image Analysis,
vol. 72, p. 102 118, 2021.

− P.-H. Conze, A. E. Kavur, E. Cornec-Le Gall, N. S. Gezer, Y. Le Meur, M. A. Selver, and F.
Rousseau, « Abdominal multi-organ segmentation with cascaded convolutional and adversarial
deep networks », Artificial Intelligence in Medicine, vol. 117, p. 102 109, 2021.

− A. Touil, K. Kalti, P.-H. Conze, B. Solaiman, and M. A. Mahjoub, « A new conditional region
growing approach for microcalcification delineation in mammograms », Medical & Biological
Engineering & Computing, vol. 59, pp. 1795–1814, 2021.

− Y. Yan, P.-H. Conze, M. Lamard, G. Quellec, B. Cochener, and G. Coatrieux, « Towards
improved breast mass detection using dual-view mammogram matching », Medical Image Anal-
ysis, vol. 71, p. 102 083, 2021.

− Y. Yan, P.-H. Conze, G. Quellec, M. Lamard, B. Cochener, and G. Coatrieux, « Two-stage
multi-scale breast mass segmentation for full mammogram analysis without user intervention »,
Biocybernetics and Biomedical Engineering, vol. 41, 2, pp. 746–757, 2021.

− A. E. Kavur, N. S. Gezer, M. Barış, S. Aslan, P.-H. Conze, V. Groza, D. D. Pham, S. Chat-
terjee, P. Ernst, S. Özkan, et al., « CHAOS challenge-combined (CT-MR) healthy abdominal
organ segmentation », Medical Image Analysis, vol. 69, p. 101 950, 2021.

− A. Touil, K. Kalti, P.-H. Conze, B. Solaiman, and M. Mahjoub, « Automatic detection of
microcalcification based on morphological operations and structural similarity indices », Bio-
cybernetics and Biomedical Engineering, vol. 40, 3, pp. 1155–1173, 2020.

− P.-H. Conze, S. Brochard, V. Burdin, F. T. Sheehan, and C. Pons, « Healthy versus patho-
logical learning transferability in shoulder muscle MRI segmentation using deep convolutional
encoder-decoders », Computerized Medical Imaging and Graphics, vol. 83, p. 101 733, 2020.
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Publications

− G. Quellec, M. Lamard, P.-H. Conze, P. Massin, and B. Cochener, « Automatic detection of
multiple pathologies in fundus photographs using spin-off learning », Medical Image Analysis,
vol. 61, 2020.

− M. S. Chaibou, P.-H. Conze, K. Kalti, M. A. Mahjoub, and B. Solaiman, « Learning contex-
tual superpixel similarity for consistent image segmentation », Multimedia Tools and Applica-
tions, vol. 79, 3, pp. 2601–2627, 2020.

− K. Souadih, A. Belaid, D. Ben Salem, and P.-H. Conze, « Automatic forensic identification
using 3D sphenoid sinus segmentation and deep characterization », Medical & Biological Engi-
neering & Computing, vol. 58, pp. 291–306, 2020.

− P.-H. Conze, F. Tilquin, M. Lamard, F. Heitz, and G. Quellec, « Unsupervised learning-based
long-term superpixel tracking », Image and Vision Computing, vol. 89, pp. 289–301, 2019.

− H. Al Hajj, M. Lamard, P.-H. Conze, S. Roychowdhury, X. Hu, G. Maršalkaitė, O. Zisimopou-
los, M. A. Dedmari, F. Zhao, J. Prellberg, et al., « CATARACTS: challenge on automatic tool
annotation for cataract surgery », Medical Image Analysis, vol. 52, pp. 24–41, 2019.

− H. Al Hajj, M. Lamard, P.-H. Conze, B. Cochener, and G. Quellec, « Monitoring tool usage
in surgery videos using boosted convolutional and recurrent neural networks », Medical Image
Analysis, vol. 47, pp. 203–218, 2018.

− M. S. Chaibou, P.-H. Conze, K. Kalti, B. Solaiman, and M. A. Mahjoub, « Adaptive strat-
egy for superpixel-based region-growing image segmentation », Journal of Electronic Imaging,
vol. 26, 6, p. 61 605, 2017.

− P.-H. Conze, V. Noblet, F. Rousseau, F. Heitz, V. de Blasi, R. Memeo, and P. Pessaux,
« Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic
contrast-enhanced CT scans », International Journal of Computer Assisted Radiology and
Surgery, vol. 12, 2, pp. 223–233, 2017.

− P.-H. Conze, P. Robert, T. Crivelli, and L. Morin, « Multi-reference combinatorial strategy
towards longer long-term dense motion estimation », Computer Vision and Image Understand-
ing, vol. 150, pp. 66–80, 2016.

− T. Crivelli, M. Fradet, P.-H. Conze, P. Robert, and P. Pérez, « Robust optical flow integra-
tion », IEEE Transactions on Image Processing, vol. 24, 1, pp. 484–498, 2014.

Publications in international conferences and workshops

− R. Zeghlache, P.-H. Conze, M. El Habib Daho, Y. Li, H. Le Boité, R. Tadayoni, P. Massin,
B. Cochener, A. Rezaei, I. Brahim, G. Quellec, and M. Lamard, « LaTiM: Longitudinal repre-
sentation learning in continuous-time models to predict disease progression », in International
Conference on Medical Image Computing and Computer-Assisted Intervention, 2024.
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Publications

− V. Jaouen,P.-H. Conze, J. Bert, and D. Visvikis, « Self super-resolution of anisotropic volumes
in prostate MRI with normalized edge priors », in International Conference on the use of
Computers in Radiation therapy, 2024.

− P. Zhang, Y. Li, J. Zhang, W. Jiang, P.-H. Conze, M. Lamard, G. Quellec, and M. El Habib
Daho, « Detection and classification of glaucoma in the JustRAIGS challenge: achievements in
binary and multilabel classification », in Justified Referral in AI Glaucoma Screening challenge,
in conjunction with IEEE International Symposium on Biomedical Imaging, 2024.

− M. Abbas, G. Adrade-Miranda, V. Bourbonne, D. Visvikis, B. Badic, and P.-H. Conze,
« Learning transferability in deep segmentation of liver metastases », in IEEE International
Symposium on Biomedical Imaging, 2024.

− R. Da-Ano, O. Tankyevych, G. Andrade-Miranda, P.-H. Conze, C. Cheze Le Rest, and D.
Visvikis, « Multi-modal PET/CT fusion for automated PD-L1 status prediction in lung can-
cer », in IEEE International Symposium on Biomedical Imaging, 2024.

− A. Sadikine, B. Badic, E. Ferrante, V. Noblet, P. Ballet, D. Visvikis, and P.-H. Conze, « Deep
vessel segmentation with joint multi-prior encoding », in IEEE International Symposium on
Biomedical Imaging, 2024.

− V. Jaouen, P.-H. Conze, and D. Visvikis, « One-sided unsupervised medical image synthesis
with normalized edge consistency », in IEEE International Symposium on Biomedical Imaging,
2024.

− R. Zeglache, P.-H. Conze, M. El Habib Daho, L. Yihao, H. Le Boité, P. Massin, R. Tadayoni,
B. Cochener, I. Brahim, G. Quellec, and M. Lamard, « LMT: longitudinal mixing training a
framework for the prediction of disease progression using a single image », in International
Workshop on Machine Learning in Medical Imaging, 2023.

− R. Zeghlache, P.-H. Conze, M. E. H. Daho, Y. Li, H. Le Boité, R. Tadayoni, P. Massin, B.
Cochener, I. Brahim, G. Quellec, and M. Lamard, « Longitudinal self-supervised learning using
neural ordinary differential equation », in International Workshop on Predictive Intelligence in
Medicine, 2023.

− M. E. H. Daho, Y. Li, R. Zeghlache, Y. C. Atse, H. Le Boité, S. Bonnin, D. Cosette, P. Deman,
L. Borderie, C. Lepicard, R. Tadayoni, B. Cochener, P.-H. Conze, M. Lamard, and G. Quellec,
« Improved automatic diabetic retinopathy severity classification using deep multimodal fusion
of UWF-CFP and OCTA images », in International Workshop on Ophthalmic Medical Image
Analysis, 2023.

− A. Sadikine, B. Badic, J.-P. Tasu, V. Noblet, P. Ballet, D. Visvikis, and P.-H. Conze, « Scale-
specific auxiliary multi-task contrastive learning for deep liver vessel segmentation », in IEEE
International Symposium on Biomedical Imaging, 2023.
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Publications

− Y. Li, R. Zeghlache, I. Brahim, H. Xu, Y. Tan, P.-H. Conze, M. Lamard, G. Quellec, and M.
El Habib Daho, « Segmentation, classification, and quality assessment of UW-OCTA images
for the diagnosis of diabetic retinopathy », in Mitosis Domain Generalization and Diabetic
Retinopathy Analysis, 2022, pp. 146–160.

− R. Zeghlache, P.-H. Conze, M. El Habib Daho, R. Tadayoni, P. Massin, B. Cochener, G.
Quellec, and M. Lamard, « Detection of diabetic retinopathy using longitudinal self-supervised
learning », in International Workshop on Ophthalmic Medical Image Analysis, 2022, pp. 43–52.

− Y. Li, M. El Habib Daho, P.-H. Conze, H. Al Hajj, S. Bonnin, H. Ren, N. Manivannan, S.
Magazzeni, R. Tadayoni, B. Cochener, et al., « Multimodal information fusion for glaucoma
and diabetic retinopathy classification », in International Workshop on Ophthalmic Medical
Image Analysis, 2022, pp. 53–62.

− I. Brahim, M. Lamard, A.-A. Benyoussef, P.-H. Conze, B. Cochener, D. Cornec, and G.
Quellec, « Mapping the ocular surface from monocular videos with an application to dry eye
disease grading », in International Workshop on Ophthalmic Medical Image Analysis, 2022.

− A. Sadikine, B. Badic, J.-P. Tasu, V. Noblet, D. Visvikis, andP.-H. Conze, « Semi-overcomplete
convolutional auto-encoder embedding as shape priors for deep vessel segmentation », in IEEE
International Conference on Image Processing, 2022, pp. 586–590.

− G. Andrade-Miranda, V. Jaouen, V. Bourbonne, F. Lucia, D. Visvikis, and P.-H. Conze,
« Pure versus hybrid transformers for multi-modal brain tumor segmentation: A comparative
study », in IEEE International Conference on Image Processing, 2022, pp. 1336–1340.

− M. M. Islam, B. Badic, T. Aparicio, D. Tougeron, J.-P. Tasu, D. Visvikis, and P.-H. Conze,
« Deep treatment response assessment and prediction of colorectal cancer liver metastases », in
International Conference on Medical Image Computing and Computer-Assisted Intervention,
2022, pp. 482–491.

− A. Boutillon, P.-H. Conze, C. Pons, V. Burdin, and B. Borotikar, « Multi-task, multi-domain
deep segmentation with shared representations and contrastive regularization for sparse pe-
diatric datasets », in International Conference on Medical Image Computing and Computer-
Assisted Intervention, 2021, pp. 239–249.

− Y. Yan, P.-H. Conze, M. Lamard, H. Zhang, G. Quellec, B. Cochener, and G. Coatrieux,
« Deep active learning for dual-view mammogram analysis », in International Workshop on
Machine Learning in Medical Imaging, 2021, pp. 180–189.

− Y. Yan, P.-H. Conze, G. Quellec, P. Massin, M. Lamard, G. Coatrieux, and B. Cochener,
« Longitudinal detection of diabetic retinopathy early severity grade changes using deep learn-
ing », in International Workshop on Ophthalmic Medical Image Analysis, 2021, pp. 11–20.
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Publications

− A. Boutillon, B. Borotikar, C. Pons, V. Burdin, and P.-H. Conze, « Multi-structure deep
segmentation with shape priors and latent adversarial regularization », in IEEE International
Symposium on Biomedical Imaging, 2021, pp. 999–1002.

− Y. Yan, P.-H. Conze, G. Quellec, M. Lamard, B. Cochener, and G. Coatrieux, « Two-stage
multi-scale mass segmentation from full mammograms », in IEEE International Symposium on
Biomedical Imaging, 2021, pp. 1628–1631.

− H. Messaoudi, A. Belaid, M. L. Allaoui, A. Zetout, M. S. Allili, S. Tliba, D. Ben Salem, and P.-
H. Conze, « Efficient embedding network for 3D brain tumor segmentation », in Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2020, pp. 252–262.

− A. Touil, K. Kalti, P.-H. Conze, B. Solaiman, and M. A. Mahjoub, « A new conditional
region growing approach for an accurate detection of microcalcifications from mammographic
images », in IEEE International Conference on Bioinformatics and Bioengineering, 2020.

− Y. Yan, P.-H. Conze, M. Lamard, G. Quellec, B. Cochener, and G. Coatrieux, « Multi-
tasking siamese networks for breast mass detection using dual-view mammogram matching »,
in International Workshop on Machine Learning in Medical Imaging, 2020, pp. 312–321.

− A. Touil, K. Kalti, P.-H. Conze, B. Solaiman, and M. A. Mahjoub, « Morphological-based
microcalcification detection using adaptive thresholding and structural similarity indices », in
International Conference on Advanced Technologies for Signal and Image Processing, 2020.

− A. Boutillon, B. Borotikar, V. Burdin, and P.-H. Conze, « Combining shape priors with
conditional adversarial networks for improved scapula segmentation in MR images », in IEEE
International Symposium on Biomedical Imaging, 2020, pp. 1164–1167.

− Y. Yan, P.-H. Conze, E. Decencière, M. Lamard, G. Quellec, B. Cochener, and G. Coatrieux,
« Cascaded multi-scale convolutional encoder-decoders for breast mass segmentation in high-
resolution mammograms », in Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2019, pp. 6738–6741.

− P.-H. Conze, C. Ponse, V. Burdin, F. T. Sheehan, and S. Brochard, « Deep convolutional
encoder-decoders for deltoid segmentation using healthy versus pathological learning transfer-
ability », in IEEE International Symposium on Biomedical Imaging, 2019, pp. 36–39.

− F. Tilquin,P.-H. Conze, P. Pessaux, M. Lamard, G. Quellec, V. Noblet, and F. Heitz, « Robust
supervoxel matching combining mid-level spectral and context-rich features », in Interional
Workshop on Patch-based Techniques in Medical Imaging, 2018, pp. 39–47.

− A. Guerre, M. Lamard, P.-H. Conze, B. Cochener, and G. Quellec, « Optical flow estimation
in ocular endoscopy videos using Flownet on simulated endoscopy data », in IEEE International
Symposium on Biomedical Imaging, 2018, pp. 1463–1466.
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Publications

− P.-H. Conze, F. Tilquin, M. Lamard, F. Heitz, and G. Quellec, « Long-term superpixel track-
ing using unsupervised learning and multi-step integration », in International Conference on
Advanced Technologies for Signal and Image Processing, 2018.

− P.-H. Conze, F. Tilquin, V. Noblet, F. Rousseau, F. Heitz, and P. Pessaux, « Hierarchical
multi-scale supervoxel matching using random forests for automatic semi-dense abdominal im-
age registration », in IEEE International Symposium on Biomedical Imaging, 2017, pp. 490–
493.

− P.-H. Conze, V. Noblet, F. Rousseau, F. Heitz, R. Memeo, and P. Pessaux, « Random
forests on hierarchical multi-scale supervoxels for liver tumor segmentation in dynamic contrast-
enhanced CT scans », in IEEE International Symposium on Biomedical Imaging, 2016, pp. 416–
419.

− P.-H. Conze, F. Rousseau, V. Noblet, F. Heitz, R. Memeo, and P. Pessaux, « Semi-automatic
liver tumor segmentation in DCE-CT scans using random forests and supervoxels », in Inter-
national Workshop on Machine Learning in Medical Imaging, 2015.

− P.-H. Conze, P. Robert, T. Crivelli, and L. Morin, « Dense long-term motion estimation
via statistical multi-step flow », in International Conference on Computer Vision Theory and
Applications, 2014, pp. 545–554.

− P.-H. Conze, T. Crivelli, P. Robert, and L. Morin, « Dense motion estimation between distant
frames: combinatorial multi-step integration and statistical selection », in IEEE International
Conference on Image Processing, 2013, pp. 3860–3864.

− T. Crivelli, P.-H. Conze, P. Robert, M. Fradet, and P. Pérez, « Multi-step flow fusion: to-
wards accurate and dense correspondences in long video shots », in British Machine Vision
Conference, 2012.

− T. Crivelli, P.-H. Conze, P. Robert, and P. Pérez, « From optical flow to dense long term
correspondences », in IEEE International Conference on Image Processing, 2012, pp. 61–64.

− P. Robert, C. Thébault, and P.-H. Conze, « Disparity-compensated view synthesis for s3D
content correction », in Stereoscopic Displays and Applications, 2012, pp. 843–856.

− P.-H. Conze, P. Robert, and L. Morin, « Objective view synthesis quality assessment », in
Stereoscopic Displays and Applications, 2012, pp. 557–570.

Patents

− R. Zeghlache, P.-H. Conze, M. El Habib Daho, M. Lamard, and G. Quellec, Method and
apparatus for predicting progression of a pathology, EP 23306730.5, 2023.

− P. Robert, V. Drazic, P.-H. Conze, and T. Viellard, Disparity maps in uniform areas, US
20130176300, 2013.
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Publications

− P. Robert, M. Fradet, P.-H. Conze, and T. Viellard, Method and apparatus for processing
occlusions in motion estimation, US 20130148730, EP 2602997, 2013.

− P. Robert, T. Crivelli, P.-H. Conze, M. Fradet, and P. Pérez, Filtering a displacement field
between video frames, WO 2013131819, EP 2823467, US 20150015792, 2013.

− M. Fradet, P.-H. Conze, et al., Procédé d’édition d’un plan dans une séquence vidéo, FR
2998399, 2013.

− P.-H. Conze, P. Robert, T. Crivelli, and L. Morin, Method for generating a motion field for
a video sequence, WO 2014122131, 2014.

− P. Robert, T. Crivelli, and P.-H. Conze, Method and device for generating a motion field for
a video sequence, WO 2013107833, US 20140363053, EP 2805306, 2014.

Abstracts in international conferences

− M. El Habib Daho, Y. Li, R. Zeghlache, A. Rezaei, H. Le Boité, A. Couturier, S. Magazzeni, A.
Le Guilcher, F. Potevin, M. Gallardo, R. Tadayoni, B. Cochener,P.-H. Conze, M. Lamard, and
G. Quellec, « Cross-device AI fusion: enhancing diabetic retinopathy diagnosis with combined
Clarus and Optos images », Investigative Ophthalmology & Visual Science, 2024.

− M. Faure, P.-H. Conze, B. Cochener, M. Lamard, and G. Quellec, « Predicting cataract
surgery errors via artificial intelligence alert generation », Investigative Ophthalmology & Visual
Science, 2024.

− V. Jaouen, Z. Wang, P.-H. Conze, and D. Visvikis, « Self super-resolution for hepatic vessel
CT segmentation », in IEEE Medical Imaging Conference, 2023.

− R. Zeghlache, P.-H. Conze, M. El Habib Daho, Y. Li, I. Brahim, H. Le Boité, P. Massin, R.
Tadayoni, B. Cochener, G. Quellec, and M. Lamard, « Time-aware deep models for predicting
diabetic retinopathy progression », Investigative Ophthalmology & Visual Science, 2023.

− M. El Habib Daho, R. Zeghlache, Y. Li, H. Le Boité, S. Bonnin, S. Magazzeni, L. Borderie,
B. Lay, R. Tadayoni, B. Cochener, P.-H. Conze, M. Larmard, and G. Quellec, « Performance
of two ultra-widefield retinal imaging systems for the automatic diagnosis of diabetic retinopa-
thy », Investigative Ophthalmology & Visual Science, 2023.

− G. Quellec, Y. Li, H. Al Hajj, S. Bonnin, H. Ren, N. Manivannan, S. Magazzeni, R. Tadayoni,
P.-H. Conze, and M. Lamard, « 3D style transfer between structure and flow channels in
OCT angiography », Investigative Ophthalmology & Visual Science, vol. 63, 7, 2022.

− Y. Li, H. Al Hajj,P.-H. Conze, S. Bonnin, H. Ren, N. Manivannan, S. Magazzeni, R. Tadayoni,
M. Lamard, and G. Quellec, « Multimodal information fusion for the diagnosis of diabetic
retinopathy », Investigative Ophthalmology & Visual Science, vol. 63, 7, 2022.
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Supervision

− G. Andrade-Miranda, V. Jaouen, D. Visvikis, and P.-H. Conze, « Comparing modern seg-
mentation architectures under low data regime for PET-CT tumor segmentation », in IEEE
Medical Imaging Conference, 2022.

− G. Sallé, V. Bourbonne, P.-H. Conze, N. Boussion, J. Bert, D. Visvikis, and V. Jaouen,
« Tumor blending augmentation using one-shot generative learning for brain CT tumor seg-
mentation », in IEEE Medical Imaging Conference, 2022.

− G. Sallé, P.-H. Conze, N. Boussion, J. Bert, D. Visvikis, and V. Jaouen, « Synthetic tumor
insertion using one-shot generative learning for cross-modal image segmentation », in IEEE
Medical Imaging Conference, 2021.

− G. Quellec, M. Lamard, P.-H. Conze, P. Massin, and B. Cochener, « Automatic detection of
multiple pathologies in fundus photographs », Investigative Ophthalmology & Visual Science,
vol. 61, 7, 2020.

Publications in national conferences

− P.-H. Conze, F. Rousseau, V. Noblet, F. Heitz, R. Memeo, and P. Pessaux, « Segmenta-
tion semi-automatique de tumeurs du foie en TDM dynamique pour l’estimation du taux de
nécrose », in Colloque GRETSI Traitement du Signal & des Images, 2015.

− P.-H. Conze, T. Crivelli, P. Robert, and L. Morin, « Estimation de mouvement entre images
distantes: intégration combinatoire et sélection statistique », in Colloque GRETSI Traitement
du Signal & des Images, 2013.

Pre-prints

− P. Rougé, P.-H. Conze, N. Passat, and O. Merveille, « Guidelines for cerebrovascular seg-
mentation: managing imperfect annotations in the context of semi-supervised learning », arXiv
preprint arXiv:2404.01765, 2024.

− V. Jaouen, P.-H. Conze, G. Dardenne, J. Bert, and D. Visvikis, « Regularized directional
representations for medical image registration », arXiv preprint arXiv:2111.15509, 2021.

Article for general public

− P.-H. Conze, « Les promesses et enjeux de l’IA pour l’interprétation d’images médicales », in
Télécom, 2024.

PhD thesis

− P.-H. Conze, « Long-term dense motion estimation and view synthesis quality assessment
with app. to joint stereo and motion processing », Ph.D. dissertation, INSA Rennes, 2014.
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SUPERVISION

Post-doctoral fellowships

− A. Rezaei, from December 2023. Artificial intelligence for diabetic retinopathy management.
− R. Da-Ano, from October 2023. Deep radiomics for treatment response assessment.
− M. El Habib Daho, from Jan. 2022. Predicting diabetic retinopathy using artificial intelligence.
− G. Andrade-Miranda, from April 2021 to March 2023. Computational models with cross-modality

learning.

PhD theses

Defended

− N. Decaux, defended in June 2024. Structure and function analysis from muscle MRI data,
supervised by F. Rousseau and S. Brochard.

− Y. Li, defended in December 2023. Multi-modal information fusion for the diagnosis of diabetic
retinopathy, supervised by G. Quellec.

− N. Ben Chaabane, defended in December 2023. Analysis of physiological signals for the predic-
tion of pathological evolution using artificial intelligence. Application to Parkinson disease and
quantified gait analysis, supervised by M. Lamard.

− I. Brahim, defended in December 2022. Automatic dry eye quantification using artificial intel-
ligence, supervised by G. Quellec and D. Cornec.

− A. Boutillon, defended in November 2022. Regularized deep learning models for multi-anatomy
segmentation in pediatric imaging, supervised by V. Burdin.

− Y. Yan, defended in October 2021.Medical image analysis with deep learning for computer-aided
diagnosis in screening, supervised by G. Coatrieux.

− A. Touil, defended in November 2021. Collaborative combination of classifiers: Application to
microcalcification detection in mammograms, supervised by B. Solaiman and M. A Mahjoub.

− S. Matta, defended in April 2021. Automatic recognition of retinal pathologies using deep learn-
ing for mass screening, supervised by G. Quellec.

− A. Guerre, defended in December 2019. Enhanced field of view for ocular endoscopic surgery,
supervised by G. Quellec and B. Cochener.

− M. S Chaibou, defended in July 2019. Interpretation of images by iterative knowledge integra-
tion, supervised by B. Solaiman and M. A Mahjoub.

Ready to defend
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Teaching

− M. A Sadikine, started in October 2020, defense planed in July 2024. Deep vessel segmentation
with geometric and topological constraints, supervised by P. Ballet.

On going

− S. Dedeken, started in September 2023. Robustness of multi-modal machine learning models to
heterogeneous imaging data, supervised by D. Visvikis, in collaboration with Sophia Genetics13.

− M. Abbas, started in November 2022. Longitudinal follow-up of metastases from colorectal
cancer using artificial intelligence, supervised by B. Badic.

− M. Faure, starded in November 2021. Surgical assistance based on surgical simulators and
artificial intelligence, supervised by G. Quellec.

− R. Zeghlache, started in October 2021. Longitudinal follow-up of diabetic retinopathy with deep
learning, supervised by M. Lamard.

Master theses (M2)

− E. Kharroubi, from March to Aug. 2024. Deep characterization of prostate cancer.
− C. Martin, from February to July 2022. Towards a generic 3D vascular segmentation network.
− A. Ruiz Guijosa, from Jan. to Jun. 2022. Topological constraints for liver vascular segmentation.
− L. Wang, from March to Sept. 2022. Longitudinal follow-up of metastases from colorectal cancer.
− M. Islam, from Feb. to June 2021. Predicting treatment response of liver metastases.
− M. Riera i Marin, from May to Oct. 2020. Segmentation of fetal brain MRI by neural networks.
− M. Koralewski, from April to Sept. 2020. Deep hepatic vascular system segmentation.
− G. Sallé, from April to September 2020. Multi-modal segmentation of polycystic kidneys.
− A. Boutillon, from Mars to September 2019. MR image segmentation using deep learning.
− Y. Yan, from Mars to August 2018. Deep mammogram analysis for breast cancer diagnosis.
− F. Tilquin, from Mars to September 2016. Multi-modal registration of abdominal images.

Research internships (M1)

− M. Lin, 2024. Self super-resolution for prostate cancer segmentation and detection.
− I. Hamoud, 2018. Convolutional neural networks and transfer learning for liver segmentation.
− A. Heitz, 2016. Deep learning for CT and MRI segmentation of liver tumors.
− F. Allender, 2016. Random forests and multi-scale supervoxels for glioma classification.
− A. Krebs, 2015. Segmentation of liver tumors for necrosis rate estimation.

13. https://www.sophiagenetics.com
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TEACHING

Teaching responsibilities

- From Sept. 2023: co-responsible for Health Engineering option (M1, M2) at IMT Atlantique
- From Sept. 2020: co-responsible for research projects (M2) at IMT Atlantique
- From Sept. 2019: responsible for the Digital Patient14 courses (M1, M2) at IMT Atlantique
- From Sept. 2019: responsible for the Computer Vision15 courses (M1, M2) at IMT Atlantique

Provided courses (∼600h)

- Main courses provided at IMT Atlantique

Module Level Year Hours/year
Deep learning M1, M2 2019 - 12h
Introduction to artificial intelligence M1, M2 2020 - 2022 21h
Digital patient14 M1, M2 2019 - 32h
Computer vision15 M1, M2 2019 - 25h
Digital image processing M2 2018 - 2019 10h
Information coding L3, M1 2017 - 2018 3h
Multimedia technologies L3, M1 2017 - 2018 3h

- Courses provided at ENSSAT

Module Level Year Hours/year
Medical image analysis M2 2023 - 6h
Machine and deep learning M2 2023 - 4h

- Courses provided at Télécom Physique Strasbourg

Module Level Year Hours/year
Probability and stochastic processes L3 2015 - 2016 35h
Statistics M1 2015 - 2016 14h
Numerical analysis L3 2015 - 2016 16h

- Lecturer at European School for Medical Physics Experts (ESMPE) in 2022 and 2024

14. medical signal processing, computer-assisted medical image analysis, medical image segmentation, medical image
registration, time: the fourth dimension in medical image analysis, statistical shape models, morphometry
15. object detection and recognition, semantic segmentation, image interpretation, dense motion estimation, optical

flow, video object tracking, single-camera geometry, stereo and 3D structure, two-view geometry
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Titre : Contributions à la segmentation d’images médicales par intelligence artificielle pour l’aide à
la décision

Mot clés : analyse d’images médicales, apprentissage profond, segmentation sémantique, fusion

multi-modale, suivi longitudinal, imagerie abdominale

Résumé : L’analyse d’images médicales as-
sistée par ordinateur offre un avantage notable
par rapport aux analyses manuelles subjectives
et chronophages, en s’appuyant sur des tech-
niques informatiques reproductibles pour inter-
préter les images médicales. Le développe-
ment de modèles computationnels fait de plus
en plus appel à des techniques d’intelligence ar-
tificielle, ouvrant la voie à une médecine person-
nalisée. Ce manuscrit synthétise mes contribu-
tions et perspectives de recherche en analyse
d’images médicales par intelligence artificielle,
pour l’aide à la décision. À l’interface entre traite-
ment d’images, science des données et mathé-
matiques appliquées, il met en lumière mes con-
tributions en segmentation sémantique, fusion

multi-modale et suivi longitudinal par apprentis-
sage profond. L’enthousiasme pour l’intelligence
artificielle cache un aspect plus nuancé, lié
aux nombreux défis d’un déploiement plus large
en routine clinique. Étant donnée la complex-
ité de la collecte et de l’annotation d’images
médicales, divers paradigmes d’apprentissage
ont émergé : transfert d’apprentissage, intégra-
tion de connaissances a-priori, apprentissage
semi-supervisé, multi-tâche ou multi-domaine...
De plus, les modèles computationnels visent à
fournir une aide décisionnelle interprétable pour
les médecins. Divers aspects de ces systèmes
sont décrits dans les contextes de la planification
pré-opératoire et du suivi thérapeutique, notam-
ment en imagerie abdominale.

Title: Contributions to medical image segmentation with artificial intelligence for decision support

Keywords: medical image analysis, deep learning, semantic segmentation, multi-modal fusion,

longitudinal follow-up, abdominal imaging

Abstract: Computer-aided medical image anal-
ysis provides a significant advantage over labor-
intensive and subjective manual analyses by
leveraging reproducible and objective computa-
tional techniques to interpret medical images.
With the rapid advancement of artificial intelli-
gence, the field has witnessed a shift towards
deep learning methodologies able to perform a
wide range of interpretation tasks, paving the
way for personalized medicine. This manuscript
synthesizes my past contributions, describes on-
going works and anticipate future prospects on
medical image analysis with artificial intelligence
for better clinical decision support. At the in-
terface between image processing, data science
and applied mathematics, it highlights my contri-

butions on semantic segmentation, multi-modal
information fusion and longitudinal follow-up with
deep learning. Enthusiasm for artificial intel-
ligence hides a more nuanced side, linked to
the challenges of a wider deployment in clinical
routine. Given the complexity of collecting and
annotating a large number of medical images,
various learning paradigms have emerged com-
prising transfer learning, prior knowledge em-
bedding, semi-supervised learning, multi-task or
multi-domain analysis. Further, medically-sound
computational models aim at providing an inter-
pretable guidance for clinicians. Various facets
of decision support systems are described in
pre-operative planning and therapeutic follow-
up, with a focus on abdominal imaging.
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