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iii Résumé de la thèse L'astate (At, Z=85) est l'un des éléments les plus rares que l'on trouve naturellement sur Terre. Il appartient à la famille des halogènes et se situe en dessous de l'iode dans le tableau périodique. L'astate est, par l'intermédiaire de son isotope 211 ( 211 At, t 1/2 =7,2 heures), considéré comme l'un des radionucléides les plus prometteurs pour la thérapie alpha ciblée. L'idée est de lier cet isotope à des agents biologiques sélectifs des cellules cancéreuses à traiter, de telle sorte que les particules alpha émises lors de sa désintégration altèrent la cible. La chimie de l'astate étant particulièrement mal connue, l'utilisation de l'astate en médecine nucléaire demeure un réel défi. L'astate se comporte souvent in vivo de façon analogue à l'iode : il a par exemple tendance à s'accumuler au niveau de la thyroïde. D'un point de vue plus chimique, l'astate peut être considéré comme un métalloïde, bien qu'il ait un comportement souvent similaire à celui de l'iode. Le caractère « métallique » de l'astate est illustré, par exemple, par la présence de formes cationiques stables en solution, telles At + et AtO + , ce qui n'est pas observé pour les autres halogènes. Les difficultés liées à la production de l'astate font que des quantités de matière extrêmement faibles sont obtenues, ce qui rend impossible en pratique l'étude des composés de l'astate à l'aide de méthodes spectroscopiques. Il est donc délicat d'identifier et de caractériser de nouvelles espèces de l'astate.

Actuellement, révéler la chimie de base de At constitue un objectif majeur pour différentes équipes de recherche nantaises, notamment du laboratoire SUBATECH (laboratoire de physique SUBAtomique et des TECHnologies associées, UMR 6457, IN2P3/Mines Nantes/Université de Nantes) et du laboratoire CEISAM (Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, Université de Nantes). Des chercheurs du groupe de radiochimie de SUBATECH effectuent des travaux expérimentaux qui visent principalement à mesurer des constantes de d'équilibre pour des réactions qui impliquent des composés de l'astate, l'astate étant lui-même produit au cyclotron ARRONAX (Accélérateur pour la Recherche en Radiochimie et Oncologie à Nantes Atlantique). Les approches calculatoires de la mécanique quantique sont un atout incontestable pour identifier et caractériser les espèces chimiques impliquées dans les équilibres vi singulets de spin. Ensuite, nous avons démontré que leurs contributions majeures corrèlent à la composante à couches fermées de l'état 1  d'AtO +  donc que les états fondamentaux spin-orbite corrèlent avec une des deux composantes de l'état a 2 (celle essentiellement à couches fermées).

Enfin, des calculs d'ordres de liaison effectifs portant sur la liaison chimique dans AtO + ont fait apparaitre des similitudes entre phase gazeuse et solution aqueuse, même si la solvatation diminue le caractère  liant de la liaison tout en augmentant le caractère liant.

Enfin, nous abordons dans le chapitre 6 l'établissement du diagramme de Pourbaix de l'astate en solution aqueuse et en milieu non complexant, c'est à dire le diagramme de spéciation de l'astate en fonction du potentiel de la solution (E) et du pH. Plus précisément, nous avons cherché à identifier l'espèce prédominante de l'astate en milieu basique et oxydant en combinant résultats d'expériences de radiochimie et de calculs quantiques relativistes. Les mesures expérimentales montrent que cette espèce de l'astate porte une seule charge négative et qu'avec l'abaissement du pH de 11 à 5,5, cette espèce se transforme en AtO(OH). En outre, la constante d'équilibre correspondante a été déterminée. Concernant la réaction chimique impliquée, deux hypothèses ont été formulées : soit elle correspond à la réaction de déprotonation de l'espèce AtO(OH), c'est à dire à la formation de l'espèce anionique AtOO -, soit elle correspond à la réaction d'hydrolyse de 

Introduction

In 1940, a research team, hosted by the University of California and formed by D. R.

Corson, K. R. MacKenzie and E. Segrè, reported the identification of a new highly-radioactive element with the atomic number 85. 1 Although the earlier claim of Hulubei and Cachois 2 was not directly refuted at that time, 3 Corson, MacKenzie and Ségre were credited with the discovery of element 85 after the publication of an editorial in Nature by Paneth. 4 The retained name for this element, astatine (At), was derived from the greek astatos (), which means "unstable". 5 At that time, At was the last known element in the halogen's group (XVII) of the periodic table, placed right below iodine and having polonium and radon as its left and right neighbors. Recently, element 117 (eka-astatine) has been added as the lower neighbor of At. 6 So far, around 39 At-isotopes have been identified and characterized. However, all of them are unstable and span a short range of halflife times, between nanoseconds (e.g. 213 At) and 8.1 hours ( 210 At). The natural occurrence of the At radioelement in Earth's crust is a result of radioactive decay of several heavier radionuclides, e.g. 232 Th or 238 U , and does not amount for more than ~30 grams at a given time. Actually, researches involving At require its artificial production in ultra-trace quantities, typically through alphaparticles bombardment of 209 Bi targets, with the help of cyclotron facilities. 7 The low availability of At combined with its high radioactivity and instability has had a significant impact on the process of unraveling its basic chemistry, and finally in identifying eventual economical or societal applications. Nevertheless, 12 years after the discovery of At, Robert Shaffer proposes to use irradiation therapy for the treatment of a human eye epithelial cyst. 8 The need of irradiation with sufficient energy, capable to destroy the thin wounded area close to the iris, as well as with short penetration (to reduce healthy-tissue damage), brought Shaffer's attention to alpha-particle irradiation and so to the newly discovered At element by Corson et al. Schaffer also suggested that 211 At could be a candidate to remove localized tumors, e.g. at the thyroid gland.

It was the beginning of the slow, and yet not achieved, industrialization process of At, through the potentially valuable application of its 211 At isotope in nuclear medicine. 9 structural analysis with standard analytical chemistry tools, or as Wilbur stated, 10 "the invisibility" of this element, has been always detrimental to the process of unraveling its basic chemical properties.

Presently, unraveling the basic chemistry of At constitutes an important milestone for research teams in Nantes, from the SUBATECH and CEISAM laboratories. The radiochemistry team at SUBATECH performs experimental investigations that mainly aim at measuring the equilibrium constants of reactions involving At species and therefore relies on the production of At coming from the ARRONAX cyclotron facility. It is indisputable that computational approaches, based on quantum mechanical principles, are required for identifying the reaction products (natures, structures, stabilities, and physico-chemical properties). For almost a decade, the computational tasks were devoted to the modeling team at CEISAM; more recently researchers from SUBATECH are also involved in this. The combination of such approaches, modeling and experiments, constitutes currently the "golden" strategy employed by the SUBATECH and CEISAM laboratories to study the basic chemistry of At. The present thesis is focused at performing a theoretical study of At and several of its species, using "state-of-the-art" methods of quantum mechanics, in order to:

1. identify stable At species in aqueous solutions with potential use for the radiolabeling;

2. characterize the bonding patterns in these species;

3. establish efficient methodologies which can be used to predict various properties of At compounds.

This monograph is organized in six chapters. Chapter 1 concludes a literature survey in which the radiolabeling protocols used in targeted alpha-therapy with At will be discussed, while the need for theoretical investigations will also be pointed out. Chapter 2 consists in a general presentation of the theoretical methodologies that are used in this work. Chapter 3 aims at establishing efficient theoretical protocols, based on density functional theory (DFT), which can be used to accurately assess the structures and properties of medium to large At-containing systems.

Chapter 4 focuses on the unexpected bonding pattern in the AtF 3 system, which is subject of controversies in the literature due to a rich mysterious interplay between the signatures of At as a heavy element, i.e. relativistic effects, and the pseudo Jahn-Teller effect (PJTE). Chapter 5 presents a "state-of-the-art" theoretical study of the bonding in the gas-phase and hydrated AtO + cation and further rationalizes its observed reactivity in aqueous solution. Chapter 6 tackles the completion of the Pourbaix diagram of At, i.e. the speciation diagram of At in solution as a function of both the potential (E) and pH, which is certainly a "vital" information for radiolabeling. Finally, conclusions and perspectives will be highlighted.

Chapter 1

Literature Survey: The Intriguing Properties of Astatine Compounds

The goal of this chapter is to illustrate how computational studies can actually help in advancing with the current applications envisaged for At and its compounds. Firstly, we will see that there is a strong interest for At in nuclear medicine and, in this context, some recent developments will be highlighted. It will be shown that the release of At for medicinal applications is still problematic and that the actual challenges are related to the unknown basic chemistry of this element. Thus, we will also highlight some recent advances regarding this aspect. Finally, the interest in performing quantum mechanical calculations within the present context will be justified.

The medicinal perspective

The 211 At radionuclide is currently considered to be one of the most suitable sources of radioactivity (-particle emission) in targeted radiotherapy. In the following, a short introduction of radiation therapies is firstly given in order to continue with the principles of targeted radiotherapy and the characteristics that make 211 At a good candidate for this. Finally, trials to label targeting agents with 211 At will be presented.

Radiation for cancer therapy

The recent advances in fundamental researches in chemistry, physics and related areas have brought, within the context of medicine, the battle against cancers to a new era. While classical methods as surgery and standard chemotherapies are still broadly used to treat them, the interest for radiotherapies and targeted-radiotherapies has recently grown. These two alternatives explore the potential of radiation in damaging the genes responsible for cancerous cell division in order to cease the uncontrolled growth of the tumor and ultimately to remove it. The radiation can be delivered to cancer cells in two different ways: a) One way, and is what generally radiotherapies imply, is to apply, essentially to the cancer site, external ionizing radiation.

In this case, the ionization radiation consists either in photon beams, X-rays or -rays, coming from radioactive sources such as 60 Co, 137 Cs, 192 Ir, or 169 Yb, or particle beams most commonly under the form of (i) electron beams generated through Auger emission, internal conversion, -decay etc., (ii) proton beams generated from radioactive sources such as 53 Co, 151 Lu, 147 Tm, and (iii) neutron beams, generated from radioactive sources as 252 Cf, for instance. Choosing among these types of radiations is strongly based on the amount of energy needed to kill the tumor which is dealt with and its location in the body. For instance, electron beam radiation has low energy disposal and short penetration depth, therefore, it is well suited for the treatment of skin cancers. 1 Nevertheless, there are many issues vis-à-vis the use of such external beams to destroy cancer cells in the human body. They are mainly related with the difficulties in focusing them precisely on the cancer locus and their potential of destroying healthy tissues on the penetration pathway and around the targeted cells. The quest of targeting selectively tumoral cells with radiation has brought to a novel way of delivering in situ the radiation.

b)

Another way, which is what generally targeted radiotherapies imply, is the use pharmaceuticals encapsulating specific radioisotopes, i.e. -particle, -particle or Auger-electron emitters, to target and destroy specific cells known to be vital for the tumor development.

Since nowadays the differences between cancer cells and normal ones are well understood, scientists can design radiopharmaceuticals that are selective of the affected cells and therefore avoid the bottlenecks of the use of external ionizing radiation. Therefore, concerning the radiation delivery, targeted radiotherapies are usually considered to be precise techniques. Nevertheless, they do also present a few limitations which will be succinctly discussed in the followings, in the context of a particular targeted radiotherapy, namely the targeted radioimmunotherapy, which is of the widest interest for the 211 At radionuclide.

Targeted radioimmunotherapy

The targeted radioimmunotherapy explores the characteristics of both the immune system and radiation to "fight" against cancer cells. In this framework, antibodies are the best candidates as radioisotope carriers to the tumor. They are known to be used by the immune system to target and inhibit specific antigens located either at the tumor surface or inside it. Several issues regarding the choice of the antibodies must be addressed, (i) their selectivity for the targeted antigens, (ii) the possibility of redirection to healthy organs, (iii) the sparse distribution of the antigens on the tumor, and (iv) the capability of the antibodies to penetrate into the tumor. These issues may not be easy to tackle, and, as such, they bring together chemist researchers whose main tasks are to bring proper chemical modifications to the antibodies in order that they fulfill any particular conditions.

The choice of the radionuclide to be linked to the antibody is very important. There are mainly four criteria on which radionuclides are picked-up, three of which emerging from the above paragraphs:

a) emission type b) energy transfer c) penetration range

The fourth point that comes into play now is in connection with the radioactive decay rate, i.e. the half-life time (t 1/2 ) of the radionuclide. As it is actually inherent to the radionuclide, it must be chosen as not too long since it would pose serious safety problems otherwise, as well as not too short since it should allow enough time for the synthesis and delivery. With respect to the emission type, the labeling with and -emitting radionuclides has received a wide attention. 2 A comparison between the two types of particle emitters in light of the aforementioned four criteria is illustrated in Table 1.1, and advantages and disadvantages of using one over the other are pointed out thereafter.

Table 1.1 and -emitting radionuclides for targeted radiotherapies and their general characteristics.

The radionuclides decaying through -emission are not readily used in targeted radioimmunotherapies since most of them require artificial synthesis using cyclotron facilities, unlike the -emission ones, which are more likely be collected from natural sources. It is possibly the reason why the latter ones show more popularity in the present context. 2,4 The long-range penetration and sparse scattering of the -particles could be advantageous as well as disadvantageous. It is advantageous whenever the targeted tumor is large enough to capture the sparse emission or whenever the distribution of the antigen receptors at its surface is deficient. It is disadvantageous in the sense that it can be as problematic as using for instance external radiation beams, i.e. the difficulty to avoid healthy-tissue damage beyond the targeted cells. Switching to particle emitting radionuclides may be promising given their shorter penetration range, and their high linear energy transfer. Also, the energy deposition starting right at the decay event 3 is considered an asset since it makes possible cell destruction starting at the immediate cancerous cell that is connected to the targeted antigen. The t 1/2 of the currently available -emitting radionuclides is a factor that hinders the development of efficient targeted alpha immunotherapies over the targeted beta immunotherapies. From this perspective, the promising -emitter 90 Y and the emitters 212 Bi or 213 Bi can be compared, just for the sake of exemplifying. While 90 Y has a t 1/2 of 64.1 hours which is therefore sufficient for synthesis and delivery, 212 Bi and 213 Bi have t 1/2 of only 60.0 and 45.7 minutes, respectively.

Considering that the best couples of antibodies and radionuclides have been chosen, the important point yet to be addressed is the linkage between them, i.e. the radiolabeling. This step is strongly dependent on the basic chemistry of the desired radionuclide, and it is of extreme -particle emission -particle emission Typical radionuclides 213 Bi, 212 Bi, 211 At, 225 Starting away from the initial event site 2,3 Half-life times Usually short, from several minutes to several hours Usually long, from several hours to several days importance since the goal is to achieve an antibody-radionuclide complex with adequate in vivo stability. Current radiolabeling protocols usually employ one of the following two strategies:

1. Direct radiolabeling mechanism, i.e. direct linkage of the radionuclide to the antibody. A good example is the straightforward iodination with the 131 I isotope. Using chemical species as for instance iodine monochloride, 131 I can be linked to phenyl rings corresponding to terminal tyrosine groups 5 of antibodies. 2 2. Radiolabeling via a two-step mechanism, i.e. typically by involving an a priori linkage of the radionuclide to a so called bifunctional chelating agent (BFC).

The second mechanism is usually used to label antibodies with radionuclides exhibiting "metallic" character. 2,4 As the name is suggesting, the BFC has a double functionality, (i) through one functional group it retains the metallic radionuclide and (ii) through the other one, it binds to the antibody. It is worth to underline that there is no universal BFC but rather they do have to be designed accordingly to the chemistry of the radionuclide, i.e. its typical coordination number(s), metal-binding character, etc. 2 A good example could be the thiol-containing BFCs that are widely employed for the labeling of antibodies with the almost pure 99m Tc -emitter. Admittedly, radiolabeling involving -emitters are preferential today and govern targeted radioimmunotherapies for small cancer loads or cases where healthy tissues span close proximities.

Dealing with small tumors is actually more frequent today, and it will be even more in the near future due to the development of efficient approaches for cancer identification in its early stages.

The list of the promising-emitters is rather short and includes, among the most studied ones 212 Bi, with the best characteristics for application in targeted alpha-immunotherapy and it has been so far the subject of numerous studies. [7][8][9][10][11][12][13][14] 1.1.3 Production and characteristics of the 211 At radionuclide 211 At is characterized by a t 1/2 of 7.2 hours and it is the second longest-living isotope of At, hierarchically between 209 At and 210 At which have decay times of 5.4 and 8.1 hours, respectively.

Among 209 At, 210 At and 211 At, the latter is the only one envisaged for targeted radioimmunotherapies due to its two favorable decay branches, briefly sketched in Fig. 1.3. On one side, it decays (42%) through -particle emission (5.87 MeV, tissue penetration range: 50 m) to 207 Bi (t 1/2 = 31.6 years) which in turn decays (100%) through electron capture to stable 207 Pb.

Note that through electron capture, a proton-rich nucleus usually absorbs a K-band electron and leads to either X-ray or Auger emissions. On the other side, 211 At decays (58%) through electron capture to its 211 Po (t 1/2 = 0.5 seconds) daughter which in turn decays almost instantaneously (100%) through-particle emission (7.45 MeV, tissue penetration range: 70 m) to stable 207 Pb. As a consequence of the electron capture decay on this second branch, Po K-band X-rays are emitted and offers the great opportunity to detect 211 At via imaging techniques. 15,16 The 211 At isotope can be produced accordingly to the following nuclear reaction:

209 Bi(,2n) 211 At: 4 He 2+ + 209 Bi → 211 At + 2n

In practice, using cyclotron facilities, a metallic 209 Bi surface, usually deposited on an Al backing plate, 9 is bombarded with an incident -particle beam with tuned energy, depending on the desired isotope to be produced. In order to achieve the most and purest quantity of 211 At, it would be desirable to tune the incident beam energy between 20 and 29.5 MeV. 9 211 At can then be isolated in two different ways, i.e. either solvent extraction [17][18][19] or dry distillation. 20,21 The latter is in particular performed by ARRONAX scientists and the procedure consists in the distillation of the 211 At-209 Bi-Al system above 650 o C plus capture of 211 At in methanol. Reported 211 At extraction yields obtained with this procedure reach about 80%.

In summary, the characteristics that make 211 At a promising candidate for targeted alphaimmunotherapy are:

1. Adequate t 1/2 value of 7.2 hours allowing for synthesis and any other required chemical treatments of the radionuclide, as well as being compatible with the kinetics of various biomolecular systems with potential involvement in the radiolabeling. 9,11 2. Pure -particle emission without competing decay mechanisms, with decay branches to suitable daughters. 212 Bi, for instance, is known to decay to 208 Tl (more than 30%) which in turn yields undesirable high-energy -rays. 11 3. Sufficient -particle emission energies, 6.8 MeV in average. 4. High and linear-energy transfer averaging 97 keV•m 1 .

5. Short tissue penetration range up to maximum 70 m. 9,11 6. "Sufficient" X-rays emission, up to 92 keV, allowing for detection using imaging techniques. 11 7. Yet reasonable production cost and straightforward production protocols. 9 8. Diverse chemistry; current radiolabeling protocols involving 211 At explore its both metallic and halogenic characters. 9 Medicinal chemists and oncologists have started to make profit of these good characteristics of 211 At to destroy cancer cells in humans for decades. The current obstacle to overcome in order to reach this goal consists in designing either standalone tumor-selective chelating agents capable of binding 211 At, or BFCs capable of safely binding 211 At. So far, three main strategies have been envisaged for retaining 211 At in compounds of medicinal interest; binding it (i) to a C atom, (ii) to a B atom or (iii) to a metal cation.

211 At-labeling via At-C bonds

Direct astatination of protein carriers.

Since such an approach has been used for successful attachments of radioiodine to the aryl C atoms of terminal tyrosine residues in antibodies, 2,5 direct electrophilic aromatic substitution (EAS) with 211 At + has received wide interest. [22][23][24][25][26][27] However, retaining the 211 At-labeling using this protocol has proven to be problematic: the formed complexes have notably been demonstrated to be highly unstable in vivo, presumably due to the rather weak bond formed between At and C/S atoms. 25 It is actually unclear whether 211 At is attached to C atoms in tyrosine residues (as sketched in Fig. 1.4a) or not, and several studies suggest that it is actually fixed to S atoms of the cysteine residues. Deastatination may proceed via hydrolysis of the formed 211 At-S bond. 27 It became clear that 211 At must rather be attached to antibodies through BFCs. In order to achieve complexes with adequate stability, plenty of targeting agents and BFCs, retaining the radionuclide via an At-C bond have started to be developed. Prior studies 28 focused on measuring bond strengths between halogens and various C atoms have established that At forms stronger bonds with arylic sp 2 ones than with alkylic sp 3 ones. The insertion of 211 At on aryl C atoms has been achieved following either EAS using 211 At + or nucleophilic aromatic substitution (NAS) using 211 At -, following classical protocols that were successfully applied for radioiodine labelings. 10,11,22,29 The synthesis of complexes through EAS with 211 At + has been successfully achieved via demetallation reactions involving for instance organotin precursors. [30][31][32] Interesting compounds obtained likewise include astaobenzylguanidine 32 (MABG, Fig. 1.4b) -a targeting agent that binds selectively to neuroblastoma tumors, and succinimidyl astatobenzoate 31 BFC that has been successfully linked to specific antibodies through the succinimidyl anchor. The labeling of antibodies using SAB is generally achieved through a two-step protocol; in a first step 211 At is linked to the BFC, and in the second step the 211 At-BFC complex is anchored to the antibodies. The synthesis complexes through NAS with 211 At -has been achieved via halogen exchange 33,34 or dediazoniation reactions. 35,36 Interesting compounds obtained through the former procedure include 211 At-labeled methylene blue 33 (Fig. 1.4d) -a targeting agent that binds almost exclusively to melanoma tumors. BFCs for labeling antibodies with radioiodine. Moreover, since the I-B bonds were known to be significantly stronger that the I-C ones, it led to the idea that radioastatinated boron clusters would bring enhanced stability over astato-aryl compounds regarding in vivo dehalogenation. Wilbur and coworkers have started to explore the potential of using boron clusters as BFCs for labeling antibodies with 211 At. 29,[39][40][41][42] As such, they have synthesized plenty of 211 the electron rich boron cage. This makes this radiolabeling approach a one-step approach as the boron cages can be conjugated to antibodies beforehand. et al. [43][44][45] The original idea is to attach an astatide anion to metal cations, which are themselves chelated by BFCs, assuming, as usually done in this field, that At bears similar properties as I. That is, extrapolating from I -, it was hypothesized that At -would have as well soft anion properties and the strongest interactions accordingly to the hard and soft acids and bases (HSAB) theory of 

In vivo stability of 211 At-labeled complexes

The synthesis of 211 At-based complexes with adequate in vivo stability is a very important step for targeted radiotherapy. Yet, most of the 211 At complexes obtained through one of the aforementioned methods, which are nevertheless stable in vitro, are either unstable or showing limited in vivo stability. 8,10,22,40 As a consequence, undesired detection of free 211 At has been reported in healthy spleen, lungs, thyroid, liver, stomach, kidneys, etc., when studies are performed for instance on mice or monkeys. Even though it is not properly confirmed, in most cases it is considered that the released form is astatide, 211 At -, while deastatination causes are either unknown or vary from one labeled agent to another. Some authors consider that deastatination possibly occurs due to the, yet not fully clear, halogenic-metallic dual behavior of At. 48 For instance, 211 At - undergoes in vivo oxidation to 211 At + and the latter is complexed and distributed to unspecific targets. More generally, the cause of deastatination is considered to be the rather weak character of the bond through which 211 At is retained. Binding it to aryl C atoms of the tyrosine residues in antibodies, through direct electrophilic substitution, leads to quite unstable complexes. The synthesis of in vivo stable 211 At-labeled antibodies by using BFCs retaining the radionuclide via a bond with an aryl C atom has culminated with the synthesis of SAB (Fig. 1.4c). While it had shown a priori efficient in vitro and in vivo stability, clinical trials with SAB have been attempted. 49 However the outcomes were unsatisfactory since, to some extent, deastatination had occurred. The fast metabolization may cause the deastatination for small-weight 211 At-labeled biomolecules, 50 and the weak character of the At-C(aryl) bonds can be invoked otherwise. 51 The assumption of D. S.

Wilbur and coworkers that retaining 211 At via an At-B bond would lead to more stable complexes toward in vivo deastatination turned out in practice to be valid. [39][40][41] The synthesis of astatinated closo-decaborate derivatives (Fig. 1.5c) currently corresponds to the milestone of this strategy. 42 Lastly, labeling antibodies with 211 At via BFCs which bind the radionuclide via a soft metal cation is the subject of currently ongoing studies. Nevertheless, initial studies of M. Pruszyński on the stability of the complexes displayed on Fig. 1.6, have shown that in vivo deastatination can still occur to some extent. 44 

Outlook

Unfortunately, targeted radiotherapies involving the various 211 At-agents that were synthesized so far resume to significant in vivo deastatination. Certainly, retaining the radionuclide on the targeting agent through the strongest possible bond may turn out to be a good strategy but probably not a requirement. To succeed in this quest one must understand as much as possible the physico-chemical behavior of At in various molecular contexts and environmental conditions. As explained previously, all the radiolabeling protocols with 211 At are derived from the ones with radioiodine under the assumption that these heavier halogens have similar properties. Given the current failures, this assumption is perhaps unreliable. On the other side, developing 211 At-agents based on the standalone properties of At is currently not possible since, as concluded by D. S.

Wilbur in Nature Chemistry, 7 "in the quest to produce targeted therapeutics for treatment of cancer and other diseases, many of the basic chemical studies with 211 At have unfortunately been set aside." The time has come to carefully pursue investigating basic chemistry of astatine, which may contribute to identify alternative approaches for the development of original 211 At-labeled agents with suitable in vivo stability and pharmacokinetics.

The chemical perspective

At is undoubtedly a member of the halogen group that features both the halogenic and kind of a metallic behavior. From a chemist point of view, the difficulties encountered with the current application envisaged for At may be solved by focusing on the following points:

1. identifying the chemical forms of At that can exist in the experimental conditions used for the labeling, 2. studying as many reactions as possible involving identified species of At, including potential candidates for the labeling, 3. and/or rationalizing reactivity trends by exploring the nature of bonds in which At is involved.

Identifying At chemical forms

Identifying At chemical forms has proven to be a difficult task over the years and gave rise to several antithetic studies. 19,52,53 It deals in particular with establishing the oxidation degrees of At in different environmental conditions, i.e. pH and redox conditions, so that one can proceed in a more straightforward way with the assessment of its reactivity toward other chemical species. (ii) what is their E-pH domain of predominance. For this, analytical chemistry methods able to deliver information on samples containing ultra-trace atomic concentrations of At (10 -8 to 10 -13 molL -1 ), are necessary. Competition and high pressure ion exchange chromatography (HPIEC)

Mapping the predominant

have been the methods of choice for this over the years. 18,19,[54][55][56] Through competition experiments, the distribution of given sets of At species is studied in a biphasic system. If the latter consists of two liquids, then the method is classified as liquid-liquid competition (LLC), while if it consists of a solid and a liquid, then the method is classified as solidliquid competition (SLC). If a change in the experimental conditions causes a change in the At speciation, then the distribution coefficient between the two phases may change. However, if a change in the distribution coefficient is observed, it must indicate a speciation change. In a typical LLC-based experiment 19 aiming at studying the At speciation, a liquid and an organic phase (usually toluene) are initially brought to equilibrium. Then, after the astatine sample is added and the equilibrium partition between the two phases is achieved, the distribution coefficient (D) is calculated as:

aq org org aq    V A D V A (1.1)
where V aq and V org stand for the volumes of the aqueous and organic phases while A aq and A org , for the measured radioactivities in the respective phases.

In a typical HPIEC-based experiment, a buffer (eluent) which contains the desired media and the At sample is injected through a column consisting in a cationic or anionic exchange resin. 54,56 The column is coupled with two types of detectors: (i) an UV detector which produces chromatogram signals due to the elution of the organic or inorganic species present in the eluent, and (ii) a -detector which produces radiochromatogram signals due to the elution of the species that contain only 211 At. Depending on the buffer flow rate and the affinity of the At species formed (let say, species A) in the prepared media, for the exchange resin in the column, the radiochromatogram signal appears after a certain time. This time is defined as the retention time (t R )

of the species A. The data are usually presented in terms of the retention factor (k), which is calculated according to the following relation:

R D D t t k t   (1.2)
where t D corresponds to the dead time, and is defined as the initial time needed for a species to pass through the column while not interacting with it. If changing the conditions during an HPIEC experiment causes changes in the radiochromatogram signal, i.e. in the retention time, then a change in the speciation of At may have occurred. Usually, a plot showing the correlation between the retention factor of the At species and, let say, the concentration of the media in the eluent, 54 is compared with a similar one of a model species (or etalon), e.g. if At -is under study then it can be compared with the one of I -or, if AtO + is under study, then it can be compared with the one of Tl + etc. This strategy can help in determining for instance the charge of the At species under study, which is of crucial importance for species identification.

Competition and HPIEC experiments are complementary and both can be performed in order to retrieve information on the At species charges or on the number of exchanged protons that may occur upon changing the experimental conditions. In most cases, there is a need to perform quantum mechanical calculations in order to help in analyzing the experimental outcomes.

Combining these three methodologies, Champion and coworkers have successfully determined 19,54 parts of the Pourbaix diagram of At in non-complexing aqueous media (see Fig. 1.7). This diagram reveals the "chameleonic" character of At, which bears similarities with lighter halogens as well as having predominant cationic forms, as metals. In strong acidic conditions and in the range of potentials where the water is stable, Champion et. al confirmed 19 that At can have three oxidation states. At first, in reducing conditions, At was found to exist in the oxidation state of -I as At -, in line with the trend shown by other halogens. When the redox potential is increased, two cationic species were thereafter identified and rigorously confirmed to be At + and AtO + , i.e. in which At has the oxidation states of +I and +III, respectively. Toward weak acidic pH domain and while maintaining oxidizing conditions, Champion et al. have identified 54 the presence of a neutral species, starting at pH~2 and spanning the area supposedly up to neutral pH. This species has been consistently proven to be the first hydrolysis product of AtO + , AtO(OH), through the help of quantum mechanical calculations. 54 Increasing the pH toward basic conditions, the At -species is assumed to exist while reducing conditions are maintained. This assumption is made from the analogy with I -, combined with some electromobility experiments 57 that support a negatively charged At species. At -may indeed be this species, but however, it is not yet known if it spans the whole potential range of water stability, in both reducing and oxidizing conditions. Discerning this information is rather important for the current radiolabeling protocols. Indeed, concentrated NaOH solutions are currently the preferred media for the extraction of cyclotron-produced 211 At via "wet chemistry" processes. 42,[58][59][60] But it would not be sufficient to simply consider a basic medium if At - is meant to react via nucleophilic substitution.

Studying reactions involving At species

Assessing the reactivity of At chemical forms toward different chemical species and identifying the reaction products has proven to be a difficult task over the past and recent years. In 1966, E. H. Appleman has reported the first and so far the last study concerning a direct identification of At species through time-of-flight mass spectrometry. 61 Among a few organic compounds, he successfully identified the interhalogen diatomics AtCl, AtBr and AtI, and offered a first solid argument for the existence of At in the oxidation state of +I and its reactivity toward other halogens. More generally, chemists have explored different experimental methodologies in order to obtain indirect proofs of At species participating to chemical reactions. 18,54,55 In the context of the collaboration between the SUBATECH and CEISAM laboratories, identifying if a given At species participates to a chemical reaction is done through the measurement of the reaction equilibrium constant. The identification of the reaction product(s), if there are any uncertainties, is achieved through the comparison of quantum mechanical calculations and experiment outcomes. Champion and coworkers have employed competition experiments to study the distribution of a given At species in a biphasic system, this time as a function of the concentration of a complexing ligand. 55 The reactivity of the cationic forms At + and AtO + has been in particular studied. Briefly, the reactions involving these species would have the form:

1 At(x) X At(x)X m m m m        (1.3)
where At(x) + stands for At + or AtO + , X stands for the ligand and Naturally, the corresponding equilibrium constant, m  , is written as:
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The distribution coefficient in a biphasic system, let say D in the case of an LLC-based experiment, as a function of the ligand concentration [X -], can be expressed as:

0 1 [X ] m m m D D      (1.5)
where D 0 is the distribution coefficient in the absence of any complexing ligand. Following this strategy, Champion et al. have studied reactions in aqueous solutions between the At(x) + species and some inorganic ligands as Cl -, Br -and SCN -, with different 1:1 and 1:2 stoichiometries. 55 The results pointed out that, in the framework of HSAB, metallic At appears to have a soft character. That is, the equilibrium constants were found higher with the Br -and SCN - soft bases than the ones with the Cl -hard base. On the other hand, as the measured m  values have proven to be in good agreement with existing data reported in the literature and with outcomes from quantum mechanical calculations, the possibility of using such competition experiments to study the reactivity of At was established in this work.

In the framework of a previous PhD thesis 62 centered on the further exploration of the "metallic" character of At, F. Bassal has studied the reactivity of AtO + with several model species based on S, O and N heteroatoms. The motivation was quite obvious since (i) the AtO + species may be regarded as a possible candidate for the radiolabeling, and (ii) most of the chelating agents are functionalized using S, O and N heteroatoms. A goal of the study was to identify possible ligands toward which AtO + is reactive and to classify the stability of the formed products. The study has been carried out mainly by means of quantum mechanical calculations, following previously established procedures. Nevertheless, when available, the comparison with the experimental data has shown a very good agreement. It was identified that AtO + reacts as an electrophile and binds in the most stable complexes (i) through its At atom with acyclic O-or N-based species, (ii) through its O atom with acyclic S-based species, and (iii) through its O atom with S, O and N aromatic heterocycles. Notably, weak interactions have been obtained for neutral O-based ligands, pointing out the least interest of using them as potential targeting agents or BFCs in eventual labelings with AtO + . On the other side, the greater stability constants were obtained notably for the reactions between AtO + and N-based aromatic heterocycles. In such cases, the charge delocalization seems to play an important role and enhance the stability of the species formed with AtO + . These findings show that AtO + follows the trend of At + which forms as well much more stable At-C(aryl) bonds than At-C(alkyl) ones. 63,64 Given the interest of D. S. Wilbur and coworkers in attaching At to B atoms, F. Bassal has studied as well the reactivity of AtO + toward various boron clusters, assuming that the reaction proceeds through electrophilic addition, i.e. without the elimination of a proton. Studying a series of closo-carborates and closo-borates, he has reported that AtO + binds covalently, through the O atom, to the most nucleophilic B atoms of the clusters, leading a priori to very stable complexes. Some calculated addition equilibrium constants related to such kind of reactions, i.e. between AtO + and boron clusters, were reported to reach even 10 20 . This may seem to be in line with the assumption of Wilbur and coworkers that At or At species may have a greater affinity for B than for C atoms. 40,63 F. Bassal suggests that the less aromatic closo-borate derivatives are the ones that tend to form the most stable complexes, and they could be explored as potential targeting agents or BFCs in eventual labelings involving AtO + .

Outlook: studying bonding schemes involving the At atom?

Clearly, to help the development of innovative 211 At-agents with suitable in vivo stability, there is an interest in acquiring knowledge on the At reactivity. Studying reactions of At or At species with as many chemical species as possible and quantifying the stability of the eventually formed complexes could lead to the derivation of useful trends and rationales. Nevertheless there are constraints in proceeding in this way. On one side, the direct identification of reaction products containing At, using standard spectroscopic tools, as nuclear magnetic resonance, or spectrometry tools, as mass spectrometry, is definitely not possible (experimental samples contain only ultra-trace concentrations of At, usually about 10 -10 molL -1 ). On the other side, there are only a few cyclotrons in the world having the beam capacities for producing At, i.e. accelerating incident -beams up to ~30 MeV. In a study made by M. R. Zalutsky and M. Pruszynski, 9 the number of such cyclotrons is meant to be about 36, out of which about 10 of them produce At on a routine basis. Competition and HPIEC experiments can be used to retrieve useful indirect information concerning the formation of At species and their stabilities. However, in some cases the outcomes can suffer from large uncertainties and sometimes the information complies with more than a single hypothesis making the analysis somehow ambiguous if not impossible.

Alternatively, predicting reactivity trends may be possible by understanding the nature of the chemical bonds formed by At in various molecular contexts. However, based only on the currently available experimental data, not only that the bonding schemes in which At is involved cannot be rationalized, but it seems that we also do not have a reasonable chemical intuition.

Clearly, there is a need for predictive calculations, not only for the identification of adducts of reactions between ligands and stable chemical forms of At. It is possible to distinguish the different contributions that rule the formation of bonds involving At by means of quantum mechanical studies, which definitely play an important role in the field of At chemistry.

The quantum chemical perspective

Theoretical calculations based on quantum mechanical principles are nowadays performed almost routinely by computational chemists to understand, rationalize and even predict various properties concerning atoms, molecules and chemical reactions. From a quantum mechanical perspective, At is regarded as a heavy main-group element and its computational treatment requires the inclusion of relativistic effects, in particular the scalar relativistic ones and the so-called spinorbit coupling (SOC). The former ones essentially cause corrections to the one-electron energies due to the mass-velocity dependence of electrons spinning close to heavy nuclei. They typically lead to the contraction and the stabilization of the s and p atomic orbitals and the expansion and destabilization of the d and f ones. The latter one, SOC, causes of course further energy corrections and also changes in the ground-state wave function due to the effective interaction between the spin of the electrons and the magnetic field induced by their motion around the nuclei. Many computational methodologies have been developed in order to deal with relativistic effects through one way or another, and they will be discussed in details in the next chapter.

In the context of At research computational studies are particularly attractive as they may help in interpreting experimental data and also lead to reasonable predictions. Performing such studies on At species is certainly not routine owing (i) to peculiarities in their electronic structures arising from relativistic effects, (ii) to bottlenecks in the current computational strategies that can deal efficiently with the various electronic and environmental effects, i.e. relativistic effects, electron correlation, solvation etc., and (iii) to some extent, the lack of experimental data and reference high-level theoretical results to validate the choice of an employed computational strategy. A computational chemist must understand a priori the basic signatures of At species electronic structures in order to select appropriate levels of theory to study bonding schemes in which the At atom is involved, or to predict relevant observables in the context of experimental investigations.

Electronic structure signatures of At compounds

The electronic structure of atomic At spans 85 electrons up to the 6p shell,

[Xe]4f 14 5d 10 6s 2 6p 5 , and corresponds to a spin-doublet ground-state multiplicity, 2 P, in the spin-orbit free (SOF) formalism. Relativistic effects are known to cause significant changes. Regarding the valence shells, the scalar relativistic ones over-stabilize and contract the 6s orbital of At, making it kind of semi-core orbital. For some neighboring elements of At, e.g. Hg, Tl or Pb, the 6s stabilization is so strong that it becomes inert, causing in this way unexpected chemistries. 65,66 Due to SOC, the valence 6p shell of At splits into two spinors, denoted accordingly to the total angular momentum as 6p 1/2 and 6p 3/2 . Accordingly, the fine electronic structure of the 6p shell reads the non-degenerate 2 P 3/2 and the 2 P 1/2 terms, the former one actually corresponding to the SOC groundstate of At. The 2 P 1/2 ← 2 P 3/2 zero-field splitting has yet not been determined through experiment while theoretical calculations predict large values between 2.45 and 2.89 eV, depending on the level of theory that is employed (2.89 eV being considered as a "reference" value). 67 The first ionization potential of At (IP 1 ) is 9.32 eV, as recently measured by Rothe and coworkers. 68 On the other side, the electron affinity of At (EA) has yet not been measured through experiment while computational studies predict values between 2.20 and 3.21 eV. [69][70][71][72] This unknown variable hinders the proper definition of the electronegativity (χ) of this element, which currently is assumed to be similar (or even smaller than) the one of H, i.e. 2.2 on the revised Pauling scale. 73 

Characteristics of the chemical bond involving the At atom

Not much is known on the bonding schemes involving At. Over the years, only a few of its species have been deeply studied so far, e.g. HAt and At 2 . The interest of computational chemists for them was mainly to study the influence of relativistic effects in heavy-atom systems, or to test new developments in various relativistic codes. While these two systems put forth the proclivity of At for certain bonding types, they deserve being quoted here in some detail. In both systems, relativistic effects have proven to tremendously affect the bonding pictures. While bond contractions occur in many heavy-atom systems (due to the relativistic contraction of the s and p 1/2 valence shells), 66 bond expansions occur in both the HAt and At 2 systems, meaning that relativistic effects weaken the chemical bond. Admittedly, a dominant contribution to this behavior is brought by SOC, which turns out to be as much as important as the electron correlation, or even more. 55,67,[START_REF] Pilmé | in the context of quasirelativistic quantum calculations[END_REF] Pioneering works of Gomes et al. [START_REF] Gomes | [END_REF] and Saue et al. [START_REF] Saue | bonding of heavy and superheavy hydrogen halides[END_REF] on HAt, have proven that the equilibrium bond length (r e ) is shortened by about 0.022 Å under scalar relativistic effects, while it lengthens by about 0.029 Å under the effect of SOC. The trend in these numbers is understood as (i) the 6p and the 6s atomic orbitals of At contract under the scalar relativistic effects, and allow the 1s orbital of H to approach much closer, and (ii) the  * antibonding orbital mixes under the effect of SOC with the nonbonding  orbitals of At which causes a bond lengthening. The case of At 2 is much more spectacular than the one of HAt. Pioneering work on this system has been reported by Visscher and Dyall in the 90's. They have analyzed the influence of relativistic effects in the halogen diatomics, [START_REF] Visscher | and correlation effects on molecular properties[END_REF] and found that they manifest by strongly destabilizing the chemical bond in At 2 . Surprisingly, in this system they cause an r e lengthening of about 5%, reduction of the  e by about 40% and reduction of the D e by about 200%, which is actually more than the value of the D e itself. The role of relativistic effects on the bond destabilization in At 2 has been well rationalized from complementary viewpoints over the years. The latest explanation has been built around the concept of the effective bond-order (EBO), arising from spin-orbit coupled multiconfigurational wavefunctions. 67 In the scalar relativistic limit, it was found that the ground-state wave-function of At 2 is essentially described by the  g 2  u 4  g *4  u *0 configuration, the bond order (BO) of such configuration being 1. Under the effect of SOC, it turned out that this ground-state configuration is mixed with excited ones having less  bonding character, in particular the  g 2  u 3  g *4  u *1 ones (BO = 0). This mixing leads in At 2 to a SOC ground-state that is less bonding (EBO ~ 0.7) than in the single reference, scalar relativistic limit.

The bond in HAt has been described by Saue et al. as having covalent character based on the nearly zero calculated dipole moment (0.06 D), with a slightly negatively charged H atom. [START_REF] Saue | bonding of heavy and superheavy hydrogen halides[END_REF] More recently, the covalent character of the bond in HAt has been confirmed by Pilmé and coworkers using the quantum theory of atoms in molecules (QTAIM) and the topological analysis of the electronic localization function (ELF). [START_REF] Pilmé | in the context of quasirelativistic quantum calculations[END_REF] They have questioned as well the covalent character of the chemical bond in At 2 . [START_REF] Pilmé | in the context of quasirelativistic quantum calculations[END_REF][START_REF] Pilmé | the ELF topological analysis in the field of quasirelativistic quantum calculations[END_REF] The authors have identified that the electron occupancy of the bonding basin is nearly one electron in the absence of SOC. Under the effect of SOC, its occupancy drops to about half an electron putting forth again the tremendous impact of this relativistic effect on the chemical bonding in At 2 . In fact, while the occupancy of the bonding basin is decreased by SOC, the authors have identified that the  population of the non-bonding basins of the two At atoms is increased. That is, accordingly to their results, SOC weakens the chemical bond in At 2 by withdrawing electronic population from the bonding basin and redistributing it among the valence  system in lone pair regions. Based on the trend shown by the inferior homonuclear dihalogens and some computed properties at the bond critical point (depleted density, small and positive density Laplacian), Pilmé and coworkers argued for the charge-shift (CS) bonding type in At 2 . That is, the bond energy in At 2 is governed by the fluctuation of the electron pair density between the two limit ionic forms.

While investigating several other types of bonds involving At, Pilmé and coworkers found that the same CS type of bonding appears in the AtX (X = Cl, Br, and I) species and to some extent in the At-CH 3 one, but not for instance in the aforementioned AtH species or the At-BH 2 one which were found to be characterized by covalent bonding. [START_REF] Pilmé | in the context of quasirelativistic quantum calculations[END_REF] Studying the bonding schemes involving At and C-or B-containing molecules is actually important for the labeling process. But the sole study of the At-BH 2 and At-CH 3 systems does not allow drawing general conclusions. 63,64 Definitely, there is a need for further theoretical investigations in this context.

Describing the bonding schemes involving At certainly requires theoretical methods beyond Hartree-Fock (HF). Perhaps, most desirable is to use (approximate) relativistic DFT due to its computational expediency and implicit inclusion of electron correlation. This methodology has been so far successfully applied to investigate At species and actually favored "ground-breaking"

advancements on the research of the basic chemistry of At. 19,55,[START_REF] Pilmé | in the context of quasirelativistic quantum calculations[END_REF][START_REF] Pilmé | the ELF topological analysis in the field of quasirelativistic quantum calculations[END_REF] However, its application is limited to At species that feature essentially single configurational ground-states. Using two-step multiconfigurational methods to study bonding schemes involving At shows some conveniences.

Beside that they can obviously deal with the eventual multiconfigurational character of the studied electronic states, while including adjustable amounts of electron correlation, they provide a picture of the bonding scheme in terms of a set of SOF states. These states can be coupled a posteriori in a cost-effective fashion via a SOC operator to account for the effects of SOC. This obviously supplies the computational chemist with a SOC bonding scheme which can be easily expressed in terms of the SOF one, by just interpreting the SOC-perturbed wave functions. Moreover, distinguishing between the influence of electron correlation and SOC on the chemical bond becomes easy since these effects are treated in two different steps. The bonding scheme in At 2 has been investigated using such a methodology. 67 The SOC has been shown to reduce the covalent character of the chemical bond to a significantly much more extent than electron correlation, putting forth the fact that this effect can indeed play a much more important role on the chemical bonding involving At.

It is therefore of an extreme importance to treat both electron correlation and relativistic effects at adequate levels of theory in order to address correctly the bonding schemes and other properties of At systems.

Outlook: quantum mechanical calculations for research on At compounds

Trials to destroy cancer cells with currently synthesized 211 At-agents are not yet fully satisfactory, on one hand due to the weak character of the bond through which At is retained and on the other hand due to the limited knowledge of the basic chemistry of At and the reactivity of its species. Undoubtedly, with quantum mechanical calculations we are able to unravel bonding patterns that involve the At atom in different molecular contexts. This would certainly help medicinal chemist to design new and ground-breaking 211 At-agents that retain the radionuclide through a bond having adequate stability. Moreover, the knowledge on the bonding schemes involving At or At-species that can exist in given conditions would certainly help. In the above paragraphs it has been shown that computational studies can provide insights in both aspects.

Chapter 2

Theory and Methods

In molecular quantum mechanics, the derivation of the electronic energy and molecular properties for a chemical system requires the knowledge of the wave function or, at least, of the electron density associated with a particular quantum state. Depending on which quantity is sought, a quantum mechanical calculation classifies as wave-function-based or electron-density-based calculation. Building exact wave functions or electron densities is highly desirable, but it is limited in practice to only one-electron systems. While "real life" chemistry goes far beyond that, several models that allow the construction of approximate wave functions and electron densities have been developed over the years. These models gather several approximations in a hierarchy of levels of theories of increasing sophistication and accuracy. In practice, there is no better model than another for all purposes, and the successful application of a particular one strongly depends on the physics of the studied system. Since assuredly we live in a relativistic world, the models should be in principle relativistic. That is, they must somehow comply with both Schrodinger's nonrelativistic quantum mechanics and Einstein's special relativity. Depending mostly on the studied system and property, relativity may play a trifling role and it can be neglected in a branch of approximated nonrelativistic models. If it does not, a relativistic model must be used. If differences appear in a quantity calculated with a relativistic and a nonrelativistic model, given that the two models differ only in the treatment of relativity, these differences are then qualified as relativistic effects. Such effects can be differentiated only in the abstract world of relativistic quantum mechanics, while in reality no such distinction can be made and even less measured.

In the present chapter, an introduction to the quantum mechanical approaches used throughout the present manuscript is given. When necessary, additional methods are also discussed in order to give an overview of alternative methods that could be employed to solve a given problem. Since compact mathematical description of the various nonrelativistic and relativistic models can be found elsewhere, [1][2][3][4] only a few representative equations will be here reported for the sake of clarity.

Electronic structure wave-function-based methods

The simplest approximation to a "true" wave function is a single Slater determinant while more complex ones consist of variationally optimized spin-and symmetry-adapted linear combinations of them:
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A Slater determinant itself is an antisymmetric product of one-electron orbitals. Desirable is that the Slater determinants are constructed from orbitals that form a complete one-electron basis and that the expansion in Eq. 2.1 includes all determinants that arise from this basis in the N-electron Fock space. Since these spaces should be in principle of infinite size, in practice both the one-electron basis and the determinant expansion must be truncated in a decent way. Wave functions expressed in terms of Slater determinants are sought as eigenfunctions of the nonrelativistic molecular electronic Hamiltonian which, in the light of the Born-Oppenheimer approximation, can shortly be expressed as:

nn nn 1 ˆˆ2         pq pq pqrs pqrs pq pqrs H h g h h E g e h (2.2)
where ĥ and ĝ are monoelectronic and bielectronic operators, pq E and pqrs e are the corresponding one ( † p q a a ) and two-electron ( † † p q r s a a a a ) shift operators, and nn h is a scalar quantity corresponding to the nuclear-repulsion energy. 1 Assuming that the bielectronic contributions are negligible, an approximate wave function and associated eigenvalue for the Hamiltonian shown in Eq. 2.2 can be simply obtained by diagonalizing its monoelectronic part in a given one-electron basis. It is of course far from being sufficient but this may actually be used as a trial wave function. The HF model is one of the simplest models than can provide a wave function while dealing with the bielectronic interactions in an elegant and effective fashion.

Hartree-Fock

The HF wave function is fundamental in ab initio electronic structure theory and constitutes the zero-order wave function for a wide range of more accurate quantum mechanical models. It can be constructed by constraining it to be an eigenfunction of the total and projected spin -the basis of spin-restricted HF (RHF) theory, or not -the basis of spin-unrestricted HF (UHF) theory. In RHF theory, the spin adaption is obtained ad hoc by forcing the  and spinorbitals to have the same spatial parts and one-electron energies two-by-two while the wave function is constructed as a fixed linear expansion of Slater determinants (only one for closed-shell species). Additionally, the symmetry adaption of the RHF wave function is obtained by enforcing the spatial parts to transform accordingly to the appropriate irreducible representations of the molecular point group. Note that anyway, even if the symmetry is not imposed, the obtained solutions essentially fulfill symmetry requirements (up to numerical accuracy at least). All these requirements may be lifted in the UHF theory and operating with such wave functions is usually less "comfortable" than with the RHF ones. Generally speaking, the UHF wave function is always chosen to be a single Slater determinant while, the RHF one, usually a single (spin-and symmetryadapted) configuration state function (CSF) which is expressed as a fixed expansion of Slater determinants which usually belong to the same orbital configuration. Considering a closed-shell system, such a RHF-like wave function can be written as: † † CSF vac
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where the product in the parenthesis corresponds to the core creation operator that doubly-occupies a set of i orbitals from the vacuum state, with  and  electrons. Starting from Eq. 2. and the two terms in the summation correspond to the Coulomb and exchange interactions. 1 The diagonalization of the Fock matrix yields the canonical orbitals and their energies. In practice, the HF equations are solved self-consistently, i.e. in an iterative process: a set of trial orthogonal orbitals are used to construct a Fock matrix whose diagonalization would yield a new set of orbitals.

This process is repeated until the old and new orbitals produced by the diagonalization are similar and/or the total HF energy is converged. In practice, one wants to avoid this procedure since it requires an expensive transformation step of the bielectronic integrals in the orbital basis. The Roothan-Hall procedure overcomes this step. 5,6 In a molecular context, the orbitals (MOs) are expanded in a linear combination of usually nuclear centered Gaussian atomic orbitals (AOs), whose coefficients are used as variational parameters. The Fock matrix is built from its elements expressed in such an AO basis, and used to solve iteratively the Roothan-Hall equations:
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where C is a vector of AO coefficients, ε is a diagonal matrix containing the orbital energies on the diagonal, and S is the AO overlap matrix. Solving Eq. 2.8 is routinely done even for quite large chemical systems, and yields the HF wave function and energy.

The HF model is currently mostly used for qualitative studies rather than quantitative, and sometimes not even for this, depending on the property and system under study. The reasons rely strongly on the single determinental/configurational approximation to the "true" wave function, and where two or more determinants may happen to interact, i.e. as for instance when (near-) degeneracies between electronic configurations/states occur, the stabilization energy results from the so-called static electron correlation. Since the HF wave function only spans a single determinant, the static electron correlation is by construction neglected. In theory, one cannot distinguish between static and dynamic correlation in "real" situations. In practice, quite often static electron correlation is seen as arising from limited Slater determinant expansions, while the dynamic electron correlation is seen as occurring beyond that. Generally, the electron correlation is introduced starting from the HF solution, with post-HF methods as Møller-Plesset (MP) perturbation theory, 7 coupled-cluster (CC) 1,8 or configuration-interaction (CI). 9

Møller-Plesset perturbation theory

Starting from a HF solution, (single reference) MP perturbation theory can be used to account for dynamic correlation. In cases where static correlation does not manifest strongly, the derived approximate methods can give a reasonable estimation of the true total energy. In MP perturbation theory, the Fock operator (Eq. 2.6), which is diagonal in the canonical HF orbital basis, is considered as the zeroth-order Hamiltonian. The orthonormal set of states which are eigenfunctions of the Fock operator, i.e. the HF determinant and all singly, doubly etc. excited determinants with respect to the HF one are taken as the zeroth-order states. The perturbation is constituted by the so-called fluctuation potential (  ), which is defined as the difference between the Coulomb bielectronic term ( ĝ ) of the true Hamiltonian (see Eq. 2.2) and its approximated version within the Fock operator, i.e. the one-electron mean-field Fock potential:
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It is easily seen that the physical interpretation of  is the degree of electron fluctuation aside from the mean-field picture (assumed within the HF formalism). By applying perturbation theory to zeroth-order in  , one obtains the zeroth-order MP energy which is the sum of the occupied HF spinorbital energies. Further proceeding to first order in  leads to the first order MP energy correction, which is in practice a necessary ingredient to calculate the HF energy. Electron correlation is introduced when perturbation theory is applied to second and higher orders in  .

Applying perturbation theory only to second-order in  is often sufficient, and may recover up to 99% of the correlation energy in cases where the HF state is a good zeroth-order approximation of the true wave function. This is the basis of the so-called MP2 method: Møller-Plesset perturbation theory at second order. The MP2 energy is then the summation of the HF energy and the second order MP correction. Of course, this simplistic approach may prove to be insufficient in many cases and more sophisticated approaches are required.

Configuration interaction

If static electron correlation manifests strongly then MP perturbation theory is not suitable 
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where A, B, etc., are virtual orbitals, I, J, etc., are occupied orbitals, and this given basis set, or the electron correlation is extrapolated at the basis set limit.

Although FCI yields the exact eigenfunctions and eigenvalues of the true nonrelativistic Hamiltonian, it can rarely be applied to systems that bear more than few atoms. The reasoning is based on the intractable expansion of determinants in Eq. 2.10, than can easily reach beyond billions with the increasing number of electrons and orbitals. While certainly not all determinants play an important role for the property of the system under study, it may be wise to truncate the CI expansion (with respect to FCI). This leads to truncated CI, and, depending on the truncation threshold, it can bear the name of CIS (only up to the singly excited determinants are retained in the wave function), CISD (up to the doubly excited determinants are retained in the wave function) and so on. Increasing the truncation threshold, the convergence to the FCI result will slowly be achieved. Furthermore, such truncated CI wave functions lack size-extensivity and size-consistency, and the resulting energies may not make much sense, although they can be corrected. 10,11 Such a behavior of truncated CI results from the linear parameterization of the CI wave function (Eq. 2.10).

Also, any truncated CI suffers from the dependence with respect to the reference orbitals.

Alternatively, CC is based on a different type of wave function parameterization which ensures both size-consistency and size-extensivity, while improving in principle the description of the correlation energy.

Coupled Cluster

While the HF wave function can be considered as a good zeroth-order approximation to the FCI one, it is also the case for CC in many cases. CC is often thought as the golden standard to compute correlation energies. The CC correlated wave function reads a product of configurations, nonetheless similar to the linear FCI expansion, and is written usually using an exponential ansatz:

1 2 CC † † † HF ˆT T 1 exp 4 A A B I A I IJ A B I J AI ABIJ t a a t a a a a                          (2.12)
where A, B etc. are occupied orbitals in the HF state, I, J, etc. are virtual ones, and T , CC with single, double and triple electronic excitations (CCSDT) when T is truncated at the level of 3 T , etc. The CCSDT method has been proven in many case to be a sufficient level of truncation, and is currently considered for essentially single-reference states as the "golden standard" method of quantum mechanics. Note that more popular is the CCSD(T) method which is a slight approximation to CCSDT but which leads quite often to more accurate results based on error cancelations. In this case, the parenthesis T means that the contributions of some triple excitations are accounted for by means of perturbation theory.

The CC equations resume at solving a set of non-linear equations for the CC amplitudes.

Proceeding with the variational principle, i.e. solving self-consistently a set of CC equations under the form of Eq. 2.11 turned out to be impractical and the CC theory is thus regarded as a nonvariational method. 1 In turn, the CC wave function and energy are obtained by a series of projections of a Schrödinger-like equation, where the wave function is in the CC form, onto the HF state and onto the set of states spanned by the excited configurations generated by T . 1 So far, only single-reference approaches have been mentioned. Naturally, perturbation theory, CI and CC can be formulated for multiconfigurational states, and such extensions will be discussed in forthcoming subsections.

Multiconfigurational self-consistent-field

The multiconfigurational self-consistent-field (MCSCF) theory can be seen as an elegant solution to the bottlenecks of FCI and truncated CI. That is, it can deal with the multiconfigurational character of electronic states, it limits the CI expansion, and it can be considered as size-extensive and size-consistent. The idea of MCSCF consists in wisely selecting a set of determinants/CSFs to be included meanwhile both the CI coefficients and MCSCF orbitals are variationally optimized. In practice, several schemes have been developed on the past decades to limit the user intervention for selecting the CI space. Most of the schemes rely on selecting an orbital window, comprising both occupied and virtual orbitals, in which the CI is performed. This orbital window is called the active space (of electrons and orbitals). The later should be defined such that the distribution of the active electrons within the active orbitals gives rise to determinants/CSFs in the MCSCF wave function that dominate the FCI one. The MCSCF wave function can be written as: MCSCF êxp( )

i i C i      (2.13)
It is variationally optimized by minimizing the expectation value of the energy with respect to two sets of variational parameters: the i C expansion coefficients and the non-redundant orbital rotation parameters of  :

MCSCF MCSCF MCSCF MCSCF MCSCF , min C H E       (2.14)
In contrast to truncated CI, both the expansion coefficients and the orbitals are hence optimized in the MCSCF theory, which, provided that the active space is properly chosen, means that at least a good zeroth-order wave function is obtained for any subsequent treatment. A particular and very popular MCSCF method is the complete active space self-consistent-field (CASSCF) one. 12,13 In CASSCF, the orbitals are split in three categories, (i) the inactive orbitals, which are always doubly occupied in all determinants/CSFs, (ii) the active orbitals which can have all possible occupations (the active or CAS space), and (iii) the virtual orbitals (or secondary orbitals) that are always unoccupied in all determinants/CSFs. Since a FCI calculation is performed within the CAS space, the latter must be limited in size for practical reasons. The dimensions of the CAS space is usually defined through the notation CASSCF(m, n), where m represents the number of active electrons that are distributed among the n active orbitals. To account properly for the electron correlation, the CAS space should be as large as possible; desirable is the full valence space. Nevertheless, even for small systems, the full valence space can be quite large and hence it must be restricted. Using reasonable one-electron basis, routine CASSCF calculations can today be carried out with CAS spaces comprising up to about 16 electrons in 16 orbitals. Only a limited CI expansion can arise from such a CAS space, the electron correlation which is accounted for in CASSCF is then mostly static electron correlation, although a clear distinction between static and dynamic correlation is problematic at this level. Nevertheless, multireference post-CASSCF methods as multireference perturbation theory (MRPT) or multireference configuration interaction (MRCI) can be used in order to recover an important part of the missed dynamic electron correlation.

Post-MCSCF perturbation theory

MRPT can be seen as an extension to single-reference MP perturbation theory, which is applicable to multiconfigurational zeroth-order wave functions. Various MRPT methods are available, among which the complete active space perturbation theory at second order (CASPT2) 14 and the N-electron valence state perturbation theory at second order (NEVPT2), 15 are worth mentioning. Both of them are applicable to CASSCF wave functions and account for the effect of perturber functions, defined as CSFs "external" to the CAS space, to the CASSCF energy and wave function. While CASPT2 and NEVPT2 implementations may differ in the choice and treatment of such perturber functions, the essential difference between them is actually the zeroth-order

Hamiltonian. Like in single reference MP theory, the zeroth-order Hamiltonian in CASPT2 is of monoelectronic Fock type, modified in such a way that the CASSCF wave function becomes its eigenfunction, and that in the limit of a vanishing CAS space in CASSCF, it reduces to the standard Fock operator used in MP theory. However, such a choice leads frequently to "intruder states", and procedures are often invoked in practice to avoid this behavior. 16 The Dyall's Hamiltonian was proven to be an alternative to the "faulty" monoelectronic Fock-type Hamiltonian used in CASPT2, and it is used as the zeroth-order one in NEVPT2. 17 According to the partition of the orbitals in CASSCF, the Dyall's Hamiltonian is a summation of a monoelectronic part, diagonal in the canonical inactive and virtual orbital spaces, and a bielectronic part operating only in the CAS space, that accounts for bielectronic interactions between the active electrons. The use of such a zeroth-order Hamiltonian generally prevents the occurrence of intruder states, but it renders the NEVPT2 energy to be more dependent on the choice of the CAS space than the CASPT2 one(s). 18 So far, three types of NEVPT2 approaches have been formulated, classified accordingly to the contraction pattern of the perturber functions: uncontracted (UC), partially contracted (PC) and strongly contracted (SC). The SC-NEVTP2 approach 19 is the default one in most quantummechanical codes, and the one here retained. In this approach, the contraction scheme considers a single perturber function from each of the eight possible categories: singly-and doubly-excited CSFs with up to 2 electrons promoted to/withdrawn from the active space. One should note that using such post-CASSCF perturbation theory schemes is perhaps the most comfortable way of accounting for the dynamic electron correlation, provided that the reference space is large enough.

Nevertheless, post-CASSCF variational schemes as MRCI can also be used for this purpose, and are particularly recommended for specific applications.

Multireference configuration interaction

MRCI is a post-CASSCF variational method that accounts for dynamic electron correlation  , two different contraction schemes have been designed: they can be externally contracted, with the contraction pattern handled with perturbation theory, 21,22 or internally contracted, 20 where they are expanded in term of the internal states. Of course, MRCI suffers from the same pitfalls as truncated CI. Therefore, such methods must be handled with care. Size-consistency corrections exist, 11 and some MRCI schemes are considered as the state-of-the-art to compute magnetic coupling constants. 23

Multireference coupled cluster

CC theory in its standard formulation works on a single-configurational reference state, while extensions to multiconfigurational ones have been made available but are yet hardly applicable. [24][25][26] We wish not to detail on the formalism of such approaches, but notice that multireference CC methods that grow in popularity nowadays are the so called Fock space coupled cluster method (FSCC), and the intermediate Hamiltonian FSCC (IHFSCC) one. [25][26][27] Notably, a relativistic formulation of IHFSCC has been used to accurately determine various spectroscopic parameters of At and At species. 28,29

Density functional theory methods

The electron density and the Hohenberg-Kohn theorems

DFT is in itself an ab intio complex theory, and a machinery to address the complicated electronic structure of atoms and molecules. It arose as a necessity to maintain in practice the simplicity of the HF theory, while attempting to deliver a correct picture of many-electron problems. DFT does not rely on the knowledge of the wave function, which is a complicated function of the electron spatial and spin coordinates, but rather on the total one-electron density, ( )

 r , which resumes to a function of only three spatial coordinates:

  2 1 2 2 ( ) , , , N N N       r x x x x x d d d    (2.16)
In Eq. 2.16, N corresponds to the total number of electrons, denotes the arbitrary spin of electron one, and the x i map the spin and spatial coordinates of the remaining N-1 electrons. From Eq. 2.16

one can deduce the total number of electrons, N, by simply integrating out ( )  r over the whole space. The total (ground-state) energy is sought as the eigenvalue of a Hamiltonian characterizing the motion of the electrons in an external potential ( v ) exerted by the clamped nuclei:

  [ ] | E v T W v         (2.17)
where T and W are the kinetic energy and the electron-electron repulsion energy, respectively,   corresponds to the wave function issued by the ground-state density ( 0   and integrates out to the total number of electron), and the last term is an integral corresponding to the interaction between the electron density and the external potential. The biunivocal relationship between  and v is fundamental in DFT, and has been exposed by Hohenberg and Kohn in 1964. 30 Through reduction to absurd, they have shown that the exact electron density of a ground-state determines the external

potential up to a constant ( v c     ).
Hence, this density uniquely determines the Hamiltonian and its knowledge is a freeway to any property of interest. In a subsequent theorem, 30 Hohenberg and Kohn have shown that the ground-state energy of a system can be obtained variationally by minimizing the expression in Eq. 2.17 over all valid densities:

        HK min | E v F v      (2.18) 
where   HK F  is known as the Hohenberg-Kohn functional, and corresponds to the first term of the right hand side (RHS) of Eq. 2.17. The form of this "exact" functional is unknown and many approximations have been developed on the last decades.

The Thomas-Fermi model, the local-density approximation and the density gradient

In 1927, well before Hohenberg and Kohn's work, Thomas and Fermi (TF) have proposed a density functional derived from a non-interacting uniform electron gas (UEG). 31,32 This functional takes into account the kinetic energy for such a system, obtained by applying locally the UEG expression for the kinetic energy (which is referred to as a local density approximation, LDA), while the electron-electron interaction has been accounted for in a HF-like fashion by ignoring the exchange-correlation hole (self-interacting density):

      5 1 2 3 1 2 12 ( ) ( ) 1 2.87 ( ) ( ) 2 F T J d r             r r r r r r TF TF d d (2.19)
In 1930, Dirac has revised this functional by accounting for the exchange Fermi-hole. 33 Dirac has added to the expression in Eq. 2.19 a term, 

        F T J K        TFD TF D (2.20)
Both the TF and TFD models were unsuccessful since they are not able to predict atomicshell structure and bonding in molecules. 34 This faulty behavior comes from the poor description of the kinetic energy, associated with the LDA. In order to improve the description, the gradient of the density can be used, which has led to various gradient-expansion approximations. A popular one has been proposed by von Weizsäcker, known as von Weizsäcker kinetic energy, 35 which was able to predict bonding in molecules when added to the TFD model.

From non-interacting to interacting systems

Considering a fully interacting system, the exact functional is given by

  HK F  , which
retains the true kinetic energy and electron-electron interactions. The presence of the latter is, as we have seen as well in the wave-function-based methods, a difficult problem in quantum mechanics.

Assuming that the system consists of non-interacting electrons, simplifies the form of

  HK F  ,
leaving only a non-interacting kinetic energy functional which, employing orbitals ( l  ), can be written as:

  2 1 min 2 l l l T         s where   2 ( ) l l     r r (2.21) 
Proceeding this way, one may indeed tend to the exact kinetic energy functional, which is however a lower bound to the one of the interacting system. One may define some terms needed to be added 

        F T J E        s X C (2.22)
Eq. 2.22 lies at the core of what is known today as the Kohn-Sham DFT (KS-DFT). 36

Kohn-Sham density functional theory

KS-DFT, proposed in 1965 by the future Nobel prize winner Walter Kohn, and Lu Jeu Sham, is the DFT flavor that is mostly applied nowadays. 37 Kohn and Sham have further explored the simplistic TF model, and put forth the idea of constructing a "rigorous" Hamiltonian characterizing a fictitious non-interacting system that has the same electron density as the physical one. The KS total energy is then calculated by minimizing the universal functional in Eq. 2.22 over all valid densities:

            min | E v T J E v          s X C (2.23)
Solving Eq. 2.23 resumes in practice to solving a system of one-electron equations for the orbitals (KS orbitals) known as the canonical KS equations:

  2 1 ( ) ( ) 2 l l l v             r r r KS (2.24)
where l  are KS orbital energies, and v KS is the KS effective potential which contains an exchange correlation potential ( v XC ) defined as the functional derivative of

  E 

XC with respect to the density. The KS wave function is then a Slater determinant built from the l  KS orbitals, determined self-consistently as solutions to Eq. 2.24. In practice, the exactness of the KS approach is hindered by the

  E 

XC term for which no analytical expression is yet known. The accuracy of the KS wave function is therefore strongly dependent on approximations to the two terms,

  E  X and   E  C , that build up   E  XC
. These approximations carry out the name of exchangecorrelation density functional approximations.

Exchange-correlation density functional approximations

A straightforward solution for expressing the XC term is known as the S (Slater)-VWN (Vosko-Wilkes-Nusair) density functional. 38 This functional falls in the category of local (spin) density approximations, and it is built from the Dirac exchange functional (last term in Eq. 2.20)

and the VWN correlation functional, which was achieved from an analytic fit from Monte-Carlo numerical simulations. Such LDA approximations are often over-binding due to overestimation of both exchange and correlation terms. For correcting this behavior, the density gradient has been introduced which led to a set of gradient expansion approximations, giving rise to the generalized gradient approximations (GGAs). Similarly to LDA, GGAs are local functionals that contain a set of parameters adjusted either to some exact relationships or to experimental data. A popular GGA functional is BLYP, 39,40 which is composed of the B88 exchange, 40 B3LYP 39,41,42 is a popular hybrid GGA functional and it is nowadays the mostly used one in chemistry. Its expression reads:

(1 ) (1 ) E aE a E b E cE c E        B3LYP HF B88 VWN LYP XC Dirac X X C C (2.25)
where the percentage of "exact" HF exchange is a=20%, of B88 exchange is b=71% and of LYP correlation is c=81%. Perhaps, one of the most popular hybrid meta-GGAs nowadays is the M06-2X one developed in 2008 by Zhao and Truhlar. 43 This functional retains 54% of exact HF exchange while it contains a "pool" of empirical parameters fitted with a broad range of chemical data. Another class of hybrid functionals that has emerged is the range-separated one. These hybrid functionals retain different percentages of exact HF exchange within the short-and long-range parts of the Coulomb operator. Long-range corrected functionals usually employ up to 100% exact HF exchange in the long-range part while they retain less than 50% in the short-range part. For instance, the CAM-B3LYP functional 44 has 65% and 19% of exact exchange in the long-range and short-range part, respectively. In contrast, short-range corrected hybrid functionals retain exact exchange only in the short-range part building up the family of screened-exchange hybrid functionals. A popular functional of this type is the HSE06 45,46 one worked out by Heyd, Scuseria and Erzenhorf in 2003. HSE06 retains 20% exact exchange in the short-range part.

Relativistic quantum mechanical approaches

So far we have introduced common computational approaches that are used nowadays to deal with the complex electronic structures of atoms and molecules. These models are all based on the Schrödinger equation, and potentially lead to accurate predictions as soon as relativistic effects are negligible. Relativity manifests broadly across the periodic table, admittedly with a much less influence on the chemistry of "light" atoms. In principle, there is no such a strict separation but it is rather acknowledged that relativistic contributions to the electronic structure increase according to 2 2

Z c , where c is the constant speed of light. 47,48 Typical outcomes that have relativity at the origin are the yellow doublet emission of the Na atom, the drastic color change from Ag to Au, the inhibition of the Pb 2+ → Pb 4+ oxidation process that allows the lead-acid battery to work as it should, the change in oxidation numbers toward the end of groups XIII and XIV of the periodic table, the nearly 100% phosphorescent emission of benzophenone, the liquid state of Hg in normal conditions, etc.

Sometimes, relativistic effects can be accounted for by simply adding perturbative relativistic corrections to the nonrelativistic Hamiltonian. Proceeding in such a way may still lead to quantitatively and, perhaps, qualitatively inconsistent results. Thus, one may need to use a relativistic quantum theory from the outset. In such a theory, two important aspects are acquainted, namely a finite light speed (c ~ 137 a.u.) and the clamped nuclei approximation, the latter aspect being used also in nonrelativistic theories. It remains then to solve the electronic structure problem within a model developed from a relativistic Hamiltonian. Starting from the Hamiltonian form in Eq. 2.2, then one can at first ignore electron-electron interactions and replace the monoelectronic part with the Dirac monoelectronic Hamiltonian.

The Dirac Hamiltonian

The struggle to introduce relativity in the Schrödinger equation has formally been started by Klein and Gordon in 1926. Using the relativistic formulation of the kinetic energy, they have derived a relativistic Schrödinger-like wave equation that actually corresponds to a spinless quantum field. 2 Hence, the Klein-Gordon equation does not include spin degrees of freedom and it cannot be considered as a workhorse to develop a fully relativistic quantum theory. A solution for this came two years later from the British physicist Paul Dirac, nowadays considered as the father of the relativistic quantum mechanics. The Dirac equation for an electron moving in a potential V exerted by the clamped nuclei, and in the absence of any other perturbation, is written in a matrix form as:

2 2 V c E c V mc                           p p L L S S   (2.26)
where  are Pauli spin matrices, p is the momentum operator and m is the electron mass. The matrix on the left hand side (LHS) of Eq. 2.26 corresponds to the one-electron Dirac Hamiltonian, sometimes more compactly written as:

; ' 2 ( ) D V h mc c V      α p with '
 and α being the 4x4 ) and a small one (  S ) for the  and  positrons ( ,   Sα Sβ ). Accordingly, the eigenvalues of this Hamiltonian are both positive and negative energy solutions, discretized by mc 2 , corresponding to both electrons and positrons, respectively.

The Dirac-Coulomb-Breit Hamiltonian

Naturally, one wants to perform relativistic calculations on "real-life" molecular systems of interacting electrons. Beside the monoelectronic Dirac terms, one needs to incorporate into the relativistic Hamiltonian bielectronic terms corresponding to the electron-electron interactions.

Using the non-relativistic Coulomb operator sounds appealing, and it has been justified from the principles of quantum electrodynamics. Such operator corresponds to the first and most important term from an expansion describing the full electron-electron interaction in the relativistic formalism. Breit has also proposed to retain from the full expansion, beside the non-relativistic Coulomb term, the further important one leading to the Coulomb-Breit operator for the electronelectron interaction in the relativistic framework: 2,48,49

     3 1 1 2 i j i i j j i j ij ij ij ij r r g r r r                   CB (2.27)
where the first term in the parenthesis is known as the Gaunt term, characterizing the magnetic interaction between electron spins, and the second term is a gauge-dependent term characterizing the relativistic nature of the bielectronic interaction. One can thus write a full relativistic molecular Hamiltonian as:

; ˆD V pq pq pqrs pqrs nn pq pqrs H h E g e h      DCB CB (2.28)
where the summations now run over spinors, the first term on the r.h.s. retains the sum of the monoelectronic Dirac Hamiltonians, the second term is the sum of the bielectronic Coulomb-Breit interaction terms, and the last one corresponds to the nuclear-repulsion energy. The Hamiltonian in Eq. 2.28 is known as the Dirac-Coulomb-Breit Hamiltonian and can be used within standard variational or perturbative wave-function based calculations, or even "adapted" to the framework of DFT. While there are only advantages in using such a Hamiltonian over the nonrelativistic one, owing of course to the treatment of relativity, its use come with some limitations. On one hand, the spinors used to build the 4c wave function have both a real and a complex part, becoming less straightforward to interpret as compared to the molecular orbitals in the nonrelativistic formalism.

On the other hand, calculations based on the full Dirac-Coulomb-Breit Hamiltonian turn out to be time consuming, and even impractical beyond few atoms. The complexity arises notably from the 4c formalism of the Dirac equation, researchers have therefore developed various 2c alternatives.

Approximations to the Dirac Hamiltonian

Chemists are generally interested only in the large components -the fermionic solutionsand hence, some separation schemes to discard the small components have been designed. Such schemes are usually based either on the elimination of the small component (ESC) or on decouplings via a series of unitary transformations. The ESC starts from the matrix formulation of the Dirac equation (Eq. 2.26) by expressing at first the small component in terms of the large one:

1 2 1 1 1 () 2 2 2 E V k E mc mc mc                p S L L  (2.29)
and then using it to express the Dirac equation only in terms of the large component:

1 ˆ( ) 2 H kE V E m              p ESC L L L  (2.30)
Finally, one needs to renormalize  L from Eq. 2.30 in order to obtain the full decoupling. This is achieved by operating with

1 ˆÔ H O  ESC , where † ˆ1 O k k  
is the renormalization energydependent operator:

1 † † 1 1 ˆˆ1 ( ) 2 1 eff H OH O k k k E V m k k              p ESC  (2.31)
Eq. 2.31 is the final 2c form of the Dirac Hamiltonian. 2,50 Furthermore, three approximate Hamiltonians can be obtained, by employing different expansions of the k(E) term. Expanding it in powers series of  

2 2 E V mc 
to first order, then the Pauli Hamiltonian is recovered: 2,50
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where the first two terms correspond to the nonrelativistic Hamiltonian, the third one is the massvelocity term characterizing the relativistic increase of the electron masses, the forth one is the Darwin term which is a correction due to the rapid oscillations of the electrons, and the fifth term corresponds to the spin-orbit operator describing the effective coupling between the electron spin and the magnetic field generated by nuclei and other electrons in relative motion. If one rewrites the expression of k(E) under a slightly different form:

1 2 2 2 2 ( ) 1 2 2 mc E k E mc V mc V            (2.33)
an expansion to zeroth-order in terms of

  2 2 E mc V
 leads then to the ZORA (zero-order regular approximation) Hamiltonian: 2,51,52

    2 2 ˆˆ2 c H V mc V      p p ZORA   (2.34)
The ZORA Hamiltonian is widely used nowadays for routine molecular electronic structure calculations since it is implemented in many quantum mechanical codes. Also popular, is the Douglas-Kroll-Hess (DKH) [53][54][55] Hamiltonian which follows a different philosophy. As specified above, the reduction of the full Dirac Hamiltonian to the 2c form can also be attained via decoupling through a series of unitary transformations. Such a decoupling is performed with a unitary operator (U) by operating with

; † D V h U
U . Douglas and Kroll have proposed to perform sequential decouplings by applying unitary transformations with the operator U decomposed as

(…)U 2 U 1 U 0 .
The resulting DK Hamiltonian is then expanded in terms of the external potential V leading to various DKn Hamiltonians, n corresponding to the order in V. 56 At second order, the DK2 Hamiltonian is commonly known as DKH. Note that at infinite order, the exact Dirac splitting is recovered. A convenient feature of the ZORA and DK Hamiltonians is that they can further be separated in a spin-orbit and a scalar relativistic part, which can be employed separately in molecular electronic structure calculations according to particular needs.

One should mention a peculiarity that appears when a DFT calculation includes the spinorbit coupling a priori. 57 One is concerned in this context with the spin since the non-relativistic XC functionals are spin-dependent. Their use in a relativistic framework requires a proper definition of the spin density in order to obtain the correct energy. One simple way to do this consists in defining it via the projection of the spin-magnetization vector onto a chosen axis (commonly the z-axis). 57 This is the basis of the collinear approach and it is formally inconsistent with the spin-orbit interaction, leading the XC energy to depend on the coordinate frame that is used in the calculation.

In contrast to open-shell systems, the consequences of this approach are actually rather limited on the calculated properties of essentially-closed-shell systems. Alternatively, one can define the spin density using the non-collinear approach which promotes the length of the spin-magnetization vector. 57 The success of this approach is related to the fact that this quantity is invariant to any rotation in the coordinate frame.

Two-step approaches

Relativistic effects can be treated following several strategies, including in two-step ways.

Of course, one consistent way is to perform one-step calculations where relativistic effects and electron correlation are treated on an equal footing in the self-consistent-field (SCF) treatment. An alternative strategy consists in treating the SOC a posteriori, as a perturbation to the spin-orbit free approach is the contracted spin-orbit configuration interaction (c-SOCI). In the c-SOCI flavor here retained, the set of SOF states are generated through scalar relativistic state-averaged CASSCF (SA-CASSCF) calculations. The correlated energies to dress the diagonal of the SI matrix are obtained using subsequent NEVTP2 calculations. We note that uncontracted schemes (i.e. uc-SOCI) also exist, 58 and may be required in some cases to reach spectroscopy accuracy. 28,58

Relativistic effective core potentials

Relativistic effective core potentials (RECPs) can be used to treat implicitly relativistic effects within non-relativistic or relativistic schemes. 26 Their use can bring many advantages. On the one hand, it reduces the computational effort by "replacing" core electrons and their effects with properly parameterized potentials. Consequently, it reduces the number of electrons and basis functions to be treated, and orients the computational effort on the chemically-relevant valence electrons. On the other hand, it allows the implicit or explicit inclusion of the major relativistic effects (scalar relativistic effects and SOC) in a valence-only calculation. 
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where the first term sums up the valence one-electron kinetic energies, the second term sums up the valence electron-electron repulsions, the third term sums up the interactions between valence electron and the nuclei/cores present in the system, the forth term sums up the repulsions between cores and nuclei, and the last term is a core polarization potential. Scalar relativistic effects and SOC are then incorporated through proper parameterizations of the

I cv V term. A general
classification of ECPs proceeds with model potentials, designed to reproduce valence orbitals with the correct number of radial nodes, and pseudopotentials (PPs), designed to produce pseudo valence orbitals with a reduced number of radial nodes that usually display a qualitatively correct shape in the valence region. PPs can be energy or shape-consistent, depending on the way they are generated. The former ones are for instance heavily developed by the Stuttgart/Cologne groups in Germany, and are parameterized to reproduce accurately atomic spectra. 61 Their general notation reads ECPnXY where n specifies the number of core electrons to be replaced by the ECP, X can be either S or M corresponding to single-or multi-electron fits, and Y stands for the theoretical method used to produce the reference data against which the ECP is parameterized. DF can be a choice for Y, meaning in this case that the reference data is obtained in multiconfigurational Dirac-Hartree-Fock calculations based on the Dirac-Coulomb(-Breit) Hamiltonian. 62 The shape-consistent PPs are parameterized to reproduce the shape of the valence orbitals in the valence region.

Quantum mechanical calculations including solvent effects

When experimental measurements are carried out in solutions, the measured properties then include solvation effects. In most cases, such effects are not negligible and can manifest to such an extent that they can even completely change the gas-phase picture. Dealing with solvation processes may not necessarily be straightforward in computational studies. One way to proceed is to use an explicit solvation model, i.e. to add to the system under study a consistent number of surrounding explicit solvent molecules in a dynamic or static fashion. However, this approach has the obvious disadvantage to add up a tremendous computational effort when the quantum mechanical treatment of the individual solvent molecules is attempted. A more convenient way is to employ an implicit solvation model, i.e. to model the solvent as a continuum characterized by a dielectric constant. In this spirit, one can use for instance the polarizable continuum model (PCM). 63,64 In this approach, the solute molecule is placed in a cavity surrounded by a dielectric continuum, whose polarization induces point charges at the cavity surface. The accuracy of such a model may then depend on several factors as the boundary conditions for the dielectric constant, the shape of the solute cavity or the balanced treatment of the various factors contributing to solvation. The main quantity which is sought in a PCM calculation, is the free energy of solvation:

es disp-rep cav s G G G G      (2.36) Where es G  is the electrostatic contribution, disp-rep G 
is the dispersion and repulsion contributions, and cav G  is known as the cavitation energy necessary to create the cavity which hosts the solute within the dielectric continuum. From this partitioning, the electrostatic component is the dominant one that drives the solvation free energy and is sought to be calculated with high accuracy.

Moreover, this term is the only one entering the quantum mechanical formulation of PCM, the dispersion-repulsion and the cavitation energies being calculated in a semi-classical fashion. The

general form of es G  reads: 63   3 2 M es ( ) 1 2 V r G s dr d s r s                   (2.37)
where ( ) widely used one being the conductor-like PCM model (CPCM). 65 Its main characteristic is that it models the solvent as a conductor, i.e. with a large dielectric constant, while employing some scaled boundary conditions for the dielectric constant in order to reproduce the results for a case where the dielectric constant is finite. CPCM is hence very successful for highly polar solvents, such as water, while less accurate results are expected for solvents with low polarity. In some cases, PCM cannot reproduce quantitatively the free energies of solvation. It is in particular true in cases when specific interactions between the solute and the solvent occur, e.g. hydrogen bonds. To retain such effects, the implicit model can be combined with the explicit one: several solvent molecules from the first hydration sphere of the solute are treated explicitly while the bulk solvent is treated with a continuum.


The cavity in which the solute is placed plays a very important role in PCM as it dramatically influences the free energy of solvation. It is usually built from a set of interlocking spheres centered on the solute atoms. 66 The dimension of the individual spheres building up the cavity, and hence the topology of the cavity itself, depends on the radius assigned to each atom of the solute. There are several cavity models widely used today including among the most popular ones, the universal force-field (UFF) model and the united atom (UA) topological models. The UA models can build cavities according to radii optimized at the HF/6-31G(d) level of theory, leading to the UAHF cavity model, 67 69 Furthermore, the dispersion and repulsion contributions are even unknown for At species due to the lack of specific parameters for At. Hence, only the dominant electrostatic parts of the free energies of solvation are retained in the free energies of solvation that will be presented in this thesis.

Computational studies of At species in aqueous solution

As pointed out previously, experiments involving At and/or At species are carried out in aqueous solution. Similarly, medicinal trials with 211 At-agents are also carried out in aqueous media. Whenever the context requires it, solvation effects on At species must be accounted for in the theoretical predictions. However, treating them on a same footing as SOC is yet a bottleneck for a computational study, and a compromising strategy needs to be established. is written as:

* * 1 * * (At(x)X ) (At(x) ) (X ) m s g sol m sol sol G G G G m G              (2.38)
where g G   is the free energy change in the gas-phase and the remaining terms are the free energies of solvation of the respective species in water. SOC can be included routinely in the gas phase calculations (hence in the g G   term), while the free energies of solvation are calculated in the absence of SOC but in the presence of scalar relativistic effects. It turns out that the calculated * s G  , from which the reaction equilibrium constant is derived, somehow includes both the effect of SOC and solvation. With proper choices of the thermodynamic cycles (e.g. choosing, for instance, thermodynamic cycles corresponding to ligand-exchange reactions, as it will be exemplified later), equilibrium constants of reactions involving At species can accurately be predicted. 70,71
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Identifying Adequate DFT Functionals to

Investigate the Properties of At Species

DFT-based approaches are highly desirable to investigate properties of medium to large At species.

However, in order to reach relevant results, a density functional approximation must be properly chosen at first and then adequate basis sets and strategies to account for environmental effects.

These aspects are tackled in the present chapter, and we note that the data has been published in J.

Comput. Chem., 1 and it is presented here in a slightly different way.

Introduction

Due to its simple formulation, DFT is undoubtedly an attractive method to pursue quantum mechanical investigations of medium to large At-containing systems. One then has to choose an appropriate DFT setup in order to approach targeted accuracies when computing various properties concerning such species. While we pointed out in Chapter 1 that the computational study of At species requires the treatment of relativity, one has to perform relativistic DFT computations based on the Dirac-Coulomb Hamiltonian. Fully relativistic (4c) formulations of DFT have been reported and all-electron calculations based on such a framework have been successfully performed for instance on various diatomics involving some halogens or some transitional metals. 2,3 Conveniently, (2c) quasi-relativistic formulations of DFT have been developed. 4,5 Such methods (2c-DFT or SO-DFT) may use 2c RECPs to treat relativistic effects and electron correlation on an equal footing, at cost-effective levels. If a proper XC functional is used in a 2c-DFT calculation, one can in principle retrieve results comparable to experiment or all-electron, let say 4c-CCSD(T) calculations. As such, 2c-DFT is appealing for geometry optimizations and calculations of vibrational frequencies for medium to large At species, which can be very tedious if not impossible for relativistic wave-function-based methods. The major degree of freedom that remains at play is the choice of a proper XC functional to study At chemistry (not to mention the choice of RECP-basis set couples). So far, and strictly in basic At-chemistry oriented applications, e.g. in the calculation of reaction equilibrium constants, 6 or in the investigation of the AtO + behavior in aqueous solution, 7,8 the B3LYP and M06-2X hybrid functionals have been used. While B3LYP appears to be a good choice as it allowed for instance the computation of reaction equilibrium constants in very good agreement with experiment, 6 the choice of the M06-2X functional has recently been questioned in the literature. 9 Some other quasi-relativistic DFT studies have been carried out by Lee and coworkers or Mitin and coworkers. [10][11][12] These studies concerned monoatomic At or some At diatomics (e.g. AtH, AtTl, At 2 ), and were oriented on the calibration of the quasi-relativistic DFT methodology and/or on the magnitude of SOC on spectroscopic constants. Nevertheless, while these studies confirm the reliability of using such a methodology for At species, they report different accuracies for different XC functionals when compared to reference 2c-or 4c-CCSD(T) calculations. Given our motivation to further use quasi-relativistic DFT calculations to explore the chemistry of medium to large At species, we now present the objectives of the current chapter.

A first objective consists in identifying XC functionals that are, within the quasi-relativistic DFT framework, adequate to investigate medium to large At-containing systems in order to (i) obtain accurate geometries which may be thereafter used for instance in more accurate relativistic wave-function-based single-point calculations and, (ii) obtain accurate vibrational frequencies in view of thermodynamic analyses. A second objective consists in establishing a computational strategy, based on quasi-relativistic DFT, which can be safely used for predicting At-chemistry in aqueous solution. Hence, this second objective concerns both the choice of a proper XC functional and of the solvation scheme/model. Nonetheless, both objectives concern as well the choice of reasonably-sized basis sets. As such, a panel of nonrelativistic XC density functionals spanning several categories (LDA, GGA, meta-GGA, hybrid GGA, hybrid meta-GGA and range-separated), three basis sets of increasing size, and different solvation approaches, are employed to compute geometries, transition energies and thermodynamic properties for the At species for which reference experimental or high-level theoretical data is available.

Computational details

In this chapter, 2c-DFT calculations on most essentially closed-shell At species are performed with the NWChem program package 13 while the TURBOMOLE program package 14 was generally used for calculations on open-shell At species. In contrast with the former, the latter package implements the 2c-DFT method with the non-collinear approach, 15 and 60 core electrons, respectively, while implicitly accounting for relativistic effects. 52,53 The remaining 25 valence electrons are dealt with the aug-cc-pVXZ-PP basis sets of double-, triple-or quadruple-zeta quality (i.e. X = D, T, Q). 52,53 The 2c extensions for these basis sets, generated by Armbruster et al., are retained. 54 For the aug-cc-pVDZ-PP basis set of At, the retained 2c extension is the one proposed by Champion et at., 6 which improves the one of Armbruster et al. The conventional aug-cc-pVXZ basis sets are used for all the other atoms. [55][56][57] Depending on the X cardinal number, the basis set will be denoted as AVXZ hereafter, for the sake of simplicity. For comparison purposes, 2c-HF and 2c-MP2 calculations are also performed. These calculations make use of the resolution of the identity (RI) technique as implemented in the TURBOMOLE program package. According to the construction of the aug-cc-pVXZ-PP basis sets, note that the semi-core 3s3p3d, 4s4p4d and 5s5p5d pseudo-spinors of Br, I and At are kept frozen in the 2c-MP2 calculations.

The Gaussian 09 program package 58 has been used to calculate free energies of solvation.

The CPCM solvation approach is retained and used in conjunction with the UFF, UAHF and the UAKS cavity models. Originally, the UA cavities do not include parameters for At. Hence, a basic radius of 2.41 Å is used, and a charge factor of -0.87 for a positively charged At atom, which have been proposed recently by Champion and coworkers. 6,59 An electrostatic scaling factor of 1.2 is used for multiplying the individual sphere radii, which is not the default one in Gaussian 09. Note that this factor has been used in the original formulation of the UA cavity models. 60 . Solvation free energies are then computed following four different schemes, (i) geometries and energies are optimized in the gas-phase and then in the presence of the implicit solvent using the UAKS cavities, at the scalar relativistic B3LYP/AVDZ level of theory (denoted hereafter as CPCM-UAKS), (ii) geometries and energies are optimized in the gas-phase and then in the presence of the implicit solvent using the UAHF cavities, at the scalar relativistic HF/AVDZ level of theory (denoted hereafter as CPCM-UAHF), (iii) geometries and energies are optimized in the gas-phase and then in the presence of the implicit solvent using the UFF cavities, at the scalar relativistic HF/AVDZ level of theory (denoted hereafter as CPCM-UFF), and (iv) starting from the CPCM-UAKS optimized geometries, single-point energy calculations are performed in gas-phase and then in the presence of the implicit solvent using the UAHF cavities, at the scalar relativistic HF/AVDZ level of theory (denoted hereafter as CPCM-UAHF//UAKS). Finally, the free energies of solvation of At species that exhibit several conformers are calculated according to a Boltzmann distribution: 61
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where the summation runs over the conformers of the Y species and T is 298 K.

Molecular geometries

Reference data set

At first, the 36 XC functional panel and the AVXZ basis sets have been used to compute geometrical parameters. According to the reasons pointed out in Chapter 1, structural information for At species cannot be currently retrieved from any spectroscopy experiment. Therefore, we have selected from the literature At systems for which the geometries have been calculated within a robust relativistic framework, i.e. 2c or 4c, and at a level of theory involving the CCSD(T) "golden standard" method in conjunction with large basis sets, i.e. at least polarized triple-zeta bases augmented with diffuse functions. Accordingly, we have retained At species with ground states that are known to exhibit essentially single-configurational and closed-shell characters, namely At 2 , HAt and AtF 3 , and one with marked open-shell character, i.e. AtO + . Among those, the structures of At 2 and AtF 3 have been calculated with a 2c-CCSD(T) method 62,63 while that of HAt and AtO + , with a 4c-CCSD(T) one. 9,64 For the AtF 3 system, the reference 2c-CCSD(T) calculations have proven that it can exhibit two stable structures, one with a D 3h geometry whose energy is about 7 kJ•mol -1

higher than the one of three equivalent bent T-shaped C 2v structures corresponding to the global minima on the potential energy surface (PES). Hence, both the D 3h and C 2v AtF 3 structures are retained in the present study. The equilibrium bond lengths define our reference data set.

Assessment of 36 XC functionals

In Table 3 The C 2v structure of AtF 3 is not a minimum and hence it is removed from the calculation of the different errors/deviations. b The D 3h structure of AtF 3 is not a minimum and hence it is removed from the calculation of the different errors/deviations.

In view of calculating accurate geometries for medium to large At systems, then BH&HLYP could be problematic since in such cases one would rather use a "small" basis set such as the AVDZ one.

Accordingly, in general, we do not consider the BH&HLYP functional appropriate for studying geometries of At species.

Several functionals from the hybrid meta-GGA block, developed mainly by the Minnesota group, were found problematic. Among them, only the M05 functional could not locate a minimum C 2v structure for AtF 3 when the AVTZ basis set is used. In change, five functionals, MPWB1K, PWB6K and the M06-2X, M08-HX and M08-SO ones from the "M" family, were unable to locate a D 3h minimum for AtF 3 when used in conjunction with the AVDZ basis sets (see Table A1.1).

Invoking the argument that was given for the BH&HLYP case, we do not consider the aforementioned hybrid meta-GGA functionals as generally adequate to compute geometries for At species. It is worth highlighting that these functionals have a common point. That is, they all share a high fraction of "exact" exchange: 44% for MPWB1K, 46% for PWB6K, 54% for M06-2X, 52% for M08-HX, and 57% for M08-SO. We classify the MPW1B95 and the PW6B95 the bestperforming hybrid meta-GGA functionals for predicting geometries of At species. Both these functionals belong to the Minnesota set of functionals and predict accurate geometries with MaxD not exceeding 1.8%, and MUEs and RMSDs lower than ~1%. In view of the selected criteria shown in Table 3.1, MPW1B95 and PW6B95 perform on average better than MP2 but quite similar to the best-performing functionals from the hybrid GGA block (PBE0, B3PW91 and B97-2). In particular, it is worth noting that MPW1B95 delivers among all the functionals the lowest RMSD (1.1%).

Finally, we rank as robust the M05-2X and M06 hybrid meta-GGA functionals from the Minnesota "M" family, in view of their behavior when used in conjunction with both the AVDZ and AVTZ basis sets. However, when compared to the meta-GGA "M" functionals, they bring only slight improvements. Apparently, M05-2X is the best-performing functional among all the studied functionals when used in conjunction with the AVDZ basis sets, scoring the best values for all the four criteria (see Table A1.1).

We finally turn our attention to the functionals from the range-separated block. The CAM-B3LYP, LC-PBE, BNL and M11 ones were found inadequate to calculate geometries for medium to large At species since, when used in conjunction with the AVDZ basis set, they failed to localize a minimum D 3h structure for AtF 3 (see Table A1.1). Note that these functionals share a high percentage of exact exchange in the long-range limit; CAM-B3LYP has 65% while LC-PBE, BNL and M11 have 100%. In contrast, the HSE06 range-separated functional has 0% exact exchange in the long-range limit and actually is the only range-separated functional which we classify as robust for computing geometries in the field of At chemistry. In conjunction with the AVTZ basis set, and in view of the four error/deviation criteria, HSE06 performs generally better than MP2 and similar to the best-performing functionals from the hybrid GGA block (e.g. PBE0, B3PW91 and B97-2) or from the hybrid meta-GGA one (i.e. MPW1B95 and PW6B95). It is worth pointing out that even though HSE06 appears satisfactorily for calculating geometries of At species, its choice becomes less and less attractive with the increasing system size. That is, because the computational cost associated with range-separated functionals increases tremendously with the system size, even when they are used in conjunction with small basis sets. Summarizing relatively the above paragraphs, we can draw a ranking of some top functionals that can generally predict accurate geometries for At species. Among the investigated 36 XC functionals, we found that 21 of them, comprising in general pure and range-separated functionals, are not adequate for the present purpose. Among the 15 remaining ones, we classify the PBE0, MPW1B95 and PW6B95 as the top-three best-performing functionals. For at least two of the selected statistical criteria, they score values that are among the highlighted five best ones. This holds true for both the AVDZ basis sets (see Table A1.1) and for the AVTZ one (see Table 3.1). It is worth pointing out that good candidates are also the B3PW91 and HSE06 functionals, and that the popular B3LYP one performs quite satisfactorily.

Basis set convergence

Ultimately, focusing on the concluded top-five best-performing functionals, i.e. PBE0, MPW1B95, PW6B95, B3PW91 and HSE06, we would like to draw some conclusions vis à vis the basis set convergence. In this sense, we plot in Fig. 3.1 the evolution of the RMSDs and MSEs with increasing AVXZ basis set sizes. From Fig. 3.1, it is evident that going from AVDZ to the AVTZ basis set, MSEs are generally reduced by half while the reductions in RMSDs vary between 0.1 up to at most 0.5 percent units. Switching from AVTZ to AVQZ, MSEs are overall changed by 0.4 percent units, while RMSDs are changed by 0.2 percent units. We thus draw the conclusion that the AVTZ basis set lies close enough to the convergence regime. 

Electronic transition energies

Reference data set and methodologies

In the present section we assess the performance of XC functionals in predicting electronic transition energies of At species. Note that only a subset of the abovementioned 36 XC functionals is used for the present purpose, and in particular those which are currently implemented in the TURBOMOLE program package. That is, since most of the calculations performed in this section involve open-shell At species. We have selected in the training set some At species for which transition energies are known either from experiment or have been calculated at a reference level of theory. We noted that the only available experimental data (in the present context) is the first ionization potential of At (IP 1 = 9.32 eV). 65 Furthermore, Borschevsky and coworkers undertook 4c-CCSD(T) calculations and provided reference values for the second ionization potential (IP 2 = 17.75 eV) and for the EA (2.41 eV) of At. 66 Other reference data reported in the literature exist for the AtO + cation. Gomes et al. reported the excitation energies to the first two spin-orbit coupled excited states, X 0 + →a 1 and X 0 + →a 2, using multireference 4c-CCSD calculations. 9 Note that both studies made use of large basis sets. We hence establish our reference dataset as comprising the IP 1 , IP 2 , and the EA of At and the first three spin-orbit coupled states of AtO + , X 0 + , a 1 and a 2.

The classical and straightforward procedure to obtain the IPs and the EA of At would be to relax in 2c-DFT calculations the neutral atom and ions, and to subtract the obtained electronic energies. However, by proceeding this way we expect to sum several errors, rooted from the electron correlation and relativistic contributions, in the final computed values. For instance, the error on the correlation energy of the open-shell neutral atom would differ from the one of the closed-shell anion, due to some kind of spin-contamination in the former case. Likewise, the error on relativistic contributions is expected to be larger for the neutral atom than for the anion since much stronger SOC is expected for the former case. The two errors may add up in the computed value of the EA. Hence, we propose to calculate the IPs and the EA of At starting from balanced reactions preserving the number of charged and neutral species, in order to take profit from error cancellations. As such, we consider the following electron-transfer reactions between At and I: 
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Using the experimental values for the iodine IP 1 (10.45 eV), IP 2 (19.13 eV) and EA (3.06 eV), 67 and by computing the IP 1 , IP 2 and EA quantities, one may expect to estimate accurately the IP 1 , IP 2 and EA of At.

Concerning the spin-orbit coupled electronic states of AtO + , we approach them through single-point 2c-DFT calculations and the presented transition energies are SCF values. The interatomic distance in AtO + was fixed to 1.916 Å and we note that this value corresponds to the distance for which the reference data was reported. 9

Results

In Table 3.2 we report the calculated vertical transition energies to the a 1 and a 2 spinorbit coupled states of AtO + , the IP 1 , IP 2 and EA of At, and the associated errors/deviations obtained at 2c-DFT/AVXZ levels of theory. Regarding each of the selected statistical criteria, and for a given AVXZ basis set, the best three values are evidenced in red while the best of them in bold as well. At start, we found that calculating the IP 1 , IP 2 and EA of At according to the proposed balanced reactions is appealing. That is, we found that all the investigated functionals provide accurate values, generally within 0.1 eV from the reference ones, independently of the used basis set. In particular, using the AVTZ one, we found TPSSh to provide exceptional deviations on the IP 1 and IP 2 values, 0.09 eV and 0.14 eV, respectively, while BLYP is found to deliver the largest deviation on the EA, 0.05 eV. Concerning the spin-orbit coupled energy levels of AtO + , we found that the different classes of functionals deliver notable large errors. The pure functionals tend to overstabilize the a 2 states (amounting ~0.33 eV with the AVDZ basis sets and ~0.27 eV with the AVTZ and AVQZ ones), while the opposite is valid for the a 1 ones with the hybrid functionals (a 1 is overstabilized by ~0.42 eV with the AVDZ basis sets and ~0.41 eV with the AVTZ and AVQZ ones). Notably large errors are delivered by the BH&HLYP hybrid GGA functional, which underestimates the excitation energies to both a 1 and a 2 states by more than 0.5 eV. Given the accuracy of the calculated IP 1 , IP 2 and EA of At, we observe that the MSE, MUE, RMSD, and MaxD criteria reflect mainly the errors on the excitation energies in AtO + . This fact is clearly seen by inspecting for instance the MaxD values. In each case, they mirror the large deviation on the excitation energy to the a 2 (the case of pure functionals) or to the a 1 (the case of hybrids) state.

Concerning the MSEs, MUEs and RMSDs, all functionals provide uniform values rising to at most 0.18 eV, excepting the particular case of BH&HLYP. In view of the four criteria, all the investigated functionals perform better than both HF and MP2.

Ranking three best-performing functionals for the present scope, we put forth the SVWN LSDA one, which delivers generally the best MSE, MUE, RMSD, and MaxD values irrespective of the used basis set, and the BP86 and PBE GGA ones, which provide errors/deviations among the best three ones for at least two of the four criteria, also irrespective of the basis set.

Intrigued by the large errors obtained on the first transition energies of AtO + , we have observed that the errors can be even larger when they are computed at a quasi-relativistic level within the time-dependent DFT (TD-DFT) formalism. Employing the Minnesota M06-2X XC functional, Gomes et al. found both a 1 and a 2 states occurring below the true X 0 + ground state. 9 Moreover, they concluded that both states are tremendously overstabilized with the increasing fraction of exact exchange, when comparing the results obtain with the M06-L, M06 and M06-2X functionals. Inspecting our SCF values obtained with the PBE and PBE0 functionals for instance (irrespective of the basis set), a similar trend is unraveled for the excitation energy to the a 1 state but a fraction of exact exchange appears necessary to be accurate on the excitation energy to the a 2 state. For some pure functionals, we report in Table 3.2 some complementary TD-DFT results (in the framework of 2c-DFT calculations). While in general we obtain similar values for the a 2 state as in SCF calculations, we found the a 1 state occurring below the true X 0 + ground-state. In agreement with the conclusion of Gomes et al., 9 we advocate for the unreliability of the TD-DFT approach for computing excited electronic states of AtO + . 9 1.02 9 9.32 65 17.75 66 2.41 66 a TD-DFT results are given in parenthesis.

Inspecting the four statistical criteria shown in Table 3.2 obtained with the different AVXZ basis sets, it is clear that the AVTZ basis set lie in the convergence regime irrespective of the used functional. Nonetheless, it is true that improvements brought over the smaller AVDZ basis set are only moderate. They amount for at most 0.04 eV on MSEs, MUEs and RMSDs, and at most 0.07 eV on MaxDs. Comparing the AVTZ and AVQZ results, the criteria are either similar or changed by at most 0.01 eV, irrespective of the used XC functional.

Thermodynamic properties

Reference data set and methodological aspects

The aim in this section is to assess the performance of the 36 DFT functionals in predicting thermodynamic properties of At species, and more specifically, in predicting reaction equilibrium constants. As explained in Chapter 1, Champion and coworkers have measured in aqueous solution a set of equilibrium constants for several reactions involving the At(x) + cationic forms of At, i.e. At + and AtO + . 6,68 Hence, the equilibrium constants made available, associated with the reactions involving At(x) + species and the Cl -, Br -, OH -and SCN -ligands in stoichiometric rapports of 1:1 and/or 1:2, define our reference data set.

From a computational viewpoint, the aforementioned reaction equilibrium constants could be calculated according to thermodynamic cycles as sketched in Scheme 2.1. Nevertheless, Champion and coworkers have shown that more accurate results can be obtained when the thermodynamic cycle involves not direct complexation reactions, but rather ligand-exchange reactions. 6,68 The basic reasoning justifying this relies on error cancellations. We hence proceed accordingly, and, in our calculations, we employ ligand-exchange reactions involving the The ligand-exchange equilibrium constant, K m,exc , is then calculated from the free energy change in aqueous solution, * s G  , which can be expressed as: At x X m m  ones, according to the following relation:
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Hence, we are left to bring a computational estimate for the ,exc

Log m K term.

Assessment of 36 XC functionals

In their studies, Champion and coworkers showed that when the B3LYP hybrid GGA functional is used in conjunction with the AVDZ basis set, accurate equilibrium constants can be obtained by employing the CPCM-UAHF//UAKS scheme to compute solvation free energies for the different species involved in Scheme 3.1. We comment at first the results obtained within this framework, with the remarks that (i) the solvation free energies are kept to the CPCM- corresponds to only 3.5 kJ•mol -1 . It is worth noting that these functionals were also found particularly accurate in predicting geometries of At species. On the other side, we found that the hybrid functionals that have a large fraction of exact exchange (at least 44% for the global hybrids and 65% in the long-range limit for the range-separated ones) provide from poor to catastrophic equilibrium constants (in some cases, the MaxDs rise above 5 units of Log). We refer to the BH&HLYP hybrid GGA functional, to the range-separated ones excepting HSE06, and notably to hybrid meta-GGA functionals from the Minnesota "M" family, in particular to M05-2X, M06-2X, M08-HX and M08-SO. Note that these functionals were also found problematic in computing geometries for At species.

Based on the four criteria displayed in Table 3.3, we classify the pure functionals as unreliable for computing thermodynamic properties of At species. For instance, they lead to unreasonable MaxDs of at least 2.1 units of Log. On the free energy scale, these errors/deviations reach above 12 kJ•mol -1 . Browsing for reasoning, we identified that this issue appears mainly associated with the computed equilibrium constant for the formation of the AtOSCN species (see Table A1.2). In this particular case, we observed that pure functionals predict equilibrium geometries for the most stable AtOSCN conformers that deviate significantly from the ones obtained with the best-performing hybrids. We show one example in Fig. 3.2. Notably, pure functionals predict a very stable AtOSCN conformer with linear equilibrium geometry pertaining to the C ∞v point group symmetry. We noted that such geometry does not correspond to a minimum when a hybrid functional, that we concluded relevant for calculating geometries for At species, is involved. For instance, at the 2c-PBE0/AVDZ level, a linear AtOSCN geometry corresponds to a second order saddle point. It is worth pointing out once more that pure functionals were previously found unreliable for computing geometries of At species. We noted that among all the pure functionals, the PKZB meta-GGA one appears to be a noticeable exception. It is the only one that predicts accurate equilibrium constants with a MaxD of at most 1.3 units of Log while all the other errors/deviations are below 0.8 units.

In short, we state that the best five functionals that deliver accurate equilibrium constants for At species are the hybrid GGA B3LYP and X3LYP ones, the hybrid meta-GGA TPSSh and PW6B95 ones, and the range-separated HSE06 one.

Accounting for dispersion corrections

We have then investigated the possibility that dispersion corrections have a significant impact on the computed equilibrium constants. This issue may perhaps very well alter our ranking of functionals. Hence, considering the Grimme's DFT-D3 dispersion correction 69 in the gas-phase 2c-DFT calculations, we have re-calculated the equilibrium constants for some DFT functionals.

The values themselves are placed in Table A1.2 while the errors/deviations, in Table 3.4. Generally, we found that the calculated values for the different equilibrium constants hardly modify upon accounting for a dispersion correction. A specific trend is actually not that obvious when one inspects the errors/deviations shown in Table 3.4. Bearing in mind that dispersion may become more important in larger complexes, we have looked more carefully at the equilibrium constants corresponding to the formation of the 1:2 complexes (i.e. functionals predict less accurate equilibrium constants corresponding to the formation of the AtSCN and AtOSCN species (see Table A1.2). Overall, we note that the considered dispersion correction hardly changes the calculated errors/deviations by trifling 0.1 units of Log and do not alter in any way our "ranking" of reliable DFT functionals.

Basis set convergence

Assessing the basis set convergence in the present context appears particularly important since some functionals are, when used in conjunction with the AVDZ basis set, prone to fail in predicting correct geometries, which should translate in principle to large errors in the calculated equilibrium constants. For few selected functionals, we show in Fig. 3.3 the evolution of the RMSDs, as calculated with the AVDZ and AVTZ basis sets in conjunction with the CPCM-UAHF//UAKS(B3LYP) solvation scheme. We place the equilibrium constants and statistical criteria obtained with the AVTZ basis set in Tables A1.3 and A1.4, respectively. While increasing the basis set size from AVDZ to AVTZ, the computed equilibrium constants may slightly improve for the cases of pure functionals. In contrast, we found that for some hybrid functionals, the results do not necessarily improve. The AVTZ basis set seems to be a better compromise for the M06-2X functional as there is an improvement not only on RMSD, but for instance of ~2.5 units on the MaxD. However, the latter is still above 3.0 units, for both the M06 and M06-2X Minnesota functionals.

Influence of the solvation scheme

As stated in Chapter 2, the choice of the cavity model in PCM computations may have a critical impact on calculated solvation free energies and hence on the calculated equilibrium constants. So far, we have shown that the CPCM-UAHF//UAKS solvation scheme, i.e. a hybrid scheme that makes use of both UAKS and UAHF cavities, may allow the computation of equilibrium constants for At species within an expected accuracy of ~1 Log unit. Hereafter, we seek for any improvements on these thermodynamic properties upon changing the solvation scheme, and in particular, of the cavity model. In Fig. 3.4, we show the evolution of the MUEs associated with calculated equilibrium constants with selected functionals, AVDZ basis sets, and the CPCM-UAHF//UAKS, CPCM-UAHF, CPCM-UAKS and CPCM-UFF solvation schemes. The Log K values and the retained statistical criteria are placed in Tables A1. 5 and A1.6, respectively.

At first, we noticed that the default cavity model available in Gaussian 09 program, namely UFF, delivers catastrophic equilibrium constants with MaxDs above 10 units, independently of the used XC functional. Note that similar results are obtained when the 1.1 default electrostatic factor (in Gaussian 09 program) is used together with UFF radii (see Table A1.6). As briefly pointed out in Chapter 2, the poor performance of the UFF model in the present case relates with its "faulty" formalism. That is, within UFF, each nucleus is placed in a similar sphere irrespective of the environmental context (e.g. change in the atom hybridization, first neighbor inductive effects, etc.).

In Fig. 3.4, it is displayed that the CPCM-UAHF solvation scheme slightly improves (w.r.t. CPCM-UAHF//UAKS) the equilibrium constants with the top-five best performing functionals (B3LYP, X3LYP, TPSSh, PW6B95 and HSE06). Nevertheless, this trend is reversed when CPCM-UAHF is used with the pure or Minnesota "M" hybrid functionals. Switching to the CPCM-UAKS solvation scheme seems to be unworthy. For all the investigated functionals, it leads to errors/deviations that can rise up to more than twice the ones obtained with the previous solvation schemes (see evolution of MUEs in Fig. 3.4 and values in Table A1.6). Finally, we state that the CPCM-UFF and the CPCM-UAKS solvation schemes are unreliable to investigate thermodynamic properties of At species in aqueous solution, as for instance are the equilibrium constants. For this task we promote both the CPCM-UAHF/UAKS(B3LYP) and CPCM-UAHF schemes. Note that the use of functional-specific geometries within the CPCM-UAHF//UAKS scheme was not investigated since no important improvement is expected and since it would further complicate the analogies of the results. For the simplest scheme, we recommend the use of CPCM-UAHF, which, overall, performs as similar to the CPCM-UAHF//UAKS one. 

Application: At reactivity indicators

The reactivity of At is hardly predictable from arguments that were acquired so far. In Chapter 1 we have detailed particular cases where the reactivity of At is either thought similar to the one of I or predicted using general concepts as the HSAB theory of Pearson. Nonetheless, it appears that At reacts either non-specifically (e.g. with direct addition on S atoms of protein-residues) or with the formation of At-therapeutic agents which are unstable in vivo. In the present section we propose to study the unintuitive effect of relativity, and in particular in the one of SOC, on basic reactivity indicators of At. In this perspective, we investigate the effect of SOC on the electronegativity (χ) of At and on some other reactivity descriptors arising from conceptual DFT, 70 in particular the hardness (η) and the electrophilicity (). The usefulness of these descriptors for explaining various chemical phenomena, including the reactivity of atoms and molecules, is well established. However, it is worth noting that the latest reported values of χ and η for At do not include SOC contributions. 71 In this study, the electronegativity,

  1 χ 1 2 IP EA  
, the hardness,

  1 η 1 2 IP EA  
, and the electrophilicity, 2 ω χ 2η 

, are calculated with scalar relativistic DFT and with 2c-DFT using AVTZ basis sets and some of our best-performing XC functionals. Since the targeted quantities are expressed in terms of the IP 1 and the EA of At, we choose specifically three functionals, B3LYP, PBE0 and PW6B95 that were notably found accurate in predicting this kind of transition energies. The results are shown in Table 3 

Conclusion

The overall goal of this chapter was to identify XC functionals that are suitable to investigate the basic chemistry of At within a (2c) quasi-relativistic DFT framework. A set of 36 nonrelativistic functionals (or a subset of it), was assessed for predicting geometries, electronic transition energies and thermodynamic properties for a set of 19 At species. While some functionals were found to perform very well for particular tasks, e.g. M05 in conjunction with the AVDZ basis sets to predict geometries, we put forth as the overall best choice the PW6B95 hybrid meta-GGA functional. We note that the old and very popular PBE0 and B3LYP hybrid GGAs are overall safe choices. For instance, B3LYP delivered MUEs of 1.7% on bond lengths, 0.12 eV on electronic transition energies and 0.8 logarithmic units for equilibrium constants, when used in conjunction with the AVTZ basis sets. We note that these functionals are found sufficiently accurate also when used in conjunction with the AVDZ basis sets, especially for computing geometries and thermodynamic properties. This aspect is particularly important for computational purposes since it allows geometry optimizations/frequency calculations of medium to large At species at a reasonable cost. As a general trend we obtained large errors/deviations with XC functionals that have a high percentage of exact exchange. This includes for instance very popular Minnesota functionals from the "M" family, e.g. M06-2X. Ultimately, we have clearly established/confirmed a computational strategy to safely predict the chemistry of At in solution. This strategy proposes the use of the CPCM-UAHF//UAKS scheme or the CPCM-UAHF one to calculate solvation free energies of At species.

Chapter 4 Unexpected Structures of At Species: The Case of AtF 3

In this chapter, we focus on the PES of the AtF 3 system, which has been the subject of various theoretical studies in the last decades. This work has been the subject of a publication in J. Chem. Phys., 1 and will be presented in a slightly different way in the present chapter.

Introduction

The fluorination of astatine has been attempted by Appleman et al. in their race for observing At species through time-of-flight mass spectrometry. 2 However when mixed with the fluorination agent, ClF 3 , At adhered strongly to the glass and could not be transferred into the spectrometer. Up to nowadays no other attempts to synthesize At fluorides were made. AtF 3 is thus a hypothetical system studied by theoretical chemists as an analogue to the experimentally evidenced ClF 3 , BrF 3 and IF 3 fluorides, in order to study some trends in group XVII. The gas phase geometries of ClF 3 and BrF 3 are well known to be planar and T-shaped pertaining to the C 2v symmetry point group (see Fig. 4.1, left panel), as derived from various spectroscopic evidences (e.g. microwave, rotational spectra, infrared spectra etc.). [3][4][5][6][7] IF 3 is a highly unstable molecule and its structure has been unraveled only in the condensed phase. Nonetheless, from the recording of its vibrational spectra 8 or from X-ray analysis, 9 it turned out to be alike the gas phase ones of ClF 3 and BrF 3 , i.e. T-shaped C 2v . No experiments have yet been reported for the synthesis of the (117)F 3 species. One may assume that AtF 3 has T-shaped C 2v structure, and we shall see in the following how this assumption can be checked with various theories.

The valence shell electron pair repulsion (VSEPR) model [10][11][12][13] has been widely recalled, either for educational purposes or in scientific investigations, in order to establish molecular geometries. Due to its empirical foundation, the accuracy of the VSEPR model has been largely debated up to nowadays. While it has been proven to fail in predicting geometries for some systems involving transitional 14 or heavier elements, 15 one can state that VSEPR is overall able to predict qualitatively correct molecular architectures for systems involving most of the elements in the periodic table. Considering an AX n E m case (where A stands for the central atom, X for the ligands and E for the lone pairs of the central atom), the VSEPR geometry is ruled by the mutual repulsion between the n A-X bond pairs, between these bond pairs and the m E lone pairs, and more importantly between the m lone pairs, which is considered in this model as the dominant factor in determining the geometry. The XF 3 (X = Cl, Br, I, At and even element 117, i.e. eka-astatine) fluorides fall in the AX 3 E 2 category and would adopt bent T-shaped C 2v structures, according to the VSEPR model. Considering the ClF 3 , BrF 3 and IF 3 cases, the VSEPR geometries are in line with the observed experimental ones. It is hence conferring some note of strength to the assumption that AtF 3 would have as well a T-shaped C 2v structure. Note that in the AtF 3 case and even more in the (117)F 3 case, one lone pair of X may be considered as chemically inert, which may question the applicability of VSEPR to these cases. In the following, we discuss these geometries based on quantum mechanical considerations. For the XF 3 (X = Cl, Br and I) fluorides, trigonal-planar D 3h structures (see Fig. 4.1, right panel) are known to be second-order saddle points on the ground-state PESs. 16 The experimentally observed T-shaped C 2v structures are interpreted as resulting from the pseudo Jahn-Teller effect (PJTE) that is active at the D 3h geometries. Note that PJTE is the only source of instability in the case of non-linear polyatomic systems that exhibit non-degenerate electronic ground-states, at highly symmetric geometrical configurations. 17 In such situations, energy is gained α 120°r e r eq r ax X F F F F F F X by following geometrical distortions due to vibronic coupling between states of same spin multiplicity, either between ground and excited states, or between excited states which leads to a ground-state change (case referred to as "hidden" PJTE). The spatial symmetry of the excited state that is involved must contain the symmetry of the nuclear displacement vector. At the D 3h structure of each XF 3 system (X = F, Cl, Br, I), the PJTE involves a E' degenerate excited state arising from an electron promotion from the '  pseudo Jahn-Teller case). 16 Schwerdtfeger showed that the ' 1,HOMO a orbital is relativistically stabilized down the group toward AtF 3 , due to some mixing with the outermost ns occupied valence orbital of the central X atom, and hence diminishing the effectiveness of the PJTE. 16 Actually, in the AtF 3 case, the D 3h geometry was reported to be a "weak" local minimum, nearly isoenergetic with the T-shaped C 2v one, suggesting that the PJTE is not active anymore at the D 3h geometry. 15,16,18,19 Actually, AtF 3 is a borderline system as computational studies suggest its heavier analogue, the (117)F 3 species, to be only stable in a trigonal-planar D 3h structure. 15,18 Nonrelativistic, scalar relativistic and SOC calculations have so far been performed in order to determine critical points on the ground-state PES of AtF 3 . 15,18,19 Significant effort was put in determining precisely the energy difference between the D 3h and the T-

shaped C 2v structures, 3h 2 v D C E  
. In a recent 2c-CCSD(T)/def2-QZVPP study, 15 Yang and Wang showed that the T-shaped C 2v structure is ~7 kJ•mol -1 more stable than the D 3h one, and stated that it is the candidate structure to be observed through experiments. This statement is obviously questionable and, moreover, the influence of the different electronic factors (electron correlation and relativistic effects) on the PJTE is not yet well understood, in particular for the case of AtF 3 .

Notably, there is no definite statement on the relationship between SOC and PJTE. One should not forget that numerous properties of At species are highly sensitive to SOC. [20][21][22][23][24][25] To our opinion, one needs to consider the impact of the different electronic factors not solely at the D 3h and T-shaped C 2v structures but also how they affect the PES in their close vicinities, in order to reach relevant conclusions.

Employing 2c-DFT and notably a two-step multiconfigurational wave-function-based approach (c-SOCI), the AtF 3 system is investigated in order to (i) check the potential multiconfigurational character of the ground-state wave functions at the D 3h and T-shaped C 2v structures, (ii) establish the topology of the ground-state PES of AtF 3 , (iii) determine the role of different electronic factors, namely electron correlation, scalar relativistic effects and SOC, on this topology, (iv) identify and rationalize differences between AtF 3 and its lighter analogues, ClF 3 , BrF 3 and IF 3 , and (v) establish whether a computationally cost-effective approach like c-SOCI can be used in order to address the electronic structure of At species, which is more of fundamental interest.

The ground-state PES of AtF 3 : a 2c-DFT study

In this section, we aim at identifying different critical points of the ground-state PES of AtF 3 and to establish the connectivities between them. Scalar relativistic DFT (SR-DFT) (using the Gaussian 09 program package 26 ) and 2c-DFT (using the NWChem program package 27 ) calculations are performed. The PBE0 hybrid GGA functional is employed as the density functional approximation. For the At center, the ECP60MDF energy-consistent PP 28 is used to mimic the role of the 60 core electrons and implicitly account for relativistic effects while the remaining electrons are treated with the aug-cc-pVTZ-PP-2c basis set. 28,29 For the F centers, the aug-cc-pVTZ basis set is used. 30 Note that this particular combination of functional and basis sets was found (see Chapter

3) to be a relevant compromise for retrieving accurate geometries for At species, including AtF 3 .

Different transition states (TSs) are initially located at the scalar relativistic level of theory and are afterwards refined by accounting for SOC. The connectivities between the identified TSs and minima are established at the scalar relativistic level through the computation of intrinsic reaction coordinate (IRC) pathways. Note that the nature of each critical point has been verified through the computation of harmonic vibrational frequencies.

Critical points on the ground-state PES of AtF 3

Geometrical parameters and relative energies between identified critical points on the ground-state PES of AtF 3 are gathered in Table 4.1. In line with the VSEPR qualitative prediction and with previous quantum mechanical calculations, 15,16,18,19 we have identified a T-shaped C 2v structure as the global minimum for the AtF 3 system. Note that there are three equivalent T-shaped geometry to the T-shaped C 2v one would occur primarily via displacements along its doublydegenerate ' e  bending mode. In SR-PBE0 calculations we identify this vibrational normal mode to be 72 cm -1 while when SOC is accounted for, it is reduced to 47 cm -1 . Hence, this time one can deduce that SOC actually favors the PJTE, contributing to the destabilization of D 3h structure. The connection between SOC and PJTE will be clarified later on. We now question the nature of the Y-shaped C 2v TS identified by Yang and Wang. 15 Its geometrical parameters and the relative energy with respect to the global T-shaped C 2v minima, are presented in Table 4.1. Comparing its structure with the one of the D 3h local minimum, we noted that it displays a  bond angle smaller than 120°, a r ax bond length larger than r e and r eq bond lengths smaller than r e . This TS lies slightly above the D 3h minimum, by 0.7 kJ•mol -1 (in very good agreement with the 0.5 kJ•mol -1 value obtained in 2c-CCSD(T) calculations 15 ), and it appears to connect this minimum with any of the three T-shaped C 2v global minima. The IRC energy profile shown in Fig. 4 In the literature, the potential existence of a TS connecting the equivalent T-shaped C 2v global minima has not been considered. In SR-PBE0 calculations, we have identified that such TS has a distorted non-planar geometry pertaining to the C s symmetry point group, as illustrated in Fig. Furthermore, effective "monkey" saddle points are known to correspond to C 3v second-order saddle points that exhibit a doubly degenerate imaginary frequency, usually of the order of ~50i cm -1 .

C
Such an effective "monkey" saddle has been suggested, for instance, in tetra-coordinated AX 4 systems. 33 Note that the near-degeneracy between the C 3v and the C s structures is also a signature for the existence of an effective "monkey" saddle point. Presently, we cannot give a definite statement on the existence of an effective "monkey" saddle at the C 3v structure of AtF 3 . Note that a classic pictorial view of a "monkey" saddle point, and a schematic representation of the PES around it for the AtF 3 case, is placed in Fig. A2.1 (see Appendix 2). Note that all the critical points reported in Fig. 4.4 are lower in energy than the lowest dissociation limit. To support this statement, the dissociation energies leading to AtF + F 2 or AtF 2 + F have been computed and reported in Table A2.1 (see Appendix 2).

Topology of the

Finally we would like to comment on the energy difference between the T-shaped C 2v and the D 3h minima of AtF 3 . While the relative energy between them is already very small, we found that the inclusion of the thermal and entropic contributions reduces it furthermore. At T = 298 K and P = 1 atm, the free energy difference computed at the 2c-PBE0/AVTZ level of theory is less than 0.3 kJ•mol -1 . It is thus impossible to conclude on the nature of the most stable AtF 3 structure given the accuracy of the used approach. However, since the free energy difference between these structures and the associated energy barriers are so small, the thermal energy would lead to perpetual movement between the three equivalent T-shaped C 2v structures and the D 3h one. Hence, it would be impossible to experimentally distinguish between them and an average D 3h geometry would be seen in experiments, if they were possible.

Insights from wave-function-based methods

In this subsection, we study the PES of AtF 3 using a two-step multiconfigurational wavefunction-based approach where SOC is introduced a posteriori (i.e. c-SOCI). Hence, we perform a series of SA-CASSCF (to retrieve 0 th order wave functions), NEVPT2 (to retrieve more accurate correlated energies) and c-SOCI (to account for SOC) calculations, on the previously obtained 2c-PBE0 equilibrium structures of AtF 3 . All these computations were performed with the ORCA program package. 34 Scalar relativistic effects are accounted through the use of the DKH Hamiltonian. [35][36][37] For the At and F centers, the segmented all-electron relativistically contracted SARC-TZVP-DKH basis sets were employed. 38,39 Two active spaces have been considered in the SA-CASSCF calculations, (i) 2 electrons and the 6p orbitals of the At center, i.e. SA-CASSCF(2/3), and (ii) 20 electrons and the 6p and 2p orbitals of At and F respectively, i.e. SA-CASSCF(20/12). In the SA-CASSCF(2/3) calculations, different SOF states are generated by performing an equallyweighted orbital average over 6 spin-singlet (6S) and 3 spin-triplet (3T) states. In the SA-CASSCF(20/12) calculations, the averaging is performed over 21S and 20T states. In this latter case, the choice of the averaging scheme was made in such a way that (i) it does not artificially break the D 3h symmetry, (ii) it includes all the essentially singly excited states which are of particular importance in view of SOC, and (iii) enlargement of the SA and of the SI spaces hardly affects the computed SOC ground-state energy stabilizations.

In the following, we start by assessing the dependence of the results on the specific degrees of freedom of the method. In Table 4.2 we print several energy parameters, At first, the calculated ). Furthermore, similar energy parameters determined for the X = Cl, Br and I trifluorides using such a (2/3) active space were found unreliable, with respect to (2c-)CCSD(T) values, especially for ClF 3 which may notably feature some significant degree of covalence in the Cl-F bonds (see Table A2.2). We can better describe this covalence by enlarging the active space with the valence 2p orbitals of the F centers, leading to CAS(20/12) calculations. Note that the energy parameters obtained using this larger active space for the X = Cl, Br and I trifluorides will be later presented. For the present AtF 3 case, using such a large active space, one can observe that the calculated relative energy of 20 of -0.7 kJ•mol -1 appears too small compared to the value obtained from 2c-and SR-PBE0 calculations (7.5 kJ•mol -1 ). We speculate that this difference originates in the neglect of the geometry relaxation in the calculated energies at the NEVPT2 and c-SOCI/NEVPT2 levels, which will be further commented.
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On the ground-state PES of AtF 3

In the SA-CASSCF (20/12) We next attempted to identify, using NEVPT2(20/12) and c-SOCI/NEVPT2(20/12) calculations, if there is indeed a TS between the C 2v and D 3h minima of the ground-state PES of AtF 3 . We performed scans between the aforementioned structures by varying the , r ax and r eq geometrical parameters of the T-shaped C 2v structure. Similar scans were reported in the literature but they were restricted to distortions involving only the  bending angle. Our scans thus seek to evidence a better approximate minimum energy pathway between the two minima of the PES. In We observe that a TS is evidenced with and without SOC and that its approximate structure is similar to the one found at the (2c-)PBE0 level. That is, it has a  bond angle smaller than 120° and r ax and r eq are larger and smaller than r e , respectively. The comparison between the two contour plots shows the effect of SOC on the ground-state PES of AtF We have also investigated the different electronic factors that lead to the small energy barrier between the D 3h and T-shaped C 2v minima of AtF 3 , i.e. affecting 

4.4

A comparative study between AtF 3 and other XF 3 systems (X = Cl, Br, I)

In this section, we seek to perform a comparison between AtF 3 and its lighter trifluoride analogues. For this task, we have first carried out DFT calculations in the same fashion as described previously for the AtF 3 case. Note that the ECP10MDF and ECP28MDF energy-consistent PPs have been used to avoid the treatment of the 10 and 28 core electrons of Br and I, respectively, while the remaining valence electrons have been treated with aug-cc-pVTZ-PP basis sets. 28,40 The 2c basis set extension has been retained for the I center. 29 For the Cl center, the aug-cc-pVTZ basis sets have been used. 30,41 In order to check the performance of the PBE0 functional for the current cases, we compare the geometrical parameters of the obtained T-shaped C 2v and D 3h equilibrium structures to experiment (when available) or to appropriate CCSD(T) results. For obtaining reference geometrical parameters for the D 3h structures, as well as reference

3h 2v D C E   values, for
the ClF 3 and BrF 3 systems, we have performed geometry optimizations using the CCSD(T) method using the ORCA program package. For the ClF 3 case, relativistic effects have been neglected and all-electron TZVP basis sets have been used. 42 For the BrF 3 case, scalar relativistic effects have been introduced via the use of the DKH Hamiltonian and accordingly, segmented all-electron relativistic contracted SARC-TZVP-DKH basis sets 39 have been used.

The geometrical parameters of the obtained T-shaped C 2v and D 3h structures, as well as We remind that the analogue Y-shaped C 2v TS in the AtF 3 case was connecting the T-shaped C 2v and D 3h minima. Finally, we note again that all the critical points reported in Fig. 4.7 are lower in energy than the lowest dissociation limit for each XF 3 system (see Table A2.1). D C E   in XF 3 (X = Cl, Br, I and At) systems computed at various levels, using the (20/12) active space and the 21S20T state-everaging and state interaction spaces. Lastly, we wish to highlight the contribution of the electron correlation and scalar relativistic effects to the reductions in the relative energies between the D 3h and T-shaped C 2v structures, along the XF 3 (X = Cl, Br, I) series. For the present fluorides, we have followed the previously presented approach (see Fig. 4.6). The associated results are gathered in Table 4.7.

Similar as in the AtF 3 case, one can spot the non-additivity between the electron correlation and scalar relativistic effects, i.e. the considered two paths issue different values for electron correlation and scalar relativistic effects showing the fact that they interplay. This interplay appears to be more and more pronounced going down the group XVII, as expected based on the increase of the importance of scalar relativistic effects. In contrast to the case of AtF 3 , the electron correlation is the dominant electronic factor that diminishes the relative energy between the D 3h and T-shaped C 2v structures in the XF 3 (X = Cl, Br, I) fluorides. Finally, it is worth noting that the trend in 
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Conclusions

In this chapter we have analyzed the topology of the ground-state PES of the AtF 3 system and furthermore, we have established a comparison with the ones of the ground-state PESs of the lighter analogues. Several conclusions arise from this work. First we have shown that the used twostep spin-orbit configuration interaction approach is suitable to address the electronic structure of systems containing a heavy 6p element such as At. We noted that sometimes such an approach is considered to be problematic for investigating systems involving a heavy element from the 6p family. 44 The present approach allowed us for instance to investigate the potential multiconfigurational character of the ground-state wave functions, particularly in the AtF 3 system.

In this latter case, the ground-state wave function has been found to be essentially single- Chapter 5

Peculiarities of At Species: The Hydration-Induced Ground-State Change of AtO +

In this chapter we focus on the environment-induced ground-state change of AtO + , which we tackle with relativistic DFT and two-step wave-function-based approaches. Concerning this work, a manuscript has been submitted for publication in a physical chemistry journal. In the present chapter, the data is presented differently and additional information is given.

Introduction

Chemical reactions that occur with a change in the total electronic spin, when reactants are converted into products, are not uncommon. HCO + fragments, the addition of singlet CO to triplet Fe(CO) 4 that yields singlet Fe(CO) 5 , etc. 2 At room temperature, the kinetics of such reactions may be similar to the one of chemical reactions in which the total electronic spin is conserved. Nonetheless, from a theoretical viewpoint, the reactions that occur with a change in the total electronic spin are formally called spin-forbidden reactions.

Their occurrences imply that the diabatic PESs (describing pure spin-states) are brought close to or at a crossing point where hopping between them are mediated by SOC. If the SOC is strong, the chemical reaction resembles very well to a classical reaction that proceeds via a TS in the adiabatic representation.

In the gas phase, chemical reactions involving the AtO + cation and (spin-singlet) closedshell species are expected to be spin-forbidden. Based on the SOF molecular orbital diagram of AtO + , shown in Fig. 5.1, one may deduce that the At + (6p 4 ) and O(2p 4 ) association would lead to a triplet-spin ground-state. Multireference 4c-CCSD, CASSCF and c-SOCI/NEVPT2 calculations have so far been performed in order to scrutinize and determine quantitatively the electronic structure of AtO + . 3,4 It has been established that it has a 3  -ground SOF state, separated by ~0.6 eV from the first spinsinglet state, 1 , and by ~1.0 eV from the second one, 1  + . Hence, in analogy with O 2 , AtO + would not readily react with closed-shell species. Nonetheless, there is indirect experimental evidence that AtO + readily reacts in aqueous solution with small organic and inorganic ligands like Cl -, Br -, SCN -and OH -, 5,6 suggesting that the reaction spin-forbideness is irrelevant. It is thus speculated that either (i) spin-singlet contributions to the ground SOC state of AtO + are sufficient to trigger the unexpected reactivities or, (ii) specific interactions with the environment are at play. Actually, SOC leads to an essentially-triplet-spin ground-state (X 0 + ) which is composed mainly of the M S =0 spincomponent of the 3  -ground SOF state (~70%) and some minor contribution from 1  + (25%). 4 Also, it is worth noting that in few cases, interactions with the environment can lead to ground-state reversals. Hence, in such few cases one cannot rely anymore on the gas phase electronic structure picture to explain reactivities. Chemical species which are prone to environment-induced groundstate reversals are likely to be the ones that exhibit small energy gaps between their ground state and one or more excited states in the gas phase. Good examples of such species are the actinidebased ones, for which the close lying 5f, 6d and 7s orbitals of the actinide element generate plenty of low-lying and nearly-degenerate electronic states. Notably, the UO 2 and CUO species have recently been reported to undergo ground-state reversals when trapped in argon matrices. [7][8][9][10][11] For instance, the bare UO 2 molecule has a 3  u gas phase ground-state arising from 5f 1 7s 1 (U IV ) electronic configuration, while ~0.2 eV above it, there is a 3 H g excited state arising from 5f 2 (U IV ) configuration. In the presence of Ar atoms, the 3  u state is destabilized relatively to the 3 H g one due to repulsion between Ar and the 7s electron, leading this way to a 3 H g UO 2 ground state. While the abovementioned reactions between AtO + and (spin-singlet) closed-shell species are led in aqueous solution, then one may consider that the ligand-field created by surrounding water molecules induces a ground-state change. Ayed et al. have investigated the role of hydration on the ground-state of AtO + by means of 2c-DFT (M06-2X) calculations. 12,13 They have found that AtO + (H 2 O) n clusters with n≥4 which adopt closed-shell ground-states become more stable than the ones adopting spin-triplet ones. They attributed the driving forces behind this change to the electrostatic interactions between AtO + and water molecules and to charge transfers. 13 Hence, according to these findings, the solvated AtO + cation would have an essentially closed-shell groundstate, and would react in a spin-allowed fashion with closed-shell ligands. However, the story has not been set aside. Gomes et al. have performed uc-SOCI/NEVPT2 and relativistic TD-DFT (M06-L, M06 and M06-2X) calculations in order to address the electronic structure of the essentiallytriplet-spin AtO + (H 2 O) 1 cluster. 3 On one side, they have found that the SOCI excitation energies are only slightly lower than the ones of gas phase AtO + . On the other side, they spotted in the TD-DFT calculations larger decreases in the excitation energies with the increasing amount of exact exchange in the used XC functional. They concluded that XC functionals that share a large percentage of exact exchange, as M06-2X, do not bode well for addressing solvation effects on AtO + and hence questioned the accuracy of the studies of Ayed et. al. 12,13 It is worth noting that we have also established in Chapter 3 that the M06-2X functional should not be used to address the properties of At species.

In this chapter we aim at resolving the observed reactivity of AtO + in aqueous solution with additional 2c-DFT and more importantly c-SOCI calculations. Our objectives are to (i) establish rigorously whether AtO + undergoes a hydration-induced ground-state change and (ii) identify for the first time the nature of the involved SOF and SOC many-electron states. For this purpose, we will investigate the most stable AtO + (H 2 O) n clusters (n=1-6) obtained by Ayed et al., 13 and we will track down the natures of the low-lying SOF and SOC states using NEVPT2 and c-SOCI/NEVPT2 calculations, as functions of geometrical deformations.

Assessment of the computational methodology

In order to tackle our objectives, we have performed SOF and SOC calculations as detailed hereafter. The most stable AtO + (H 2 O) n clusters (n=1-6), previously optimized by Ayed et. al using the M06-2X density functional, 13 were re-optimized at SR-and 2c-DFT levels using the PBE0 functional. The scalar relativistic geometry optimizations were performed with the Gaussian 09 program package, 14 while the TURBOMOLE program package 15 was used for the 2c ones. For the At center, the ECP60MDF PP was retained to mimic the role of its 60 core electrons, 16 the remaining 25 valence electrons being treated with a modified aug-cc-pVDZ-PP basis set. 5,16 For the O and H centers, the aug-cc-pVDZ basis set is used. 17,18 For convenience, the association of these basis sets will be referred hereafter as AVDZ. On the identified SR-and 2c-DFT most stable structures, we have performed SA-CASSCF, NEVPT2 and eventually c-SOCI/NEVPT2 singlepoint calculations using the MOLPRO program package. 19 In the SA-CASSCF calculations, we correlate 8 electrons in 6 MOs. This active space is explicitly shown in the MO diagram in Fig 5 .1.

An equal-weighted orbital averaging is performed over 6S, 9T and 2Q (quintet) spin states. Note that this active space and SA scheme have been shown to be adequate to investigate the AtO + free cation. 4 We have also tested that enlarging the active space with some ligand-centered orbitals does not significantly improve the description of the electronic states of interest. NEVPT2 (8/6) calculations are then performed to account for the remaining part of the electron correlation. Lastly, using the SA-CASSCF(8/6) zero-order wave functions and the NEVPT2(8/6) correlated energies, c-SOCI/NEVPT2(8/6) calculations are performed in order to obtain the SOC spectra of interest. In all the wave-function-based calculations, we have retained the aforementioned ECP60MDF PP. The remaining 25 valence electrons of At are treated with the aug-cc-pVTZ-PP basis set 16 while for the O and H centers, the aug-cc-pVTZ one is used. 17,18 For the sake of simplicity, the combination of these basis sets will be referred to as AVTZ hereafter. Note that we have kept frozen the semi-core 5s5p5d shells of At and the 1s shell of O in all the NEVPT2 calculations.

Since our computational setup slightly differs from the ones used previously 3,4 to study the electronic structure of the AtO + cation, we start by revisiting it. We have thus performed NEVPT2(8/6)/AVTZ and c-SOCI/NEVPT2(8/6)/AVTZ single-point calculations on the 2c-PBE0/AVDZ equilibrium geometry of AtO + . We have identified the 1  and 1  + SOF excited states lying at 0.56 and 1.00 eV, respectively, above the 3  -ground SOF state. By accounting for SOC, we found that the essentially-triplet-spin a 1 state and the essentially-singlet-spin a 2 state are located 0.42 and 0.98 eV, respectively, above the X 0 + SOC ground state. These values are in exceptional agreement with reference ones reported in the literature (see Table 5.1). We conclude that no major basis set or a geometrical artifact is at play. The obtained CASSCF wave functions for the 3  -, 1  and 1  + SOF states,
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and the c-SOCI ones for the X 0 + , a 1 and a 2 states,
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are as well in very close agreement with reference ones reported in the literature. 3,4 Considering that AtO + undergoes a solvation-induced ground-state change, from Eqs. 5.1 and 5.2 one can hypothesize that a closed-shell configuration correlating most likely with

  2 1 
is strongly stabilized, becoming (or not) the ground SOF state, and most contributing to the ground SOC state.

In the following sections, we will assess the validity of this hypothesis by establishing which SOF and SOC many-electron states are involved in a hypothetical ground-state change that we will question.

The AtO + (H 2 O) 1 system

We start by studying the AtO + (H 2 O) 1 cluster in order to obtain a first picture of the influence of a water molecule on the electronic structure of AtO + , and thereafter we will investigate the AtO + (H 2 O) n systems (n=2-6). Equilibrium geometries for the AtO + (H 2 O) 1 system calculated with and without SOC are shown in Fig. 5.2. In agreement with the SR-M06-2X/AVDZ results of Ayed et al., 12,13 we found in SR-PBE0/AVDZ calculations that the lowest-energy structure for the unrestricted-triplet-spin cluster has the C 2v symmetry while the restricted-singlet-spin cluster has the C s one. In both cases, the water molecule is in close contact with the At center of the AtO + unit.

When these structures were relaxed in the presence of SOC (i.e. in 2c-PBE0/AVDZ calculations), the C 2v symmetry is maintained in an essentially-triplet-spin cluster while we failed to identify a C slike structure for an essentially-singlet-spin cluster. SOC appears to weaken the effect of solvation since, on one hand, it lengthens the distance between the water molecule and the AtO + unit in the essentially-triplet-spin cluster, and, on the other hand, it lifts the restricted-singlet-spin C s minimum from the ground-state PES of the AtO + (H 2 O) 1 system. 

The SOF electronic structure of the AtO + (H 2 O) 1 system

In this subsection, we track the natures of the lowest-lying SOF states in the AtO + (H 2 O) 1 system as function of geometrical parameters by means of CASSCF(8/6) and NEVPT2(8/6) calculations. At first, we check whether the identified SR-PBE0/AVDZ equilibrium structures correspond to minima of the NEVPT2(8/6)/AVTZ PESs. For this purpose we have performed a scan between the C 2v SR-PBE0/AVDZ equilibrium structure and a C s structure in which we monitor the evolution of the low-lying SOF states. Two main coordinates are at play, in particular the r(H 2 O-AtO + ) distance and the OAtO  angle (i.e. the angle between the water molecule and the AtO + unit). All the other parameters remain fixed at their values in the C 2v equilibrium structure. As can be seen in Fig. 5.3, we have obtained two minima on the ground-state PES, a C 2v restricted- PBE0/AVDZ unrestricted-triplet-spin cluster is pretty much clear. The ground state correlates with the 3  -one of AtO + while the first three excited singlet-spin states correlate with the twofold degenerate 1  and with the 1  + excited states of AtO + . We denote them as T 0 ( 3  -), S 0 ( 1 ), S 1 ( 1 ) and S 2 ( 1  + ). Fig. 5.3B further shows the evolution of these states toward the C s structure. Firstly, it can be seen that the S 2 ( 1  + ) state is largely destabilized. Secondly, due to the degeneracy lifting of the  * frontier orbitals, the energy gap between the S 0 ( 1 ) and S 1 ( 1 ) states largely increases along the minimum energy pathway between the C 2v and C s minima. The former state, S 0 ( 1 ), is actually crossing the T 0 ( 3  -) state at OAtO  lower than 120° and becomes the ground state. The E non-adiabatic energy difference (also in eV) between the singlet-spin and triplet-spin clusters of the AtO + (H 2 O) 1 system is also given (a positive value means that the triplet-spin cluster is more stable).

In terms of energetics, the water molecule is only slightly perturbing the electronic structure of AtO + at the unrestricted-triplet-spin SR-PBE0/AVDZ geometry (see Table 5.2). For instance, the degeneracy between the S 0 ( 1 ) and S 1 ( 1 ) states is only slightly lifted, by 0.01 eV. In change, there is a reorganization of the energy levels at the restricted-singlet-spin SR-PBE0/AVDZ geometry: the T 0 ( 3  -) state becomes the first excited state, 0.17 eV higher in energy than the newly adopted S 0 ( 1 ) ground state (see Table 5.2). At this C s geometry, the obtained CASSCF wave functions for the different SOF states are:
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Eq. 5.3 states notably that S 0 ( 1 ) correlates with to the closed-shell component of the twofold degenerate 1  state of AtO + (i.e. to 1  (2) in Eq. 5.1) whereas S 1 ( 1 ) corresponds to the open-shell component (i.e. to 1  (1) in Eq. 5.1). Hence, the ground state of the singlet-spin AtO + (H 2 O) 1 cluster is closed-shell and originates from the closed-shell 1  component of AtO + .

So far, we have determined the natures of different low-lying SOF states at the SR-PBE0/AVDZ equilibrium structures of the AtO + (H 2 O) 1 system. Clearly, going from the unrestricted-triplet-spin cluster toward the restricted-singlet-spin one, the ground-state changes from T 0 ( 3  -) to S 0 ( 1 ), i.e. between the 3  -state and the closed-shell component of 5.2).

Hence, a change in the ground state of AtO + does not happen in the scalar relativistic limit if one considers only the one-water system.

5.3.2

The SOC electronic structure of the AtO + (H 2 O) 1 system

We aim now at (i) establishing the nature of the lowest-lying SOC energy levels that occur at the essentially-triplet-spin equilibrium geometry of the AtO + (H 2 O) 1 system (identified at the 2c-PBE0/AVDZ level), and (ii) determining the evolution of the SOC states identified at point (i) toward the PES region where the scalar relativistic restricted-singlet-spin equilibrium geometry was found. As the water molecule is approaching the AtO + unit in a C 2v fashion, we have monitored the evolution of the five lowest-lying SOC states of AtO + , i.e. of the essentially-triplet-spin X 0 + ground state, of the effectively twofold-degenerate and essentially-triplet-spin a 1 excited state, and of the effectively twofold-degenerate and essentially-singlet-spin a 2 excited state. We place this scan in Fig. 5.4. It can be seen that the ordering of the X 0 + , a 1 and a 2 states is maintained all along the scan. This is expected since the relative energies between the SOF components that mostly contribute to the wave functions of the SOC states in question, are basically unchanged all along the scan (c.f. Fig. 5.3A). Naturally, the compositions of these wave functions are also mostly unchanged. For instance, at the essentially-triplet-spin 2c-PBE0/AVDZ equilibrium structure, the ground SOC state is mainly composed of the M S =0 spin-component of the T 0 ( 3  -) SOF state (68%), the first two essentially-triplet-spin excited SOC states are mainly composed of the |Ms|=1 spincomponents of the T 0 ( 3  -) SOF state (86%), and the first two essentially-singlet-spin excited SOC states are mainly composed of the S 0 ( 1 ) and S 1 ( 1 ) SOF states (~82%). Hence, we label the five lowest-lying SOC states that occur at the essentially-triplet-spin 2c-PBE0/AVDZ equilibrium structure as

  0 X   ,   1  a and
  2  a , as shown in Fig. 5.4. We finally note that the

    0 1 X    a and     0 2 X  
 a excitation energies (~0.40 and ~0.95 eV respectively) are very similar with their analogues in the free AtO + cation (c.f. Table 5.1), which supports again the argument that the water molecule does not perturb much the electronic structure of AtO + when one considers the C 2v geometry. calculations. We have studied the dependence of the energy of the identified  

0 X   ,   1  a and   2  a
SOC states, and of the SOF composition of their wave functions, as a function of the r(H 2 O-AtO + ) and OAtO  parameters (see Fig. 5.5A). We noted that all these SOC states have minimum energy points at C 2v geometries and that they all rise in energy toward the PES region where the scalar relativistic restricted-singlet-spin C s structure was localized. At first, we focus on the evolution of the SOF composition of the SOC ground state wave function, along the considered scan (see Fig. 5.5B). At the essentially-triplet-spin 2c-PBE0/AVDZ geometry, the SOC ground

state is labeled   0 X  
and toward the C s SR-PBE0/AVDZ structure, its composition in the M S =0

T 0 ( 3  -) and in the S 2 ( 1  + ) SOF spin-components is gradually diminished while the composition in the S 0 ( 1 ) SOF component is increased. Indeed, the T 0 ( 3  -) and S 2 ( 1  + ) SOF states are destabilized along the considered scan while the S 0 ( 1 ) one is, in change, stabilized. At the SR-PBE0/AVDZ restricted-singlet-spin geometry (C s symmetry), we find that the ground-state SOC wave function has a mixed singlet-triplet character, 45% of M S =0 T 0 ( 3  -), 5% of S 2 ( 1  + ) and 41% of S 0 ( 1 ), and cannot be considered anymore as an essentially-triplet-spin ground-state. Actually, we no longer label this SOC ground state as   0 X   at this geometry but simply as 0  (see Fig. 5.5A). We now focus on the evolution of the effectively twofold-degenerate    . Inspecting 3  , we noticed that its S 0 ( 1 ) SOF composition is diminished to only 46% at the scalar relativistic C s structure and that the SOF contribution from the M S =0 spin-component of T 0 ( 3  -), which is actually 0% at the 2c-PBE0/AVDZ essentially-triplet-spin geometry, is increased up to 31%. Regarding the 4  state, its composition in terms of SOF states remains almost constant all along the scan. Also, we noted that a C s geometry does not correspond to a minimum for neither 3  nor 4  (see Fig. 5.5A), fact which is in line with our failure in localizing an essentially-singlet-spin C s equilibrium structure at the 2c-PBE0/AVDZ level. In the considered AtO + (H 2 O) 1 system, a fierce competition exist between SOC and solvation, the former one dominating and destabilizing the scalar relativistic restricted-singlet-spin equilibrium structure.

5.4

The AtO + (H 2 O) n systems (n=2-6)

The most stable equilibrium geometries for the AtO + (H 2 O) n systems (n=2-6) are shown in 

The SOF electronic structures of the AtO + (H 2 O) n systems (n=2-6)

In this subsection, we focus on the nature of the lowest-lying SOF states at the SR-PBE0/AVDZ equilibrium structures. We are notably interested in those SOF states that correlate with the 3  -, 1  and 1  + ones of the free AtO + cation. For each structure, we present in Table 5.3 the vertical excitation energies obtained at the NEVPT2(8/6)/AVTZ level of theory. At first, we discuss the energetics and natures of the CASSCF wave functions of the different SOF states obtained at the unrestricted-triplet-spin equilibrium geometries. Note that previously we have guessed that the water molecules do not perturb much the electronic structure of the AtO + unit. Here, we found that the ground-state CASSCF wave functions are essentially single-configurational with ~80% weights system is also given (a positive value means that the triplet-spin cluster is more stable).

on the   2 2 2 *1 *1 *0        configuration,
We would like to point out that most of the unrestricted-triplet-spin geometries pertain to the C 1 symmetry point group. Hence the  and  notation for the orbitals does not hold anymore from a rigorous symmetry viewpoint. Nonetheless we designate as  or  those MOs that correlate
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  is out of the state-averaging space, we only report a lower limit for the corresponding excitation energy. b The values in parenthesis are calculated at the NEVPT2(8/6)/AVTZ//SR-PBE0/AVTZ level of theory. These values show that there is no bias introduced by the use of equilibrium geometries calculated with the smaller AVDZ basis set.

(according to visual inspection) with the  and  orbitals of AtO + . To exemplify, we show in Fig. 5.7 the natural orbitals involved in the active space of the SA-CASSCF calculation on the most stable unrestricted-triplet-spin AtO + (H 2 O) 4 cluster. ground state, we localized for each unrestricted-triplet-spin cluster three singlet-spin states. From Table 5.3, one can see that the first two of them are nearly degenerate at the n=2 geometry and that the energy gap between them increases with increasing n (at the n=6 geometry, this gap reaches 0.25 eV). Inspecting the CASSCF wave functions, we found that the lowest energy singlet-spin roots have ~82% weights on the closed shell configurations and overall exhibit more and more single-configurational character with increasing n, as shown in Eq. 5.4.
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Concerning the CASSCF wave functions of the second singlet-spin roots, they have in all n cases ~80% weights on the  2 2 2 *1 *1 *0

       configuration.
It is now undoubtedly that these sets of states correlate with 1  of AtO + (i.e. the lowest lying one correlate with the closed-shell component of 1  while the second one with the open-shell component of 1 ). Thus, we labeled the first two singlet-spin states as S 0 ( 1 ) and S 1 ( 1 ). At this point, it is not known if the third singlet roots actually correlate with 1  + . This possibility is verified by a close inspection of the associated CASSCF wave functions which are built essentially (~80%) from the closed-shell configurations:
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As the CASSCF wave function of the S 0 ( 1 ) state, the one of S 2 ( 1  + ) also becomes essentially single-configurational with increasing n (see Eq. 5.5). But S 2 ( 1  + ) is at the same time slightly destabilized with respect to the   3 0 T   ground state (c.f. Table 5.3). We now continue by discussing the energetics and the nature of the lowest-lying SOF states obtained at the restricted-singlet-spin geometries. Monitoring the evolution of

  3 0 T   ,   1 0 S  ,   1 1 S  and   1 2 S  
along a scan, in each case, becomes a tedious work since many geometrical parameters are now at play. A simpler approach would be to back-trace the lowestlying electronic states to the isolated AtO + cation. We picked-up the two extremes, i.e. the n=2 and the n=6 restricted-singlet-spin structures, and we monitored the evolution of the states correlating with the 3   , 1  and 1   ones of isolated AtO + , while the 2(6) water molecules are approaching/moving away in C 2v (C s ) symmetry. We stress that in the n=6 case, two water molecules (i) are in direct contact with the At center at the r(H 2 O-AtO + ) equilibrium distance, and

(ii) bear each one a network of water molecules (see Fig. 5.6). While r(H 2 O-AtO + ) was increased, the two blocks of three water molecules were moving/approaching simultaneously and symmetrically with respect to the AtO + unit. The obtained energy profiles are displayed in Fig. 5.8.

In both cases (i.e. restricted-singlet-spin structures of the n=2 and n=6 cases), the targeted states become attractive and evolve toward their minima placed at different equilibrium distances.

Notably, the S 0 ( 1 ) state (i.e. the state that correlates with the closed-shell component of the 1  state of AtO + ) crosses the T 0 ( 3  -) one and becomes the lowest-lying at distances somewhat lower than 2.9 Å. It is interesting to note that the resulting equilibrium distances agree well with the ones obtained in SR-PBE0/AVDZ calculations (~2.4 Å for the n=2 case and ~2.3 Å for the n=6 case, see Fig. 5.6). It is also worth noting that the S 0 ( 1 ) state is much more stabilized relatively to the T 0 ( 3  -

) one with increasing n; this relative stabilization amounts to ~0.5 eV for the n=2 case and to ~2.0 eV for the n=6 case (non-adiabatically). This behavior originates from the field created by the water molecules which leads to an energy gap between the originally degenerate  * frontier orbitals of the AtO + unit. This gap largely increases with increasing n, resulting in a significant energy cost to promote an electron to the higher-lying  * orbital than to pair two electrons in the lowest energy one (and form a closed-shell configuration characterizing the S 0 ( 1 ) state). Regarding the wave function of S 0 ( 1 ), it is essentially single-configurational. The weight on the leading closed-shell configuration overall slightly increases form the n=2 case to the n=6 one: 

          2 
                                                             (5.6) 
At the restricted-singlet-spin geometries of the n=2-6 clusters, the T 0 ( 3  -) states (i.e. the states that correlate with the 3  -one of the isolated AtO + ) are always the first excited states. Their CASSCF wave functions are mainly single-configurational with weights larger than 80% on the open shell

  2 2 2 *1 *1 *0        configuration.
From both Table 5.3 and Fig. 5.8, the S 1 ( 1 ) and S 2 ( 1  + ) states (i.e. the states that correlate with the open-shell component of 1  and with the 1  + state of the isolated AtO + ) appear largely destabilized with increasing n; for the n=6 case, S 1 ( 1 ) is 3.40 eV vertically above the S 0 ( 1 ) ground state (~2.5 eV non-adiabatically, see Fig. 5.8B), while S 2 ( 1  + ) is much higher in energy, more than 5.76 eV above S 0 ( 1 ) (~4.0 eV non-adiabatically, see Fig. 5.8B).

Note that the wave function of the S 1 ( 1 ) state is, in each case, built from the two

  2 2 2 *1 *1 *0       
determinants, the sum of their weights being ~82%.

Finally, we look at the non-adiabatic energy difference between the equilibrium unrestricted-triplet-spin and restricted-singlet-spin AtO + (H 2 O) n structures (n=2-6). From Table 5.3

it is clear that beyond n=3 water molecules in the AtO + hydration shell, the singlet-spin clusters become more and more stable. For instance, the singlet-spin cluster in the n=6 case is 0.64 eV more stable than the triplet-spin one, at the NEVPT2(8/6)/AVTZ//SR-PBE0/AVDZ level of theory. At this point, we conclude that hydration induces a SOF ground state change in AtO + and that this ground-state change proceeds between the T 0 ( 3  -) and S 0 ( 1 ) states of solvated AtO + , i.e. between the 3  -ground state of gas phase AtO + and the closed-shell component of the 1  excited state. Thus, these findings support and complement the conclusions of Ayed et al. 12,13 In order to give a definite conclusion on the ground-state change in solvated AtO + , we now investigate the occurrence and natures of the lowest-lying electronic states under the influence of SOC. A3.1 in Appendix 3) and CASSCF wave functions of the lowest-lying SOF states. At the essentially-singlet-spin geometries, the ordering of the SOF states is unchanged but the S 0 ( 1 )→T 0 ( 3  -), S 0 ( 1 )→S 0 ( 1 ) and S 0 ( 1 )→S 2 ( 1  + ) excitation energies are tremendously diminished. However, regarding their CASSCF wave functions, we observed no particular changes.

At the essentially-triplet-spin geometries, the ordering of the SOF states and the corresponding excitation energies are mostly unaffected for n≤4. For the n=5-6 cases, likely due to larger geometrical changes induced by SOC, we noticed a ground-state change: the S 0 ( 1 ) states lie at lower energies than the T 0 ( 3  -) ones. We note that there are no particular changes in the CASSCF wave functions of the different SOF states.

We now focus on the analysis of the SOC electronic structures of the different AtO + (H 2 O) n structures (n=2-6). Vertical excitation energies from the 0  SOC ground states, computed at the c- SOCI/NEVPT2(8/6)/AVTZ level of theory, are presented in Table 5.4. We start by commenting on the essentially-triplet-spin clusters. Fig. 5.9 shows the evolutions of the SOF compositions of the five lowest-lying SOC states with increasing n. In the n=2 case, one can observe that (i) the 0  ground SOC state has a main contribution from the M S =0 spin-component of the T 0 ( With increasing n, the values in Table 5.4 indicate that the energy gaps between 1  and 2  , and between 3  and 4  , gradually increase. In fact, they are all destabilized with respect to the 0  ground states; 1  and 2  by ~0.35 eV (on average), and 3  and 4  by ~0.20 eV (on average). Fig. 5.9 shows that the wave functions of 1  , 2  and 4  are mainly unchanged with increasing n while there is a concerted change in the SOF compositions of the 0  and 3  wave functions. The contribution of the M S =0 spin-component of T 0 ( 3  -), as well as those of the S 2 ( 1  + ) component, decreases in the wave function of 0  while it increases in the one of 3  . Also, the contribution of the S 0 ( 1 ) component is largely increased in 0  while it is largely decreased in 3  . This trend was rather expected from the evolution of the SOF states that was previously discussed (see notably Table A3.1). Reminding that 0  and 3  were established to correlate with X 0 + and with the essentially closed-shell component of the a 2 SOC states of isolated AtO + (in the n=2 case), one can state that, with increasing n, these two SOC states of AtO + kind of switch between them.

We now continue by discussing the essentially-singlet-spin clusters. The evolutions of the SOF compositions of the five lowest-lying SOC state wave functions, with increasing n, are shown in Fig. 5.10. In fine, we compare the relative energies of the essentially-triplet-spin and essentiallysinglet-spin AtO + (H 2 O) n clusters (n=2-6). Inspecting the E values given in Table 5.4, we notice that beyond n=4, the essentially-singlet-spin clusters become more stable. As shown above, these clusters exhibit essentially-singlet-spin essentially-closed-shell ground-states. In the SOC limit, through a perturbative approach, AtO + undergoes a hydration-induced ground-state change to an essentially-closed-shell one, and thus can readily react in a spin-allowed fashion with closed-shell species. We hence confirm the conclusions of Ayed et al. 12,13 and we complement them with the involved many-electron states, 3  -and one component of 1  in the SOF picture, and X 0 + and one component of a 2 when SOC is accounted for.

Characterizing the role of solvation on the EBO of AtO +

The aim in this subsection is to analyze the nature of the bond in the solvated AtO + cation, from the viewpoint of EBO and spin-orbit-coupled EBO (SOC-EBO). Relying on a singleconfigurational methodology, the BO is simply calculated from the occupation numbers of a set of MOs describing the particular bond, and requires the knowledge on the MOs characters (i.e.

bonding, anti-bonding or non-bonding). While the chemical bond is stretched toward the dissociation limit, the BO concept cannot be used anymore to probe the bond nature since, on one side the BO does not diminish gradually toward bond dissociation, and on the other side the wave function typically becomes multiconfigurational in such a context. The concept of EBO arises instead from multiconfigurational methodologies. Considering that one performs a CASSCF calculation for instance, then the EBO is simply defined as the sum of the weighted BOs of the individual configurations that span the CASSCF wave function, 4 or by considering the populations of the natural orbitals belonging to the active space. 20 For a well-defined EBO, the choice of the active space in the CASSCF calculation must include the MOs that describe well the envisaged bond. This choice is quite trivial for diatomics but admittedly not beyond them. It may be trivial in the latter case if symmetry is retained. Having symmetry (or a near-symmetrical situation) is actually an asset since one can then classify the active space MOs according to , , , etc., symmetries and divide the total EBO in EBO  , EBO  , EBO  , etc. components. Nonetheless, beyond two-atom systems the active space must be converged on a set of bond-localized pairs of MOs, in order to obtain meaningful EBOs. 4 If heavy atoms are present in the studied system, or more importantly when the studied bond involves heavy atoms, then one may account for SOC in the EBO calculation. Quite recently, the EBO concept has been extended to the framework of two-step SOC calculations as c-SOCI ones. 4,21 The derivation of the SOC-EBO from a c-SOCI calculation is readily obtained from calculated EBOs of all the SOF spin-components generated at first. Then, for a given SOC state, the SOC-EBO is nothing but the weighted sum of the EBOs corresponding to all SOF spin-components used to express the respective SOC state, 4 or it can be computed from the updated populations of the natural orbitals. 21

The isolated AtO + cation

Both SOF-EBO and SOC-EBO concepts have recently been used to probe the nature of the bond in the lowest-lying SOF and SOC states of AtO + . 4 Since we are actually interested in probing the bond nature in solvated AtO + , at first, we will start by assessing the case of the gas-phase AtO + .

EBOs corresponding to the lowest-lying electronic states of isolated AtO + , calculated using our computational setup, are presented in Table 5.5 together with values recently reported in the literature. Regarding all the envisaged states, we highlight that our calculated EBOs are in full agreement with the ones reported in the literature. We would like to point out the meaning of the ground-state EBOs. The 3  -ground state of AtO + has an EBO of ~1.75, value that indicates almost a formally double bond character. When SOC is accounted for, the EBO of the X 0 + ground state of AtO + is only slightly diminished. This trend is due to the fact that the EBO of 1  + , the second SOF spin-component that mainly contribute to the wave function of X 0 + , is just a bit lower than the one of 3  -. The decreased SOC-EBO value for the X 0 + ground state of AtO + actually points out the effect of SOC on this chemical bond, which is thus slightly weakened. 

The solvated AtO + cation

We investigate now the nature of the AtO + bond in the AtO One can see that all natural orbitals are well localized on the AtO + bond and, visually, have clear bonding and anti-bonding characters. With increasing n, the following aspects are observed, (i) the total EBOs for both the SOF and SOC ground states are slightly increased (the change in EBO from the n=2 case to the n=6 one is ~0.1), (ii) the energy difference between the  and  * natural orbitals decreases while the energy difference between the ̅ and ̅ * ones increases, which implies that the bond becomes less and less  bonding but more and more  bonding, (iii) the EBOs for the SOF and SOC ground states are quite similar and reflect the fact that the ground SOF state is by far the major contribution to the ground SOC state. The slight decreases induced by SOC are similar to the effect of SOC on the bonding in the isolated AtO + . That is, SOC appears to excite electrons from  to the  * orbitals, thus reducing the total EBO. This phenomenon is illustrated in Fig. 5.12 where the occupation numbers of the we conclude that this direct coupling is responsible for the observed changes. Moreover, the population of one  orbital is decreased by 0.04 e, meanwhile the one of the  * orbital is increased by the same amount. Therefore, overall, the main effect of SOC on the AtO + bond is to promote 0.04 e from a  * to the  * orbital.

Drawing a major conclusion out of this study, we would like to point out that bonding in AtO + is very similar in both the gas-phase and water, though they exhibit different characteristics;

the bonding in bare AtO + is more  than  bonding while the opposite holds in solvated AtO + . The bond strength in solvated AtO + may however be slightly smaller than in gas phase since the the  BO is decreased, which appears not to be compensated by the increase in the  one (e.g. the bond distance is elongated by ~0.06 Å).

Conclusion

In this chapter, the unexpected reactivity of the predominant At species in acidic and oxidizing conditions, AtO + , with closed-shell ligands has been elucidated mainly using relativistic wave-function-based methods. In the gas phase, AtO + develops a 3  -ground state. When SOC is included, the M S =0 3  -spin-component contributes for ~68% to the X 0 + ground SOC state, thus rendering it of essentially-triplet-spin character. Nonetheless, a substantial closed-shell singlet-spin character is also evidenced for this SOC ground state (~26%). Even though this latter character may be sufficient to trigger non-spin-conserving reactions, we have followed the hypothesis that the reactive electronic state of AtO + in aqueous solution is a different one, essentially-closed-shell and of singlet-spin multiplicity. In the SOF formalism and in the presence of water molecules, we found that AtO + adopts a closed-shell (singlet-spin) ground-state, in agreement with the studies of Ayed et al. 12,13 . We have shown that this newly adopted ground state is S 0 ( 1 ), a SOF state that correlates with the closed-shell component of the 1  state of gas phase AtO + . That is, even though this type of phenomenon is very rare, environment induces a ground-state change in AtO + . When SOC was accounted for alongside hydration, we have found that the most stable AtO + (H 2 O) n clusters (n≥5) adopt essentially-singlet-spin ground-states. We have shown that these SOC ground states are dominantly composed by the S 0 ( 1 ) SOF components. Taking into account that the 1  state contributes by ~83% to the essentially-singlet-spin a 2 state, we conclude that the adopted SOC ground state of solvated AtO + actually correlates with a 2. More precisely, it correlates with the essentially closed-shell component of a 2. Thus a hydration-induced ground-state change occurs in AtO + , the electronic state responsible for the unexpected reactivity being the essentially-singlet-spin and essentially-closed-shell a 2 excited state of AtO + . We have then shown, using the EBO concept, that the bonding in AtO + is similar in the gas-phase and in aqueous solution, even though in the latter, solvation decreases the  bond character and increases the  one. Pairing this with the slight bond elongation, gives hints that the bond strength in solvated AtO + may be slightly weaker than in the gas phase, as expected.

Finally, we would like to highlight again that the outcomes of our two-step wave-functionbased studies corroborate with the 2c-DFT ones of Ayed et al, and both explain the unexpected reactivity of AtO + in aqueous solution. This can be considered as a further proof of the relevance of using two-step approaches to explore the electronic structures of At species.

Chapter 6

Reactivity of At Species: Completion of the

Astatine Pourbaix Diagram

By combining outcomes of experiments and of relativistic quantum mechanical studies, we aim in the present chapter at identifying a new At species that can predominate in non-complexing media.

This work is of interest to optimize or design radiolabelling protocols. It has been the subject of a publication in Chem. Eur. J. 1 and will be presented in a slightly different way in the present chapter since additional details will be given.

Introduction

Knowledge of the Pourbaix (E-pH) diagrams of chemical elements is important especially in the context of industry applications. For instance, there are the very famous examples of Fe, Ni and Cr elements whose Pourbaix diagrams play key-roles in designing anticorrosive alloys based on these metals. [2][3][4] Regarding the Pourbaix diagram of At, its usefulness in the context of nuclear medicine was lengthy discussed in Chapter 1. We will briefly recall only the important aspects.

Gathering the currently available data, the At Pourbaix diagram that can be built is shown in Fig. NHE), four different At species can predominate: At -, At + , AtO + and AtO(OH). Less is known regarding the predominance domains of At species in basic media. In basic and reducing conditions, a negatively charged At species has been unraveled by electromobility experiments. 5 By analogy with the case of iodine, this species was assumed to be At -(i.e. since the Pourbaix diagram of I shows a stable I -species across the full pH range, see for instance Ref. 6). We do think that this species is indeed At -, 7 and actually, the question that we would like to address is rather related to its predominance in oxidizing conditions. Indeed, for labeling purposes, knowing the predominant species in given conditions is important since it would dictate the types of mechanistic approaches which can be used. Several authors actually do pose for the electrophilic inertness of At in some specific in vivo conditions. 8 Exploiting approaches that involve At -appears interesting. However, since redox conditions may be at play, relying only on basic conditions is not sufficient. The objective in this chapter is to determine the predominant At species in basic and oxidizing conditions. Note that knowledge on this species may lead to the completion of the At Pourbaix diagram in non-complexing aqueous media (up to a given pH range). [9][10][11] We quote again that spectroscopic tools cannot be used to obtain structural information on At species. Hence, we combine ultra-trace radiochemical studies with outcomes of relativistic quantum mechanical calculations in order to obtain hints on the nature of the supposedly predominant At species in basic and oxidizing media.

Outcomes from experiments

HPIEC and competition experiments have been performed by radiochemist colleagues at the SUBATECH laboratory. 1 The radiochromatogram obtained through HPIEC revealed that, in concentrated NaOH solutions, the predominant At species is retained by the anionic exchange column. Studying the dependence of the retention factor (k) of this species as a function of NaOH concentration, it has been revealed that this species bears a single negative charge (by confronting the obtained trend to the one obtained for iodide, I -). Furthermore, the associated peak on the radiochromatogram vanishes when lowering the pH of the media from 11 to 5.5, while a peak corresponding to the formation of the AtO(OH) species appears. The latter species was previously shown to predominate at pH~5.5. 11 SLC experiments have been thereafter performed. Briefly, the principles of SLC experiments are: 12 a resin suspension (ion exchanger) is brought to equilibrium with a bulk solution (the desired media), and the At sample is then added. After the equilibrium partition of At between the two phases is achieved, centrifugation is applied to separate them. The distribution coefficient (K d ) is calculated as:

tot sol d sol A A V K A m    (6.1)
where A tot and A sol are the total activity in the suspension (solution + resin) and the total activity in the solution, respectively, while V and m are the volume of the liquid phase and the mass of the dried resin, respectively. Varying the pH from ~4 to ~11, while maintaining oxidizing conditions, leads to a change in the K d value above pH=6. Beyond this point, the present species exhibits a strong affinity for the anionic exchange resin. This species corresponded to the anionic one unraveled in the HPIEC experiment. Thus, the AtO(OH) species converts into an anionic one bearing a single negative charge. Also, from the pH dependence, one can conclude that a single proton is involved in the conversion process. One can hypothesize that beyond pH~6, the AtO(OH) species (i) undergoes deprotonation leading to the candidate 2 AtO  anionic species: 

          a AtO(
    anionic species H AtO OH K           (6.4) 
Using the data obtained from the SLC experiments, the value of Log K was found to be -6.9±0.2.

The missing piece from "the puzzle" is the identification of the anionic species in question, being

either 2 AtO  or   2
AtO OH  , i.e. does the speciation change proceeds as Eq. 6.2 or Eq. 6.3? This aspect is here tackled with relativistic quantum mechanical approaches.

Computational details

According to the methodological approach presented in Chapter 3, regarding the accurate computation of thermodynamic constants, we have used thermodynamic cycles with exchange reactions that here involve At-containing species as well as Br-containing species. In order to obtain gas phase geometries, electronic energies and vibrational frequencies of the various species, we have performed quantum mechanical calculations based on DFT and 2c-DFT approaches. The latter one was envisaged only when calculations were performed on species containing a Br or an At atom. The B3LYP hybrid GGA density functional 13 was retained since it perform well in DFT calculations on At species (see Chapter 3), and most importantly for the computation of equilibrium constants in good agreement with experiment. 9,11 The ECP10MDF and ECP60MDF PPs 14 have been used to mimic the roles of the 10 and 60 core electrons of the Br and At centers, respectively.

cycle rooted in a proper exchange reaction. That is, in order to profit as much as possible from an eventual cancelation of the possible abovementioned errors. We arrived at choosing a protonexchange reaction involving the hypobromous acid (HBrO): G  ) associated to reaction 6.5, which can be derived from the thermodynamic cycle shown in Scheme 6.1, Scheme 6.1 Thermodynamic cycle used to calculate the free energy changes in aqueous solution for the reaction 6.5. leading to the following relation:
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          * s g solv 2 solv solv solv AtO HBrO AtO OH BrO G G G G G G           (6.7) 
where g G   is the reaction free energy change in the gas phase and the remaining terms are the free energies of solvation of the respective chemical species in water.

In Fig. 6.1, we show a schematic representation of the studied reaction where we print the equilibrium geometries of the At reactants and products as obtained at the (2c-)B3LYP/AVDZ level of theory. values of -14.1 and -11.7, respectively. We note that these values are considerably far from the measured value, Log K=-6.9±0.2. One may speculate that our calculated acidic constant may improve with a better description of solvation effects. Indeed, we deal with the solvation of charged species and short-range electrostatics and hydrogen bonding for instance may bring significant energy stabilizations which cannot be accounted with implicit solvent models as CPCM. However, we note that an improvement of more than 4 logarithmic units, which could bring calculated and measured values in close agreement, is rather unlikely. For instance, calculating the equilibrium constant for a ligand-exchange reaction involving the charged AtO + -thioacetamide complex, 22 F. Bassal found that the quantum mechanical treatment of up to three explicit water molecules in the solvation spheres of the charged species, improves it hardly by ~1 unit of Log. We hence show no interest in proceeding likewise in the present case and we conclude that the 2 AtO  species cannot be the targeted anionic species that appears above pH=6.

On the potential predominance of the

  2

AtO OH  species

In this section, we would like to assess through quantum mechanical calculations if the predominant At species in basic and oxidizing conditions could be   2 AtO OH  . We wish to bring a computational estimate for the equilibrium constant of the secondary hydrolysis reaction of AtO + , K hyd,2 , and compare it to the experimentally determined K value. Again, we avoid computing K hyd,2 directly from Eq. 6. 
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where g G   is the free energy change in the gas phase and the remaining terms are the free energies of solvation of the respective species in water. Note that At species of interest exhibit several stable conformers. Their free energies of solvation are thus calculated according to the Boltzmann distribution formula presented in Chapter 3 (Eq. 3.1).

In Fig. 6.2, we show a schematic representation of the studied ligand-exchange reaction with the equilibrium geometries of the reactants and products as obtained at the (2c-)B3LYP/AVDZ level of theory. Concerning the

  2

AtO OH  species, we identified two stable conformers pertaining to the C 2 and C s symmetry point groups. The latter conformer is the most stable one, by ~2 kJmol -1 in the gas phase and by ~4 kJmol -1 in aqueous solution. At thermal equilibrium, the populations of the stable conformers are given by the Boltzmann distribution law, and accordingly, we have for a conformer i: preventing us to firmly conclude on the above statement. According to the reasoned discussion on the limits of the implicit solvent models, given in the previous section, we are interested for estimating the influence of microsolvation on the calculated Log K hyd,2 value. Indeed, strong interactions primarily between the charged species and water molecules of their first hydration shells may occur, preventing us to reach the accepted ~1 logarithmic unit of accuracy when we calculate the reaction equilibrium constant using bare anionic species and an implicit solvent model.
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Stepwise hydration study

Our aim is to calculate Log K hyd,2 in a similar fashion as reaction 6.10, but by considering an explicit quantum mechanical treatment of water molecules in the hydration spheres of the reactants and products. Treating explicitly only molecules of the first hydration shells is admittedly sufficient, however their number is not necessary small and yet may add up to a tremendous computational cost when conformational analyses are attempted. To exemplify, a study on the aqueous solvation of the Hg(OH) 2 molecule revealed that up to ~24 water molecules are necessary to fully form its first hydration shell. 23 Hence, we propose to include in the quantum mechanical treatments only the water molecules involved in the strongest interactions with the solutes, while increasing their number up to when a balanced description of the interactions on the LHS and RHS of the reaction is achieved. The latter requirement arises from our methodological approach, which mostly relies on error cancelations. Note that long-range bulk effects are introduced by using the CPCM-UAHF//UAKS scheme. The Log K hyd,2 value remains calculated from the free energy change, * s G  , of reaction 6.10, which is this time derived from the thermodynamic cycle shown in Scheme 6.3, which readily leads to: 
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where n and m stand for the number of clustered water molecules with, respectively, the Atcontaining species and the ligands. Note that regarding Scheme 6.3 (see next page), several aspects hold true, 24 (i) the free energy changes for the formation of solvated ion clusters in liquid water are 0, (i.e. the

 

* G i  (i=a, b, c, d) terms), and (ii) the LHS and RHS sums of the related correction terms to the solvation free energies are equivalent and vanish in Eq. 6.14.

Calculated values for Log K 2exc and Log K hyd,2 computed according to Eq. 6.14 are gathered in Table 6.1. Each particular case will be presented hereafter and the discussion will be organized in terms of n. AtO OH H O      conformer. These two kinds of interactions are clearly not of the same type; they bring different energy contributions and thus unbalanced errors when their explicit treatment is attempted with approximate quantum mechanical methods. One may think of possibilities to balance the interactions occuring on the LHS and RHS of the ligand-exchange reaction. For instance, to match the water-hydroxyde interaction occuring on the RHS, one may introduce and treat explicitly one water molecule in the hydration shell of the hydroxyde ligand on the LHS (i.e. setting m=1). Proceeding this way, one should also introduce and treat explicitly one water molecule in the hydration sphere of the bromide ligand, on the RHS, such that the number of water molecules is itself balanced in the reaction. This newly introduced water-bromide interaction on the RHS of the reaction is however not balanced by an analogue on the LHS. Thus, we did not manage to ensure a reasonable balance of the interaction types. As it can be seen in Table 6.1, we have obtained in the n=1, m=1 case only a very slight improvement of 0.2 logarithmic units for Log K hyd,2 . It is now clear that the values of n itself must be increased in order to obtain a better description of the solvation free energies.

n=2

We start the discussion by a conformational analysis. The equilibrium geometries obtained at the 2c-B3LYP/AVDZ level of theory for the most stable

  2 2 2 AtOBr H O      and     2 2 2 AtO OH H O    
 conformers are shown in Fig. 6.4. In both cases there are at least two conformers which appear significantly populated. For the most populated    Type 4: interaction between two water molecules, allows us to conveniently summarize them and lead comparisons as in Table 6.2. Note that only the two most stable conformers, representing more than 80% of the population of the At-containing species occurring on the reaction LHS and RHS, are considered for counting the interactions. Considering only bare ligands, one may notice that there is an unbalance between the interactions of Type 2 and Type 3, i.e. interactions between water molecules and hydroxide or bromide moieties. We thus do not expect a priori a great improvement on Log K exc and Log K hyd,2 .

Introducing and treating explicitly a single water molecule in the hydration shell of the ligands (i.e.

n=2, m=1 case) then one can fully balance the interactions of type 3 and also partly the ones of type Using the terminology for the water-solute interaction types introduced previously, we resume the interactions occurring on the LHS and RHS of the ligand-exchange reaction in Table 6.3. Note that only the most stable conformers, representing about 80% of the population of the Atcontaining species occurring on the reaction LHS and RHS, are considered for counting the interactions. Considering only bare ligands, one can notice that the interaction types occurring on the LHS and on the RHS are quite unbalanced, notably regarding the Type 2 but also Type 1 and Type 3. Table 6.3 Summary of the water-solute interactions occurring on the LHS and RHS of the studied ligand-exchange reaction 6.10, for the microsolvation case when three water molecules are clustered with the involved At-containing species (n=3).

       2 2 2 2 AtOBr H O HO H O 2 H m m             RHS         2 2 2 2 AtO OH H O Br H O 2 Br m m          m=0 m=1 m =0 m=1 
To improve our computational estimate for Log K hyd,2 , we need to ensure as most as possible interaction-by-interaction error cancelations. Introducing and treating explicitly one water molecule in the hydration spheres of the ligands, one may note that very similar interactions types occur on both LHS and RHS of the reaction. Nevertheless, one may identify in this case, i.e. n=3, m=1, one more interaction of Type 1 on the LHS (i.e. interaction between a water molecule and the sp 2 O center of the AtO + moiety) while there is one more interaction of Type 2 on the RHS (i.e. interaction between a water molecule and a hydroxide moiety). These interactions are however not so different (hydrogen bonds between a water molecule and an O atom bonded to At). Therefore,

Interaction LHS        2 2 2 3 AtOBr H O HO H O 2 HO m m             RHS         2 2 2 3 AtO OH H O Br H O 2 Br m m          m=0 m=1 m=2 m=0 m=1 m=2 Type 1 2 2 2 1 1 1 Type 2 0 1 2 2 2 2 Type 3 1 1 1 0 1 2 Type 4 1 1 1 1 1 1
the results may still benefit from error cancelations associated with the treatment of these interactions. Our calculated value for Log K hyd,2 at the 2c-B3LYP+CPCM-UAHF//UAKS level of theory, -7.1, so far corresponds to our best and most consistent estimate. It is worth noting that increasing the value of m to 2 (i.e. the n=3, m=2 case), the calculated Log K hyd,2 at the same level of theory perfectly matches the experimentally determined Log K value of -6.9±0.2. However, inspecting the occurrence of the different interactions, there is one more interaction of Type 1 on the LHS while there is one more of Type 3 on the RHS, and they are clearly very different in nature contrary to the previous m=1 case. Hence, even though the calculated Log K hyd,2 value agrees better with the experimental one, we do not consider it to be more consistent than the one calculated in the previous n=3, m=1 case, which remains yet our best estimate.

Before drawing a major conclusion, one aspect needs to be clarified related to the convergence of our calculated Log K 2exc and Log K hyd,2 values at n=3. Indeed, if a convergence regime is not met then these two quantities will continue to increase with the further increase of n.

We have then assessed the case of n=4. In Appendix 4, we place the obtained lowest energy

  2 2 4 AtOBr H O      and     2 2 4 AtO OH H O    
 conformers and the inventory of the water-solute interactions that occur, in order to keep this part clear. In Table 6.1, one can notice that the values obtained for Log K hyd,2 range from -7.9 to -7.6 at the 2c-B3LYP+CPCM-UAHF//UAKS level of theory, depending on the value of m, and from -8.2 to -5.7 at the 2c-MP2//2c-B3LYP+CPCM-UAHF//UAKS level of theory. Hence, it is clear that a convergence regime is achieved around n=3

and that with the increase of n the calculated Log K hyd,2 quantity will oscillate around ~-7

depending on the efficiency of the error cancelation mechanism.

So far, we have shown that the explicit quantum mechanical treatment of n=3 water molecules in the hydration shells of the At-containing anionic species and m=1 water molecule in the hydration shells of the ligands, improves our description of the solvation free energies and leads to better computational estimate of the K 2exc . This latter one, allows this time the derivation of a K hyd,2 value (-7.1 logarithmic units at the 2c-B3LYP+CPCM-UAHF//UAKS level of theory and -6.4 logarithmic units at the 2c-MP2//2c-B3LYP+CPCM-UAHF//UAKS level of theory) which is in excellent agreement with the K value measured through the experiment (-6.9±0.2 logarithmic units). This clearly supports the hypothesis that the experimentally studied reaction is the one shown in Eq. 6.3, and enables the unambiguous identification of the formed species,

  2 AtO OH  ,
which predominates in basic and oxidizing aqueous solution.

Conclusion

In the present chapter, we have dealt with a complex project aiming at the identification of the predominant At species in basic and oxidizing conditions. The project has been tackled through the combination of ultra-trace experiments and relativistic quantum mechanical calculations. The information retrieved from the experimental studies suggested that the targeted At species bears a single negative charge and that, upon lowering the pH from ~11 to ~5. AtO OH  in basic and oxidizing conditions, and the evidence of its predominance, is particularly important for the scientific community involved in the 211 Atradiolabelings in aqueous media. For instance, if a radiolabeling with At -is attempted (via a nucleophilic substitution mechanism), having a basic media is a necessary but not a sufficient condition. In such a case, one needs to ensure reducing conditions as far as possible otherwise a change in the At speciation is likely to occur. Note that, with this change in speciation, a change in the oxidation number of At itself also occurs, i.e. from -I to +III. For example, this latter information may be important in studies aiming at coordinating 211 At with soft metal cations, [25][26][27] as done by Pruszinsky and coworkers. 

Conclusion and Perspectives

At is an "invisible" heavy main-group element which is currently thought as providing the best alpha-emission source, through its 211 At radionuclide, for targeted alpha-immunotherapy.

While several At species have been synthesized for being connected to cancer cell targeting agents, their unknown and admittedly unintuitive physico-chemical properties currently hinder the success of At-based targeted radioimmunotherapy. Fundamental researches have been triggered to obtain information on the basic chemistry of At and its species. Computational tools play an important role in these researches and are used with a twofold aim, (i) helping in eliminating hypotheses that arise from outcomes of experiments led at ultra-trace regime, and (ii) making valuable predictions conducting future experiments toward success. Several computational studies have been carried out and presented in the present thesis. The main conclusions that arise are enumerated and briefly discussed in the following.

1.

Geometries and thermodynamic properties of medium to large At species can safely be investigated with cost-effective (quasirelativistic) 2c-DFT approaches, providing a suitable density functional approximation and a suitable computational strategy for introducing environmental effects (e.g. hydration).

The degrees of freedom associated with the 2c-DFT approach have been addressed mainly in Chapter 3, and the obtained information has been fruitfully used through the remaining chapters.

Notably, we identified the PW6B95 hybrid meta-GGA density functional to be the best choice as it allowed the computation of (i) geometries with a MUE of 1.1%, of (ii) electronic transition energies with a MUE of 0.13 eV, and of (iii) reaction equilibrium constants with a MUE of 0.9 logarithmic units, when used in conjunction with triple-zeta quality basis sets, while there is nearly no loss in accuracy when this functional is used in conjunction with smaller double-zeta quality basis sets. We furthermore established that popular and general-purpose hybrid GGA density functionals as PBE0 and B3LYP can as well be safely employed, the former one especially in computing geometries and, the latter one, especially in computing reaction equilibrium constants. Also, we established that hybrid density functionals that have large amounts of exact exchange should be used with caution in the case of At species. At this point, it would be interesting to test the reliability of the fifth rung functionals, the so-called double hybrids, notably in predicting thermochemical properties of At species. Indeed, based on a blend including adjustable amounts of exact exchange and MP2 correlation, these latter functionals are currently considered as the most robust and accurate ones for calculating thermochemical properties of transition metal compounds. 1 Even though the double hybrids include large amounts of exact exchange (>50%), it appears interesting to know if an amount of MP2 correlation could bring a more balanced description when such functionals are applied to At systems.

2.

Using a previously obtained geometry (eventually from 2c-DFT calculations), it appears that several properties of At systems can yet safely be explored with cost effective wave-function-based two-step approaches, in which the scalar relativistic and electron correlation problems are addressed in a first step and SOC is introduced in the second step.

Two-step approaches allowing the perturbative treatment of SOC are thought to be problematic in reproducing the correct electronic structure of heavy p-elements. 2 This behavior appears most likely in cases where (i) spin-orbit splittings of atomic one-electron shells start to become very large (ii) strong correlation cannot be well described with MRPT2/MRCI(-SD) schemes starting from small reference spaces, and (iii) very large state-interaction spaces are needed to maintain a good representation of the SOC operator, while truncations are either non-trivial or non-achievable, which leads in practice to large convergence artifacts. In monoatomic 6p systems, SOC is particularly strong in the valence 6p shell and, from Tl toward At, larger and larger errors are expected from two-step calculations. However, in polyatomic At species one may still successfully use such approaches in qualitative descriptions, e.g. SOC-EBOs, or in quantitative descriptions whenever relative quantities are sought, e.g. relative energies of different geometries or transition energies. Indeed, using a c-SOCI approach we have calculated (i) the relative energies between critical points of the ground state PES of AtF 3 , and (ii) the lowest-lying SOC states of the AtO + diatomic in very good agreement with reference coupled-cluster results. Moreover, we investigated the peculiar electronic structure of AtO + in water using the same approach. We have obtained results that, on one hand corroborate with 2c-DFT ones, 3,4 and, on the other hand, are in line with indirect experimental evidences. [5][6][7] Precisely, we justified with the help of two-step approaches the observed reactivity of AtO + in aqueous solution with closed-shell species, as being primarily mediated by a hydration-induced ground-state change. As a perspective, it appears interesting to conduct a similar study to identify whether the observed reactivity of At + can also be explained by a ground-state change. Indeed, At + has an essentially 3 P 2 ground-state which is separated by ~3.8 eV from the first essentially-singlet-spin state, 1 D 2 , according to 4c multireference coupled cluster results. 8 Its reactivity with closed-shell species, while experimentally evidenced in many situations, bears thus a priori a degree of spin-forbideness.

3.

As a consequence of relativistic effects, At can participate to unusual bonding patterns and the resulting At species can exhibit a rather different physico-chemical behavior than their I analogues.

Most radiolabelling protocols with 211 At are devised according to ones used with I radionuclides (e.g. 125 I) under the assumption that there is a resemblance in their chemical behavior. 9 While this is not completely untrue yet whenever issues appear, they must be understood as some peculiar behavior partly arising from the relativistic electronic structure of At and At species, and partly from the environment effects. These issues can be approached and understood currently only through theoretical calculations. In Chapter 4, we have shown that the bonding patterns in which At is involved can be quite different, even in trivially small systems, than the ones for the lower halogens, notably I. In particular, we have shown in the AtF 3 system that the trigonalplanar D 3h bonding pattern, not at all characteristic for the inferior halogen trifluorides, is a result of the sum and interplay between scalar relativistic effects and electron correlation. Yet, SOC brings significant energy stabilization to the individual critical points of the ground-state PES of AtF 3 but since they are overall of the same order of magnitude, the surface topology is not much affected. It triggers the signal that SOC may not be responsible of all the peculiarities that At species may exhibit. The environment can also significantly impact the bonding pattern of At. For instance, this was illustrated in Chapter 5 regarding the reactivity of AtO + in aqueous solution. The bond in which At is involved can be described using the EBO concept, build on top of two-step approaches, 8 and clues on the weakening or reinforcement of the bond in different contexts can be obtained. In this particular case, the EBO values were calculated for the AtO + bond in hydrated clusters thanks to the fact that pairs of bonding and antibonding MOs, characteristic for the AtO + bond, are not much delocalized on the water molecules. This may not be the case in other At systems, i.e. the MOs may delocalize, and one has to a priori perform orbital manipulations for obtaining consistent EBOs.

This aspect is interesting and is part of the current perspectives that would be important to tackle in a near future. Also, interesting is to incorporate dynamic correlation in the EBO value, which currently enters only indirectly through the NEVPT2 correlated energies that dress the diagonal of the state-interaction matrix. Extracting EBO values from MRCI wave functions appears interesting.

4.

Computational tools are of invaluable usefulness to supplement ultra-trace experiments in order to identify new At species that are potential precursors, or to make best "reactive" other At precursors, used in radiolabelling protocols.

The direct identification and characterization of At species through experimental techniques is non-trivial and quite often impossible since most spectroscopic tools are unsuited to the very low quantities of matter in which At is present. The outcomes of ultra-trace experiments mostly remain indirect evidences and rely on some hypotheses. Combining these outcomes with results of computational studies is the "key to success", as shown in Chapter 6. We have dealt with the identification of the predominant At species in basic and oxidizing conditions. In this particular case, ultra-trace experiments have "told" us that the species in question bears a single negative charge and that it occurs via a proton exchange reaction from the AtO(OH) species. The C 2v structure of AtF 3 is not a minimum and hence it is removed from the calculation of the different errors/deviations. b The D 3h structure of AtF 3 is not a minimum and hence it is removed from the calculation of the different errors/deviations. The UFF cavities are built using the 1.1 electrostatic factor for multiplying the sphere radii. The UFF cavities are built using the 1.1 electrostatic factor for multiplying the sphere radii. in the XF 3 systems (X = Cl, Br, I), computed at the NEVPT2(2/3) and c-SOCI/NEVPT2(2/3) levels using the 6S3T state-averaging and state-interaction spaces.

C 3v C s C s C s C 2v C 2v C 2v
Reaction XF Table A4.1 Sumary of the water-solute interactions occurring on the LHS and RHS of the studied ligand-exchange reaction 6.10, for the microsolvation case when four water molecules are clustered with the involved At-containing species (n=4). Mots clés : astate, effets relativistes, théorie de la fonctionnelle de la densité, interaction de configuration avec couplage spin-orbite
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Abstract

Trials to destroy cancer cells with currently synthesized 211 At-based radiotherapeutic agents are not yet fully satisfactorily since they resume to in vivo deastatination. Since this issue is related to the limited knowledge of the basic chemistry of At and its species, fundamental researches combining ultra-trace experiments and computational studies have been initiated. In this thesis, a computational study of several At species is performed, by means of relativistic density functional theory and wave-function-based calculations. First, the quantum mechanical approaches that can safely be used to make adequate predictions are established. Using these approaches, we attempt to rationalize the electronic structures, geometries, and physico-chemical properties of various systems of theoretical and/or experimental interest, in particular the AtF 3 and AtO + ones. By the end, we firmly identify a new At species by combining outcomes of experiments and calculations. This new species not only completes the Pourbaix diagram of At in aqueous and non-complexing media, but also gives clues of identifying experimental conditions to make best reactive the At -precursor, which is currently involved in the synthesis of promising radiotherapeutic agents. 
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Figure 1 . 1

 11 Figure 1.1 Device used to apply an external radiation beam to a specific area that contains a tumor.
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 4 

Figure 1 . 2

 12 Figure 1.2 General representation of an antibody, linked to a radionuclide through a BFC, and binding to a tumoral cell as expected in targeted radioimmunotherapy.

Figure 1 . 3

 13 Figure 1.3 Illustration of the two decay branches of 211 At. EC stands for electron capture.

Figure 1 . 4

 14 Figure 1.4 Examples of 211 At-targeting agents and 211 At-BFCs synthesized through EAS using 211 At + or NAS using 211 At -.

  (SAB, Fig. 1.4c) -a 211 At-

  At-BFCs including among them [ 211 At]nido-carboranes (Fig. 1.5a), [ 211 At]bis-nido-carboranes (Fig. 1.5b) and [ 211 At][closodecaborates] 2-(Fig. 1.5c), functionalized with various groups to strengthen the antibody conjugation. The antibody conjugation using 211 At-BFCs based on boron cluster derivatives as the ones shown in Fig. 1.5, turned out to be much more advantageous over the classic 211 At-BFCs retaining the radionuclide through an At-C bond (as for instance SAB, Fig. 1.4c). Due to the high affinity of 211 At for B atoms, the reaction with electrophilic 211 At leads unequivocally to a B atom labeling in

Figure 1 . 5 1 . 1 . 6 211

 15116 Figure 1.5 Examples of astatinated and functionalized boron clusters, a) a nido-carborane derivative, b) a bis-nidocarborane derivative and c) a closo-decaborate derivative. Filled circles stand for C atoms while empty ones stand for B atoms.1.1.6 211 At-labeling via At-metal cation bondsMore recently, and in parallel with the work of D. S. Wilbur and coworkers on boron clusters, a novel strategy to retain 211 At in stable complexes started to be pursued by M. Pruszyński

  ,47 would be with soft metal cations. M. Pruszyński has notably reported43,44 the complexation of 211 At -with soft d 6 low-spin Rh III and Ir III metal cations retained on a thioether chelating agent, which could form the basis for a BFC (see Fig.1.6).

Figure 1 . 6

 16 Figure 1.6 Examples of stable complexes with 211 At -attached to Rh III and Ir III soft metal cations.

  At species as a function of both the pH and the redox potential (E) of a given media, carries out the name of the Pourbaix diagram, or speciation diagram, of At. The knowledge of this diagram is of particular importance for the development of targeted radioimmunotherapies based on 211 At, since it determines the type of chemistry to be applied for the synthesis of targeting agents, and for controlling their in vivo behavior. The research teams at SUBATECH and CEISAM laboratories have been focusing in the last decade to rigorously establish the Pourbaix diagram of At. That is, to identify (i) what species of At actually exist, and

Figure 1 . 7

 17 Figure 1.7 Pourbaix diagram of At in aqueous and non-complexing media built from the information that was available at the beginning of this project.

1

  At(x)X m m  for the formed product.

  by extending the CAS-CI expansion with additional classes of CSFs. These CSFs are produced by applying different classes of electron excitation (S, D, T, …), to each individual CSF from the CASSCF reference configurational space. Hence, with the dimension of this reference space and with the level of excitations, the complexity of MRCI quickly rises. A current approximation is to extend the CAS-CI expansion only with up to doubly excited CSFs. This leads to the very popular MRCI-SD method. The MRCI-SD wave function can be written as:20 a and b are called external orbitals from the virtual CASSCF orbital space, I, S and P are called internal states and correspond to CASSCF configurations with 0, 1 or 2 electron-holes in the active orbitals as well as in the inactive ones which are meant to be correlated in MRCI (i.e. the internal orbital space of MRCI), I  , a S  and ab P  are the internal, singly-and doubly-external excited CSFs. From the CASSCF reference configurational space, the set of P states are obtained by applying two electron annihilation operators to the internal orbital space, the set of S states are obtained from P by applying an electron creation operator and the set of I states are obtained from S by applying again an electron creation operator. From S and P, the a S  and ab P  excited CSFs are obtained by applying, respectively, one and two electron creation operators to the external orbital space. In order to manage the number of a S  and ab P

d

  , leading to the TFD functional:

F

   incorporates the additional effects of an interacting system. Those terms would be the kinetic-energy correlation correction, bielectronic exchange-correlation (XC) correction,     terms defines the well-known exchange-correlation functional, is then written as:

  an exchange functional introduced by Becke in 1988 that contains one empirical parameter, and the LYP correlation functional,39 introduced by Lee, Yang and Parr in 1988 that contains four empirical parameters. One may go beyond the density gradient expansions and retain into a functional form also the second derivative of the density. Functionals obtained in this way carry out the name of meta-GGAs. GGAs and meta-GGAs may perform better than LDAs, however they (as well as LDAs) are far from the concept of an exact XC functional. The reason for this is their locality while exchange and correlation have no reason to be only formally local. Indeed, since the self-interacting density errors introduced by   J  in the KS energy expression are nonlocal, the XC corrections should also be nonlocal. Replacing part of the local exchange with HF-like exchange (nonlocal in essence), in an empirically determined mixture of exchange and correlation functionals, led to new classes of functionals denoted as hybrid density functionals: hybrid GGAs and hybrid meta-GGAs.

  Hamiltonian. In such approaches, scalar relativistic DKH or ZORA Hamiltonians can be used to retain scalar relativistic effects within MCSCF-based electron correlation methods in a first step. In a second step, an effective spin-orbit Hamiltonian (e.g. the Breit-Pauli one) is used. A stateinteraction (SI) matrix is then constructed from the M S components of the SOF states and its diagonal is usually dressed with correlated energies obtained with post-MCSCF perturbative or variational schemes. The spin-orbit corrected eigenvalues and eigenvectors are obtained by diagonalizing this SI matrix, i.e. diagonalizing êl H E H   SI S O . A typical example of a two-step



  s is the surface charge distribution and M ( )   r is the solute charge distribution inside the cavity. Several PCM flavors have emerged depending on the formulation of the ( )   s term, a

  Champion et al. have proposed a strategy and applied it successfully in predicting reaction equilibrium constants, for instance, for reactions similar to the ones shown in Eq. 1.3. 70 This strategy proposes the derivation of the stability constant from the free energy change in aqueous solution ( * s G  ), which in turn is calculated using a thermodynamic cycle, similar to the one shown in Scheme 2.1.

Scheme 2 . 1

 21 Scheme 2.1 Thermodynamic cycle used to compute free energy changes in aqueous solution for reactions similar to the ones shown in Eq. 1.3.According to this cycle,

Figure 3 . 1

 31 Figure 3.1 RMSDs (blue bars) and MSEs (red bars), in percentage, for computed bond lengths using selected DFT functionals and the different AVXZ basis sets.

Scheme 3 . 1

 31 Scheme 3.1 Thermodynamic cycle used to compute free energy changes in aqueous solution.

  energies of solvation of the respective species (in water). Making use of the experimental values of the equilibrium constants associated with the formation of the can obtain the equilibrium constant characterizing the formation of the   1

Figure 3 . 2

 32 Figure 3.2 Equilibrium geometries for the most stable conformers of the AtOSCN species calculated at the 2c-PBE0/AVDZ (top) and 2c-BP86/AVDZ (bottom) levels of theory.

Figure 3 . 3

 33 Figure 3.3 Evolution of RMSDs (in Log units) for computed equilibrium constants using selected DFT functionals, AVDZ (blue bars) and AVTZ (red bars) basis sets and the CPCM-UAHF//UAKS(B3LYP) solvation scheme.

Figure 3 . 4

 34 Figure 3.4 Evolution of the MUEs (in Log units) for calculated equilibrium constants using selected DFT functionals, the AVDZ basis set and the four proposed solvation schemes. Colour code: CPCM-UAHF//UAKS in blue, CPCM-UAHF in red, CPCM-UAKS in green and CPCM-UFF in purple.
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 41 Figure 4.1 Ball and stick representations of T-shaped C 2v (left) and trigonal-planar D 3h (right) XF 3 (X = Cl, Br, I, At) geometries.
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 1 HOMO orbital to the ' e LUMO ones, and the doubly degenerate ' e imaginary normal mode (i.e. often referred to the '

Figure 4 . 2

 42 Figure 4.2 Energy along the IRC path starting from a Y-shaped C 2v TS of AtF 3 , calculated at the SR-PBE0 level. The energy of the T-shaped C 2v structures energy is chosen as the zero of energy.
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 31 Its geometrical parameters are compiled in Table 4.1. Displacements along the in-plane " a  imaginary frequency mode, brings this C s TS into the T-shaped C 2v global minima, as demonstrated by the IRC profile displayed in Fig. 4.3 (right panel). We have actually failed in converging on such a C s TS structure in 2c-PBE0 calculations; all our trials led to a second-order saddle point C 3v structure that has a doubly degenerate normal mode with 67i e   One can thus state that either the C s TS does not exist at the 2c-PBE0 level, or that the C s and the C 3v structures areenergetically near-degenerate, fact that leads to the practical impossibility of converging on a C s stationary point. Scrutinizing the literature, we noted that in the limit of a doubly degenerate zero frequency normal mode, our identified C 3v structure would comply with the concept of a "monkey" saddle point associated with the trifurcation toward the three possible C s TSs.31,32 
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 43 Figure 4.3 C s TS structure of AtF 3 with displacement vectors traced for the imaginary frequency (see Table4.1) and energy along the IRC path starting from this TS, computed at the SR-PBE0 level. The energy of the T-shaped C 2v structures is chosen as the zero of energy.

  AtF 3 ground-state PES A schematic representation of the connectivity map between the different critical points of the ground-state PES of AtF 3 is shown in Fig. 4.4. It bears a local minimum having trigonal-planar D 3h structure surrounded by three equivalent T-shaped C 2v global minima. Between the D 3h and the T-shaped C 2v structures, there are slight energy barriers to be overcome that are associated with Yshaped C 2v TSs. In the absence of SOC, undoubtedly, the pseudo-rotation energy barrier to go from one C 2v minimum to another one is associated with a C s TS. Nevertheless such a barrier appears toohigh in energy and hence is not expected to be chemically relevant. When SOC is accounted for, instead of a C s TS we identified a higher symmetry C 3v structure corresponding eventually to an effective "monkey" saddle point.

Figure 4 . 4

 44 Figure 4.4 Scheme showing the connectivity map between the critical points of the ground-state PES of AtF 3 . Color code: blue is used for minima, green for TSs.

E

  , which are the SOC energy stabilizations of the individual D 3h and C 2v structures, otherwise, we always refer to the T-shaped C 2v structure of AtF 3 , as C 2v structure.

  value at the NEVPT2(2/3) level appears in good agreement with the reference 2c-CCSD(T) value, even though SOC has not been incorporated. at the c-SOCI/NEVPT2(2/3) level (-0.5 kJ•mol-1 

Fig. 4 . 5 ,

 45 Fig. 4.5, contour plots of the obtained surfaces at the NEVPT2(20/12) and c-SOCI/NEVPT2(20/12) levels of theory are shown. Note that a non-uniform grid has been defined by interpolations between the C 2v and D 3h minima, and each r eq value in the contour plots corresponds to a different r ax value.

Figure 4 . 5

 45 Figure 4.5 NEVPT2(20/12) (left) and c-SOCI/NEVPT2(20/12) (right) ground-state PES of AtF 3 . The energy scale is expressed in kJ•mol -1 and the T-shaped C 2v structure energies are chosen as the zeroes of energy.
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 3 It is now clear that SOC "flattens" it, slightly decreasing the relative energy between the T-shaped C 2v and the trigonal-planar D 3h minima and, to a much lesser extent, between the T-shaped C 2v minimum and the Y-shaped C 2v TS.These findings agree also with 2c-and SR-CCSD(T) results that suggest an ~8 kJ•mol -As the relative energy between the T-shaped C 2v and the D 3h minima is to a less extent influenced by SOC, we seek to quantify the electronic factors that actually have the major impact.For this task, we perform a series of nonrelativistic and scalar relativistic HF and NEVPT2 singlepoint calculations at the 2c-PBE0 equilibrium geometries using uncontracted SARC-TZVP-DKH basis sets. As shown in Fig.4.6, one can follow two ways to retrieve the contributions of the electron correlation and scalar relativistic effects.

Figure 4 . 6

 46 Figure 4.6 Different pathways used to define the contributions of scalar relativistic effects and electron correlation on 3h 2 v D C E   [NR stands for nonrelativistic, SRE stands for scalar relativistic effects and EC stands for electron correlation]. According to Path 1 , one obtains first the scalar relativistic contribution at the uncorrelated HF level and then the contribution of the electron correlation in the presence of scalar relativistic effects. According to Path 2 , one obtains at first the contribution of electron correlation in the absence of scalar relativistic effects and then scalar relativistic contributions at the correlated NEVPT2 level.We present the different results in Table4.3. It can be seen that the contributions of the electron correlation or scalar relativistic effects to

  here we refer to the Y-shaped C 2v TS. Using as well uncontracted SARC-TZVP-DKH basis sets, we have performed nonrelativistic and scalar relativistic HF and NEVPT2(20/12) as well as c-SOCI/NEVPT2(20/12) single-point calculations at the 2c-PBE0 equilibrium geometries of the Yshaped C 2v TS and of the D 3h local minimum of AtF 3 . The results are presented in Table 4.4. It is now clear that the electron correlation and scalar relativistic effects are the main electronic factors which tend to raise the energy of the Y-shaped C 2v structure above the one of the D 3h minimum, and, meshed together, they both render the former structure as TS. SOC appears to play only a minor role on 3h TS D E  , and a trifling 0.3 kJ•mol -1 energy increase is predicted. We note that this small influence of SOC is consistent with our (2c-)PBE0 findings or reference (2c-)CCSD(T) ones,15 which show ~1 kj•mol -1 reduction in 3h TS D E   . Hence, spin-dependent relativistic affects are definitely small and somewhat bland on the relative energy between the Y-shaped C 2v TS and the D 3h minimum.

  with available reference data, are presented in Table4.5. One can observe at first that the CCSD(T) and PBE0 equilibrium geometries for the T-shaped C 2v structures of ClF 3 and BrF 3 are in exceptional agreement with the experimental ones. These findings allow us, in the cases where experimental data is not available, to use CCSD(T) results as reference for assessing the quality of the PBE0 ones. Nevertheless it is quite evident that PBE0 leads to very accurate Tshaped C 2v and D 3h geometries for all the studied XF 3 systems. Moreover, the PBE0 calculations reproduce well the trend on from X = Cl to X = I, as predicted by CCSD(T) calculations.A schematic representation of the connectivity maps between the different critical points of the ground-state PESs of the XF 3 (X = Cl, Br, I) fluorides is shown in Fig.4.7. The reader can find the geometrical parameters of the different critical points, and relative energies, in Table4.5. Alike the AtF 3 case, we have found that all the studied XF 3 systems (X = Cl, Br, I) exhibit T-shaped C 2v global minima. In contrast, the trigonal-planar D 3h structures are found to be second-order saddle points with one doubly degenerate imaginary frequency ( 3 ). The identified Y-shaped C 2v TSs for the present fluorides differs, in geometries and nature, from the Y-shaped C 2v TS found in the AtF 3 case. Comparing their geometries with the D 3h ones (see Table4.5), one may notice that they exhibit r ax bond lengths smaller than r e , r eq bond lengths larger than r e , and  bond angles larger than 120°. For the ClF 3 and IF 3 systems, these Y-shaped C 2v TSs have been hypothesized to be involved in the pseudo-rotation barriers between each two equivalent T-shaped C 2v minima.15,43 Nonetheless, these hypotheses are valid, and moreover verified for all the XF 3 (X = Cl, Br, I) cases, as demonstrated by IRC profiles (see Fig.A2.2).

Figure 4 . 7

 47 Figure 4.7 Scheme showing the connectivity map between the critical points of the ground-state PES of XF 3 (X = Cl, Br, I) [color code: blue is used for minima, green for TSs and red for second-order saddle points].

  Figure 4.8.
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 43 Figure 4.8 c-SOCI/NEVPT2(20/12) ground-state PESs of the XF 3 (X = Cl, Br, I) systems. The energy scales are expressed in kJ•mol -1 and the energy of the T-shaped C 2v structures is chosen as the zero of energy in each case. This study allows us to spot, at the present level of theory and in contrast to the AtF 3 case, that the D 3h structures do not correspond to minima and that there are no energy barriers on the pathways down to the T-shaped C 2v global minima. On the previously determined (2c-)PBE0 equilibrium structures of the present fluorides (D 3h and C 2v structures), single point calculations were performed and the obtained

  the XF 3 (X = Cl, Br, I and At) fluorides is already present at the nonrelativistic HF level even though the individual values are considerably larger than the scalar relativistic counterparts. That is, the simultaneous treatment of the electron correlation and scalar relativistic effects impacts in a

a

  CASSCF and c-SOCI/CASSCF results are reported in parentheses.

  configurational and closed-shell, even though a slight open-shell character (~16%) is rendered by SOC. It is hence an indisputable support for previous studies on AtF 3 that made use of singledeterminental and single reference approaches. However, one should also mention that the consistent tracking of electronic states w.r.t. geometrical displacement should always be done or checked up with multiconfigurational calculations.The topology of the ground-state PES of AtF 3 has been found to be different from the ones of the considered analogues, and in particular from the one of IF 3 . This shows that even in simple systems, At may behave differently than I, reinforcing the statements that, the basic chemical behavior of At does not necessarily follow the one of I, and that care must be taken when such an analogy is assumed. On the ground-state PES of AtF 3 we have unraveled three new C s TSs connecting pairs of two equivalent T-shaped C 2v minima. However, we restrict this conclusion to the scalar relativistic formalism only. We have furthermore demonstrated that (three equivalent) Yshaped C 2v TSs connect the D 3h local minimum with the T-shaped C 2v global minima of the AtF 3 PES, while other Y-shaped C 2v TSs connect the T-shaped C 2v global minima in the XF 3 (X = Cl, Br, I) systems. Even though the relative energy between the trigonal-planar D 3h and T-shaped C 2v minima of AtF 3 is very small (~7 kJ•mol -1 ), we have identified that thermal and entropic contributions drop this even more, i.e. to ~0.3 kJ•mol -1 . In contrast to what has been currently proposed in the literature, we firmly consider that an average D 3h AtF 3 structure would be observed in experiments, if they were possible. That is, in contrast to IF 3 in particular, At coordinates in AtF 3 in a trigonal-planar D 3h structure on average and not in a T-shaped C 2v one, with the At-F bonds being essentially ionic. AtF 108From our multiconfigurational wave-function-based calculations, we identified that the relative energy between the D 3h and T-shaped C 2v structures is primarily diminished by electron correlation and scalar relativistic effects. The former effect has been found to be dominant for the X = Cl-I cases while the latter has been found the main contributor in AtF 3 . SOC has an important contribution only in the case of AtF 3 where it leads to similar energy stabilization of the individual D 3h , Y-and T-shaped C 2v structures, thus not really affecting the topology of the PES. Finally, we state that both the electron correlation and scalar relativistic effects inhibit the pseudo Jahn-Teller effect in AtF 3 , the sum of them and the interplay between them being the cause of the emerging D 3h "weak" local minimum.

Figure 5 . 1

 51 Figure 5.1 Schematic representation of the valence molecular orbital diagram of the AtO + cation.

Figure 5 . 2

 52 Figure 5.2 Structures of the restricted-singlet-spin and unrestricted-triplet-spin AtO + (H 2 O) 1 clusters obtained at the SR-PBE0/AVDZ level of theory, and structure of the essentially-triplet-spin AtO + (H 2 O) 1 cluster obtained at the 2c-PBE0/AVDZ level of theory. Interatomic distances are given in Angstroms and the OAtO  in degrees. Color code: blue stands for At, red for O, and white for H.

  minimum, in which the water molecule interacts with the At center at ~2.54 Å, and a C s restricted-singlet-spin minimum, in which the water molecule interacts with the At center at ~2.40 Å (in order to better evidence the C s minimum, contour plots of the two lowest-lying singlet-spin PESs are displayed in Fig. A3.1, see Appendix 3). Since these findings are in good agreement with the SR-PBE0/AVDZ results, we further proceed by analyzing the nature of the SOF states.

Figure 5 . 3

 53 Figure 5.3 Evolution of the relative energies of the lowest-lying electronic states of the AtO + (H 2 O) 1 system calculated at the NEVPT2(8/6)/AVTZ level of theory as a function of the H 2 O-AtO + distance and OAtO  ; A: the angle is fixed to 180° while the distance is varied; B: both the angle and the distance are varied.

Fig. 5 .

 5 Fig. 5.3A explicitly shows the evolution of the low-lying SOF states while the water molecule approaches the AtO + unit in a C 2v fashion. The nature of the states occurring at the equilibrium SR-

Figure 5 . 4

 54 Figure 5.4 Energy profiles, calculated at the c-SOCI/NEVPT2(8/6)/AVTZ level of theory, of the lowest-lying SOC states while the water molecule approaches the AtO + unit in a C 2v symmetry. We now continue by approaching point (ii) mentioned above. No C s -like equilibrium geometry for an essentially-singlet-spin AtO + (H 2 O) 1 cluster was localized in 2c-PBE0/AVDZ calculations. It is of interest to clarify this issue, notably by means of c-SOCI/NEVPT2(8/6)/AVTZ

Figure 5 . 5

 55 Figure 5.5 Evolution of the lowest-lying energy levels for the AtO + (H 2 O) 1 system calculated at the c-SOCI/NEVPT2(8/6)/AVTZ level of theory as a function of the H 2 O-AtO + distance and of the OAtO  angle; A: relative energies (in eV); B: composition of 0  in terms of the M S components of T 0 ( 3  -), S 0 ( 1 ) and S 2 ( 1  + ).
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 34 composed of the |M S |=1 spin-components of the T 0 ( 3  -) SOF state at the 2c-PBE0/AVDZ essentially-triplet-spin geometry. We noticed that its SOF composition is nearly constant all along the scan shown in Fig 5.5A. At the equilibrium SR-PBE0/AVDZ restrictedsinglet-spin geometry, the degeneracy of the two   1  a components is only slightly lifted, giving rise to two SOC states that we label as 1  and 2  (see Fig. 5.5A). In terms of energy, 1  and 2  are placed at 0.67 and 0.68 eV, respectively, above the identified 0  SOC ground state. Finally, we look at the effectively twofold-degenerate   2  a SOC state. At the 2c-PBE0/AVDZ essentiallytriplet-spin geometry, one   2  a component has a 82% contribution from the S 0 ( 1 ) SOF state whereas the other one has a 83% contribution from the S 1 ( 1 ) SOF state. The energy gap between the two   2  a components slightly increases toward the PES region where the scalar relativistic C s structure has been identified (see Fig. 5.5A), giving rise to the two SOC states that we label as

Fig. 5 . 6 .

 56 Fig. 5.6. The hydration spheres at the restricted-singlet-spin and unrestricted-triplet-spin equilibrium structures, calculated at the SR-PBE0/AVDZ level of theory, significantly differ. At the former structures, the water molecules form a network of hydrogen bonds and appear to interact with both the At and O centers of the AtO + unit. At the unrestricted-triplet-spin geometries, the water molecules form instead a network between them, rather far from the AtO + unit. One can speculate that the water molecules perturb to a lesser extent the electronic structure of AtO + in those unrestricted-triplet-spin clusters. Comparing properly the SR-PBE0/AVDZ and the 2c-PBE0/AVDZ equilibrium geometries (shown in Fig. 5.6), one can obtain the contribution of SOC to the geometry relaxations. While all distances with the close-lying water molecules are generally lengthened by SOC, mostly in the essentially-singlet-spin clusters, some of them are to a large extent shortened in the essentially-triplet-spin clusters. All these findings are in agreement with the M06-2X ones of Ayed et al.12,13 

Figure 5 . 6

 56 Figure 5.6 Lowest-energy structures for the restricted-singlet-spin and unrestricted-triplet-spin AtO + (H 2 O) n clusters (n=2-6) calculated at the SR-PBE0/AVDZ level of theory, and lowest-energy structures for the essentially-singlet-spin and essentially-triplet-spin clusters calculated at the 2c-PBE0/AVDZ level of theory. The singlet species are denoted with S while the triplet ones, with T. Color code: blue stands for At, red stands for O, and white stands for H.
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 53 which is similar to the CASSCF wave functions of the or 3   SOF ground states of the unrestricted-triplet-spin AtO + (H 2 O) 1 cluster or of the isolated AtO + cation, respectively. Thus, these newly identified triplet-multiplicity electronic ground-states can safely be labeled as   Calculated SOF excitation energies (in eV) at the SR-PBE0/AVDZ geometries of the 6). The E non-adiabatic energy difference between the singlet-spin and triplet-spin clusters of each

Figure 5 . 7

 57 Figure 5.7 Natural orbitals of the SA-CASSCF calculation associated with the unrestricted-triplet-spin AtO + (H 2 O) 4 geometry.Above the

Figure 5 . 8

 58 Figure 5.8 Energy of low-lying SOF electronic states as a function of the main H 2 O-AtO + distances; A: in the restricted-singlet-spin AtO + (H 2 O) 2 cluster (C 2v symmetry); B: in the restricted-singlet-spin AtO + (H 2 O) 6 cluster (C s symmetry). The SR-PBE0/AVDZ geometries are taken as references.
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 426 The SOC electronic structures of the AtO + (H 2 O) n systems (n=2-In this subsection we analyze the SOC electronic structures at the 2c-PBE0/AVDZ equilibrium geometries corresponding to the AtO + (H 2 O) n systems (n=2-6), shown in Fig. 5.6. As pointed out previously, SOC induces some geometry relaxation which can change the ordering (or the nature) of the lowest lying SOF states. Hence, we have performed NEVPT2(8/6)/AVTZ singlepoint calculations at all the 2c-PBE0/AVDZ structures and we have looked again at the excitation energies (see Table

Figure 5 . 9

 59 Figure 5.9 SOF compositions (in %) of the five lowest-lying SOC states that occur at the essentially-triplet-spin 2c-PBE0/AVDZ geometries of the AtO + (H 2 O) n systems (n=2-6).
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 54 Figure 5.10 SOF composition (in %) of the five lowest-lying SOC states that occur at the essentially-singlet-spin 2c-PBE0/AVDZ geometries of the AtO + (H 2 O) n systems (n=2-6). Regarding the n=2 case, the 1  and 2  states have large contributions from the |M S |=1 spin- components of the T 0 ( 3  -) state (~86%), and thus correlate with the a 1 SOC state of isolated AtO + ,

  + (H 2 O) n clusters (n=2-6) through the computation of the EBOs. Since the essentially-singlet-spin clusters are the ones which become the most important ones, we are thus interested in computing the EBOs of the AtO + bond only in those clusters. Note that we presently deal with polyatomic systems which in some cases are non-symmetric. Thus, care must be taken when EBOs are calculated. The natural orbitals of the SA-CASSCF active space, converged for the essentially-singlet-spin AtO + (H 2 O) n clusters (n=2-6), are displayed on Fig. 5.11.

Figure 5 . 11

 511 Figure 5.11 Natural orbitals of the SA-CASSCF active space calculated for the AtO + (H 2 O) n essentially-singlet-spin clusters (n=2-6).

Figure 5 .

 5 Figure 5.12 SA-CASSCF active natural orbitals for the AtO + (H 2 O) 6 essentially-spin-singlet cluster and their natural occupation numbers calculated from the SA-CASSCF wave function of the S 0 ( 1 ) ground SOF state (first row) and from the c-SOCI wave function of the Ψ 0 ground SOC state (second row). SOC effectively maintains the population of the  orbital, and of one  orbital, while all the other populations change; the population of one   orbital decreases by 0.11 e is associated by an increase of 0.11 e on the population of the other   orbital. Since those orbitals are coupled via the SOC operator in the C s symmetry point group, and since both population changes are opposite,
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 7 It shows that in acidic media and in the potential range of water stability (E = -0.1 to +1.2 V vs.

Figure 6 . 1

 61 Figure 6.1 Schematic representation of the studied reaction shown in Eq. 6.5. The printed geometries for the reactants and products are the equilibrium ones obtained at the (2c-)B3LYP/AVDZ level of theory. For the At species, geometrical parameters are also shown (bond lengths in Å and angles in degrees).At the 2c-B3LYP+CPCM-UAHF//UAKS and 2c-MP2//2c-B3LYP+CPCM-UAHF//UAKS levels of theory, we have obtained

Figure 6 . 2

 62 Figure 6.2 Schematic representation of the studied ligand-exchange reaction. The printed geometries for the reactants and products are the equilibrium ones obtained at the (2c-)B3LYP/AVDZ level of theory. For the At species, geometrical parameters are also shown (bond lengths in Å and angles in degrees).
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 63 Figure 6.3 Equilibrium geometries for the most stable conformers of the

  newly introduced water molecule either makes a bridge between the previous one and a bromide center, or interacts again with the sp 2 O center of the AtO + moiety. Some similar shapes for the water molecules arrangement hold for the most populated the two water molecules serve as a bridge or both interact with the sp 2 O center of the AtO + moiety (one water molecule furthermore interacts with a hydroxide moiety).
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 64 Figure 6.4 Equilibrium geometries for the most stable conformers of the

Figure 6 . 5

 65 Figure 6.5 Equilibrium geometries for the most stable conformers of the

Figure 6 . 6

 66 Figure 6.6 Pourbaix diagram of At in aqueous and non-complexing media.

a

  The values in parenthesis are calculated by including the Grimme's DFT-D3 dispersion correction in the gas-phase 2c-DFT calculations. b These values are based on single-point MP2/AVTZ energies obtained on previously optimized B3LYP/AVDZ geometries.

Appendix 2 Figure A2. 1

 21 Figure A2.1 Left panel: PES (z = x 3 -3xy 2 ) corresponding to a monkey saddle point; Right panel: schematic representation of the AtF 3 PES around the C 3v structure of AtF 3

Appendix 4 Figure A4. 1

 41 Figure A4.1 Equilibrium geometries for the most stable conformers of the

  électroniques et propriétés physico-chimiques d'espèces de l'astate : une application de la mécanique quantique relativiste RésuméLes tentatives menées pour détruire des cellules cancéreuses avec les agents radiothérapeutiques à base de211 At qui ont été synthétisés jusqu'à présent ne sont pas encore pleinement satisfaisantes car elles sont entachées par une deastatination in vivo. Étant donné que ce problème est lié aux connaissances actuelles qui sont limitées concernant la chimie de base de l'astate et de ses espèces, des recherches fondamentales combinant des expériences à l'échelle des ultra-traces et des études théoriques ont été lancées. Dans cette thèse, une étude théorique de plusieurs espèces de l'astate est réalisée au moyen de méthodes relativistes basées sur la théorie de la fonctionnelle de la densité ou des méthodes à basées sur la fonction d'onde. Tout d'abord, les méthodes qui peuvent être utilisées pour faire des prédictions pertinentes sont établies. A l'aide de ces approches, nous rationaliserons les structures électroniques, géométries et propriétés physicochimiques des différents systèmes d'intérêt théorique ou expérimental, en particulier les espèces AtF 3 et AtO + . Finalement, nous identifierons formellement une nouvelle espèce de l'astate à l'aide de résultats expérimentaux et de calculs, ce qui non seulement complète le diagramme de Pourbaix de l'astate en milieu aqueux non complexant, mais aussi donne des informations cruciales pour identifier des conditions expérimentales pour rendre le plus « réactif » possible le précurseur At -, qui est de nos jours impliqué dans la synthèse d'agents radiothérapeutiques innovants.

  Keywords: astatine, relativistic effects, density functional theory, spin-orbit configuration interaction L'Université Bretagne Loire Geometries, electronic structures and physico-chemical properties of astatine species: An application of relativistic quantum mechanics Dumitru-Claudiu SERGENTU

  

  

  Ac, etc. 90 Y, 131 I, 177 Lu, 186 Re, 212 Pb, etc.

	Penetration depth	Short, ~40-100 m	Long, up to ~600 m
	Energy transfer	High linear energy transfer, ~4.0-8.0 MeV	Sparse energy transfer, ~0.1-2.2 MeV
	Energy deposition	Starting at the decay event site	
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  highly accurate geometries, energies or relativistic contributions fairly comparable to all-electron fully-relativistic calculations. For example, the NWChem and TURBOMOLE program packages59,60 implement 2c-DFT methods which make use of scalar relativistic and spin-orbit parameterized RECPs, thus allowing the simultaneous treatment of relativistic effects and electron correlation in an elegant fashion. When a RECP is employed, one needs to formulate a valence-only model Hamiltonian to describe the interactions (i) among the valence electrons and (ii) among the valence electrons and the atomic/molecular core(s). The general form of this model Hamiltonian reads:26 

An extraordinary asset of RECPs is that they can be employed in almost all kinds of wave function or DFT-based calculations, delivering

  which is a consistent way to define the spin density when a spin-orbit Hamiltonian is involved in calculations on openshell species (see Chapter 2). 2c-DFT calculations are performed in order to get insights of geometries, transition energies and/or vibrational frequencies on the following systems: At/At + /At -, I/I + /I -, At 2 , HAt, AtF 3 , AtO + , AtCl, AtOOH and AtOSCN. A set of 36 XC density functionals comprising the SVWN16 LSDA functional, the BLYP,17,18 BP86,18,19 PW91, 20,21 PBE,22 revPBE,23 HCTH24 and OLYP17,25 GGA functionals, the PKZB,26 TPSS, 27 VS98, 28 M06-L29 and M11-L 30 meta-GGA functionals, the B3LYP,17,31,32 X3LYP, 33 B3PW91,21,31 BH&HLYP, 31 PBE0, 34 B97-235 and B9836,37 hybrid GGA functionals, the TPSSh, 38 MPW1B95, 39 PW6B95, 40 MPWB1K, 39 PWB6K, 40 M05, 41 M06, 42 M05-2X, 43 M06-2X, 42 M08-HX44 and M08-SO44 hybrid meta-GGA functionals, and the CAM-B3LYP,45 LC-PBE, 46 HSE06,47,48 BNL 49,50 and M11 51 range-separated functionals, is benchmarked. For the Br, I and At centers, energy-consistent ECPnMDF PPs are used to mimic the role of the n = 10, 28

	2 AtCl  , AtBr,	2 AtBr  , AtSCN,	2 AtSCN  , AtOCl,	2 AtOCl  ,

  .1, bond lengths and associated relative mean-signed errors (MSEs), meanunsigned errors (MUEs), root-mean-square deviations (RMSDs) and maximum absolute deviations (MaxDs), calculated at the 2c-DFT/AVTZ level of theory, are shown. Values obtained at the 2c-DFT/AVDZ level are placed for convenience in TableA1.1 (see Appendix 1). Concerning each error/deviation criterion, the five best values are evidenced in red and the best of them is also displayed in bold. Focusing on the results shown in Table3.1, we identified first that the D 3h structure of AtF 3 does not correspond to a minimum in HF calculations. Also, several density functionals do not predict a stable C 2v structure for AtF 3 . It is in particular true for the pure functionals LSDA, GGAs and the PKZB and TPSS meta-GGAs. It is worth noting that this trend is already present when the AVDZ basis sets are used (see TableA1.1). Moreover, we noticed that Yang et al. reported similar findings in their 2c-DFT calculations employing some of the aforementioned functionals and def2-QZVPP basis sets. It is worth noting that alongside B97-2 and B3PW91, PBE0 predicts lower or similar errors/deviations than MP2. At a first glance, BH&HLYP appears attractive too. That is, since compared to PBE0, it delivers as well a MSE and a RMSD which are within the evidenced lowest five values, while it delivers this time the lowest MUE among all the other relevant functionals (0.7%). Nonetheless, one can note that the D 3h structure for AtF 3 is no longer a minimum when the BH&HLYP functional is used in conjunction with the AVDZ basis sets (see TableA1.1).

63 

Therefore, in the case where the C 2v or the D 3h structure of AtF 3 was not identified to correspond to a minimum, we have removed it from the calculation of the errors/deviations. Nevertheless, we conclude that these functionals are inadequate for studying geometries of systems containing an At atom. From the meta-GGA block, the functionals that do not pose such an issue, i.e. VS98, M06-L and M11-L, yield the largest errors/deviations among all other functionals (e.g. MaxDs ≥ 3.0%), and therefore, are also not recommended for this purpose.

Focusing on the hybrid GGA block of functionals, we identified that all of them predict accurate geometries with MaxDs of at most ~3% and MUEs and RMSDs always smaller than ~2%. PBE0 appears to be the best-performing hybrid GGA functional. It delivers the lowest MaxD (1.5%) among all other density functionals, and a MSE and a RMSD which are among the five lowest values.

Table 3 . 1

 31 Calculated bond lengths (in Å) using several XC functionals and AVTZ basis sets, and associated MSEs, MUEs, RMSDs and MaxDs (in %).

	Functional	At 2	HAt	AtF 3 C2v	AtF 3 D3h	AtO +	MSE MUE RMSD MaxD
	LSDA SVWN a	2.972	1.742	-	-	2.072	1.918	0.2	1.1	1.1	1.4
	GGAs BLYP a BP86 a PW91 a PBE a revPBE a HCTH a OLYP a	3.116 3.048 3.068 3.036 3.057 3.036 3.052	1.759 1.750 1.744 1.749 1.751 1.748 1.742	-------	-------	2.124 2.106 2.157 2.104 2.114 2.103 2.103	1.959 1.942 1.929 1.953 1.946 1.940 1.932	2.8 1.7 1.5 1.7 1.9 2.3 1.5	2.8 1.7 1.5 1.7 1.9 2.3 1.5	3.0 1.9 1.7 1.9 2.1 3.0 1.7	3.8 2.9 2.8 2.8 3.3 5.4 2.8
	Meta-GGAs PKZB a TPSS a	3.032 3.023	1.747 1.742	--	--	2.108 2.095	1.940 1.935	1.5 1.1	1.5 1.1	1.8 1.4	3.0 2.4
	VS98	3.095	1.738	2.097	2.047	2.100	1.932	2.1	2.1	2.3	3.0
	M06-L	3.097	1.742	2.095	2.050	2.094	1.920	2.0	2.1	2.3	3.2
	M11-L	2.983	1.716	1.984	1.917	1.995	1.856	-2.3	2.3	2.7	3.8
	Hybrid GGAs										
	B3LYP	3.048	1.741	2.091	2.044	2.089	1.922	1.6	1.7	1.9	2.9
	X3LYP	3.043	1.740	2.088	2.038	2.086	1.919	1.4	1.6	1.7	2.6
	B3PW91	2.982	1.732	2.073	2.020	2.072	1.907	0.5	1.2	1.2	1.6
	BH&HLYP	2.988	1.722	2.054	1.990	2.056	1.883	-0.3	0.7	1.1	2.4
	PBE0	2.978	1.730	2.068	2.012	2.068	1.902	0.3	1.1	1.1	1.5
	B97-2	3.004	1.731	2.075	2.022	2.074	1.905	0.7	1.1	1.2	1.8
	B98	3.014	1.734	2.081	2.029	2.079	1.911	0.9	1.3	1.4	2.1
	Hybrid meta-GGAs									
	TPSSh	3.001	1.735	2.082	2.031	2.081	1.919	1.0	1.2	1.4	2.2
	MPW1B95	2.975	1.728	2.062	2.005	2.063	1.895	0.0	1.0	1.1	1.8
	PW6B95	2.995	1.730	2.070	2.016	2.070	1.903	0.5	1.1	1.1	1.5
	MPWB1K	2.949	1.719	2.046	1.983	2.048	1.878	-0.8	0.8	1.3	2.7
	PWB6K M05 a	2.953 3.078	1.718 1.756	2.046 -	1.983 -	2.048 2.083	1.877 1.899	-0.8 1.2	0.8 2.0	1.3 2.0	2.7 2.4
	M06	3.067	1.750	2.080	2.035	2.080	1.901	1.3	1.9	1.9	2.4
	M05-2X	2.919	1.718	2.052	1.985	2.053	1.891	-0.7	1.0	1.5	2.9
	M06-2X	2.940	1.721	2.058	1.993	2.059	1.891	-0.4	1.0	1.3	2.2
	M08-HX	2.923	1.723	2.062	1.993	2.063	1.894	-0.4	1.1	1.4	2.8
	M08-SO	3.038	1.748	2.084	2.031	2.085	1.906	1.3	1.7	1.7	2.2
	Range-separated									
	CAM-B3LYP 2.988	1.729	2.070	2.015	2.070	1.896	0.3	1.1	1.2	1.8
	LC-PBE	2.935	1.724	2.071	2.017	2.071	1.891	0.0	1.5	1.6	2.4
	HSE06	2.994	1.732	2.074	2.019	2.073	1.905	0.6	1.1	1.2	1.6
	BNL	2.979	1.758	2.092	2.039	2.092	1.914	1.3	1.9	2.0	2.6
	M11	2.946	1.729	2.079	2.017	2.080	1.901	0.3	1.5	1.5	2.0
	Ab initio HF b	2.968	1.715	2.033	1.953	-	1.849	-1.6	1.6	2.1	4.2
	MP2	2.978	1.722	2.075	2.020	2.075	1.948	0.9	1.1	1.2	1.7
	Reference a	3.006 62 1.718 64 2.046 63	1.987 63	2.046 63	1.930 9				
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 32 Calculated vertical energies for AtO + (r e = 1.916 Å), IPs and EA of At (in eV), and associated MSEs, RMSDs and MaxDs (all in eV), using several XC functionals and AVXZ basis sets.

	Functional LSDA SVWN	AtO + X 0 + →a 1 AVDZ 0.47 (-0.01) a 0.73 (1.02) a X 0 + →a 2 AVTZ 0.51 (-0.01) a 0.80 (1.01) a AVQZ 0.51 (-0.01) a 0.80 (1.01) a	IP 1 9.35 9.31 9.30	At IP 2 17.68 17.65 17.64	EA 2.49 -0.08 0.12 MSE MUE RMSD MaxD 0.16 0.29 2.45 -0.08 0.10 0.12 0.22 2.47 -0.08 0.11 0.13 0.22
	GGAs BLYP	AVDZ 0.43 (-0.02) a 0.69 (0.77) a AVTZ 0.46 (-0.02) a 0.76 (0.74) a AVQZ 0.46 (-0.02) a 0.76 (0.74) a	9.36 9.31 9.30	17.69 17.66 17.66	2.49 -0.09 0.14 2.46 -0.10 0.11 2.48 -0.09 0.12	0.18 0.15 0.15	0.33 0.26 0.26
	BP86	AVDZ 0.40 (-0.02) a 0.67 (0.77) a AVTZ 0.43 (-0.02) a 0.74 (0.73) a AVQZ 0.43 (-0.02) a 0.74 (0.72) a	9.36 9.31 9.29	17.82 17.79 17.79	2.48 -0.08 0.15 2.44 -0.08 0.11 2.47 -0.08 0.12	0.19 0.16 0.16	0.35 0.28 0.28
	PBE	AVDZ 0.41 (-0.02) a 0.67 (0.81) a AVTZ 0.44 (-0.02) a 0.73 (0.77) a AVQZ 0.44 (-0.02) a 0.74 (0.76) a	9.35 9.30 9.28	17.83 17.79 17.79	2.46 -0.08 0.15 2.43 -0.09 0.11 2.46 -0.08 0.12	0.19 0.16 0.15	0.35 0.29 0.28
	Meta-GGAs								
		AVDZ	0.38	0.67	9.32	17.87	2.44 -0.09 0.15	0.20	0.35
	TPSS	AVTZ	0.40	0.73	9.24	17.88	2.40 -0.10 0.15	0.18	0.29
		AVQZ	0.40	0.73	9.20	17.88	2.46 -0.09 0.18	0.18	0.29
	Hybrid GGAs							
		AVDZ	0.28	0.75	9.34	17.72	2.44 -0.12 0.14	0.20	0.35
	B3LYP	AVTZ	0.30	0.83	9.29	17.69	2.41 -0.12 0.12	0.17	0.33
		AVQZ	0.30	0.82	9.30	17.68	2.42 -0.12 0.13	0.18	0.33
		AVDZ	0.02	0.28	9.33	17.77	2.43 -0.26 0.28	0.43	0.74
	BH&HLYP	AVTZ	0.04	0.29	9.26	17.76	2.41 -0.27 0.28	0.42	0.73
		AVQZ	0.04	0.29	9.27	17.76	2.42 -0.27 0.28	0.42	0.73
		AVDZ	0.21	0.78	9.33	17.87	2.42 -0.10 0.16	0.22	0.42
	PBE0	AVTZ	0.22	0.85	9.28	17.84	2.39 -0.11 0.15	0.20	0.41
		AVQZ	0.22	0.84	9.28	17.84	2.40 -0.11 0.15	0.20	0.41
	Hybrid meta-GGAs							
		AVDZ	0.31	0.70	9.31	17.88	2.41 -0.10 0.16	0.21	0.32
	TPSSh	AVTZ	0.33	0.77	9.23	17.89	2.38 -0.11 0.16	0.19	0.30
		AVQZ	0.33	0.76	9.24	17.89	2.39 -0.11 0.16	0.19	0.30
		AVDZ	0.22	0.82	9.32	17.70	2.43 -0.13 0.14	0.21	0.41
	PW6B95	AVTZ	0.23	0.88	9.29	17.66	2.40 -0.13 0.13	0.19	0.40
		AVQZ	0.23	0.87	9.29	17.66	2.41 -0.13 0.14	0.20	0.40
	Ab initio								
		AVDZ	-0.03	0.11	9.34	18.16	2.45 -0.22 0.41	0.53	0.91
	HF	AVTZ	0.02	0.11	9.26	18.19	2.44 -0.22 0.41	0.53	0.91
		AVQZ	0.02	0.11	9.27	18.19	2.44 -0.22 0.41	0.53	0.91
		AVDZ	-0.16	0.08	9.39	18.04	2.40 -0.27 0.42	0.57	0.94
	MP2	AVTZ	-0.15	0.07	9.28	18.03	2.37 -0.30 0.42	0.56	0.95
		AVQZ	-0.15	0.07	9.27	18.01	2.36 -0.31 0.42	0.56	0.95
	Reference								
			0.63						

  To avoid a lengthy table, we present in Table3.3 only the MSEs, MUEs, RMSDs and MaxDs (in units of Log) while the computed equilibrium constants and the reference values are placed in TableA1.2 (see Appendix 1). The best five values for each statistical criterion are evidenced in red while the best of them is as well shown in bold. We stress again that the errors/deviations shown in Table3.3 correspond to the equilibrium constants associated with the

	formation of AtCl, AtSCN, AtOCl, AtOSCN, AtOOH,	2 AtCl  ,	2 AtSCN  and

UAHF//UAKS(B3LYP) values, and (ii) the gas phase free energies ( g G   ) are computed with the panel of 36 XC functionals. 2 AtOCl  .
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 33 MSEs, MUEs, RMSDs and MaxDs (in Log units) for the calculated equilibrium constants using several DFT functionals in conjunction with the AVDZ basis set and the CPCM-UAHF//UAKS(B3LYP) solvation scheme.

	Functional	MSE	MUE	RMSD	MaxD
	LSDA				
	SVWN	0.1	0.9	1.1	2.3
	GGAs				
	BLYP	-0.3	1.2	1.6	3.6
	BP86	-0.2	0.9	1.2	2.2
	PW91	-0.3	0.9	1.2	2.1
	PBE	-0.2	0.9	1.2	2.2
	revPBE	-0.2	1.1	1.5	3.0
	HCTH	-0.3	1.0	1.2	2.2
	OLYP	-0.1	1.1	1.4	3.0
	Meta-GGAs				
	PKZB	-0.1	0.7	0.8	1.3
	TPSS	0.1	0.7	0.9	1.6
	VS98	-0.3	0.9	1.0	1.7
	M06-L	-0.7	1.6	1.9	3.2
	M11-L	3.9	3.9	4.9	11.2
	Hybrid GGAs				
	B3LYP	-0.2	0.6	0.7	1.2
	X3LYP	-0.1	0.5	0.7	1.3
	B3PW91	0.0	0.7	0.8	1.5
	BH&HLYP	1.2	1.5	1.9	3.2
	PBE0	0.1	0.7	0.9	1.7
	B97-2	0.2	0.7	0.8	1.3
	B98	0.1	0.6	0.8	1.4
	Hybrid meta-GGAs			
	TPSSh	0.1	0.6	0.8	1.4
	MPW1B95	0.0	0.8	0.9	1.3
	PW6B95	-0.1	0.6	0.7	1.1
	MPWB1K	0.5	1.0	1.3	2.7
	PWB6K	0.6	1.1	1.4	2.7
	M05	-0.3	1.1	1.4	2.3
	M06	-0.6	1.2	1.6	3.1
	M05-2X	2.6	2.6	3.3	7.2
	M06-2X	2.1	2.1	2.7	5.7
	M08-HX	2.6	2.7	3.5	7.9
	M08-SO	-0.1	1.0	1.2	2.3
	Range-separated				
	CAM-	0.6	0.9	1.1	2.1
	B3LYP				
	LC-PBE	0.4	1.1	1.3	2.4
	HSE06	0.0	0.6	0.7	1.4
	BNL	1.1	1.2	1.5	2.6
	M11	1.1	1.7	2.4	5.9
	Ab initio				
	HF MP2 a a These values are based on single point MP2/AVTZ energies obtained 3.8 3.8 5.6 11.7 0.4 0.8 1.0 2.0
	on previously optimized B3LYP/AVDZ geometries.	

We start by discussing at first the results obtained with the hybrid functionals. From Table

3

.3 it can be observed that the B3LYP, X3LYP, TPSSh, MPW1B95, PW6B95 and HSE06 functionals allow the computation of very accurate equilibrium constants with MaxDs smaller than 1.5 Log units and MUEs generally lower than 0.6 units. On a free energy scale, this error

Table 3 .

 3 

4 

MSEs, MUEs, RMSDs and MaxDs (in units of Log) corresponding to equilibrium constants calculated using several DFT functionals, the AVDZ basis set, the CPCM-UAHF//UAKS(B3LYP) solvation scheme, and the Grimmes's DFT-D3 dispersion correction. Values calculated without any dispersion correction are recalled from Table

3

.3 and are given within parenthesis.

  Hence, one can state that SOC renders At less reactive for electrophilic approaches to attach 211 At to carrier molecules. It appears that SOC has only a moderate impact on the At hardness (~2%). In light of the HSAB principle, the calculated value of ~3.45 eV is consistent with the observed affinity toward soft S atoms (η(S) = 4.14 eV) during the direct labeling of proteins.

	of SOC by 15%.	8.0		
		6.0		
		4.0		
		2.0		
		0.0	SVWN PBE	TPSS	B3LYP PW6B95 M06 M06-2X HSE06

.5. At first, we found that SOC has a strong impact on the electronegativity and on the electrophilicity values. The former is reduced under the effect of SOC by ~10% down to ~5.85 eV on the Mulliken scale (value which translates to ~1.82 in the Pauling scale). This value is consistent with current considerations in the literature that it should be close or lower than the one of H. The latter (i.e. the electrophilicity) is reduced under the effect
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 35 Calculated electronegativity (χ), hardness (η) and electrophilicity () using selected XC functionals and the AVTZ basis set. The IP 1 and the EA values of At, calculated with 2c-DFT, are recalled for convenience from Table3.2. SO is defined as the difference between the results obtained from 2c-DFT and scalar relativistic DFT calculations.

	Functional			IP 1	EA	χ (eV) b	η (eV)	 (eV)
	B3LYP SO c			9.29 -0.61	2.41 -0.48	5.85 (1.82) -0.54 (-0.15)	3.44 -0.07	2.49 -0.43
	PBE0 SO c			9.28 -0.60	2.39 -0.48	5.84 (-1.81) -0.54 (-0.14)	3.45 -0.06	2.47 -0.43
	PW6B95 SO c b The values in parenthesis are expressed in Pauling units, using a half-power formula: 9.29 2.40 5.85 (1.82) 3.45 2.48 -0.60 -0.47 -0.54 (-0.14) -0.07 -0.42
	P χ 1.934 χ 	M		7.02 5.012 	. 72	
	c					

  2v structures on the ground-state PES. The D 3h structure is found to be a local minimum that is 2.4 and contributes to create a minimum D 3h structure in AtF 3 . The conversion of the D 3h

	kJ•mol -1 higher in energy than the T-shaped C 2v ones, according to our 2c-PBE0 calculations. Note
	that this energy difference is in reasonable agreement with the 2c-CCSD(T) value reported by Yang
	and Wang, 7.72 kJ•mol -1 . For convenience, to evidence the effect of SOC on the individual
	geometries and		3h D E 	2 v C	, we print scalar relativistic results in Table 4.1. It can be seen that in both

structures, SOC lengthens the equilibrium bond lengths (by ~0.03 Å) while in the T-shaped C 2v one it also enlarges the  bond angle by ~5°. As well, SOC appears to reduce the relative energy between these minima (by 7.5 kJ•mol -1 ). One may thus deduce that SOC actually acts oppositely to the PJTE

Table 4 . 1

 41 Geometrical parameters for the identified minima and TSs (bond lengths in Å and angles in degrees) of the ground-state PES of AtF 3 , relative energies (in kJ•mol -1 ) with respect to the T-shaped C 2v minima, and magnitude of the imaginary frequency (in cm -1 ) for each TS. For the definition of the geometrical parameters, see Figs. 4.1 and 4.3.

  .2, calculated at the SR-PBE0 level, clearly demonstrates the abovementioned statement.

	Minima	D 3h r e	r ax	T-shaped C 2v r eq					3h D E 	C	2 v
	SR-PBE0	2.040	2.043	1.961	85.6					9.9
	2c-PBE0	2.068	2.068	2.012	91.0					2.4
	Transition states	r ax	Y-shaped C 2v r eq 		1 a		TS C E 	2 v
	SR-PBE0		2.053	2.001 107.4 66i			11.9
	2c-PBE0		2.075	2.047 108.7 42i			3.1
			r in	C s r out		a	"		
	SR-PBE0		1.969	2.078	308i		242.8
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	2 Contributions (in kJ•mol -1 ) to	3h D E  	2 v C	in AtF 3 , computed at various levels of theory.

Table 4 .

 4 2). Accounting for the remaining part of the electron correlation appears to be essential for determining accurate energies in AtF 3 , which is supported by the c-SOCI/NEVPT2(20/12) 

	calculated value of		3h D E 	C	2 v	(6.7 kJ•mol -1 ). Moreover, it appears that the NEVPT2(20/12)
		3h D E 	2 v C	value resemble well the c-SOCI/NEVPT2(20/12) one. That is, even though SOC induces
	large stabilizations of the individual D 3h and C 2v structures (~58 kJ•mol -1 , see the	3h SOC D E	and	2v SOC C E
	values in Table 4.2), these stabilizations are rather similar rendering		3h SOC D E 	C	2 v	small. Nonetheless,
	the calculated		3h SOC D E 	C	2 v

.1 kJ•mol -1 at the c-SOCI/CASSCF(20/12) level is quite large compared to the reference 2c-CCSD(T) result (see

  calculations at both the C 2v and D 3h 2c-PBE0 equilibrium structures, we found that the ground-state wave function has ~91% weight on the ground-state spinsinglet HF configuration. In addition, when SOC is introduced at the c-SOCI/NEVPT2(20/12) level, we found that the ground-state spin-orbit coupled wave-function has ~83% weight on the ground SOF singlet-spin component. Other important contributions amount to ~16% and ~13% weights on the |M S |=1 spin components of the first two excited-SOF-triplet states, at the D 3h and C 2v structures respectively. This actually means that both the SOF and SOC wave functions in AtF 3 are essentially single configurational, fact that justifies the use of single-configurational and single-reference methods, such as (2c-)DFT and (2c-)CCSD(T), to determine the lowest energy structures in AtF 3 .
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 43 Contributions (in kJ•mol -1 ) of electron correlation and scalar relativistic effects to

	3h D E  	2 v C	as retrieved

Table 4 . 4

 44 Energy difference (in kJ•mol -1 ) between the Y-shaped C 2v TS and the D 3h minimum of AtF 3 (

	3h TS D E  	)
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	Minima	D 3h		T-shaped C 2v				3h D E 	C	2 v
	System ClF 3 BrF 3 IF 3	r e 1.728 a 1.738 a -1.825 a 1.828 a -1.965 a 2c-CCSD(T) 15 1.941 a NR-PBE0 NR-CCSD(T) Expt. 4 2c-PBE0 SR-CCSD(T) Expt. 3 2c-PBE0	r ax 1.706 1.703 1.698 1.812 1.811 1.810 1.950 1.926	r eq 1.603 1.605 1.598 1.725 1.725 1.721 1.878 1.853		 87.4 87.1 87.5 86.4 86.0 86.2 83.8 83.3			91.5 96.7 -60.2 70.7 -55.0 67.8
	Transition states System		r ax	Y-shaped C 2v r eq		2 b  		TS C E 	2 v
	ClF 3 BrF 3 IF 3	NR-PBE0 2 c-PBE0 2 c-PBE0	1.703 1.814 1.958	1.762 1.843 1.978	128.7 125.6 124.4	207i 127i 90i		89.3 59.9 54.9

5 

Geometrical parameters for the identified minima and TSs (bond lengths in Å and angles in degrees) of the ground-state PES of XF 3 (X = Cl, Br, I), relative energies (in kJ•mol -1 ) with respect to the T-shaped C 2v minimum and the magnitude of the imaginary frequency (in cm -1 ) for each TS.

a The D 3h structure corresponds to a second-order saddle point.
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 46 Contributions (in kJ•mol -1 ) to the

	3h	2 v

Table 4 .7 Contributions

 4 

	3h D E  	2 v C	as

(in kJ•mol -1 ) of electron correlation (EC) and scalar relativistic effects (SRE) to

  1 Some very famous examples are the dissociation of singlet N 2 O into triplet N 2 and O fragments, the dissociation of triplet CH 3 O + into singlet H 2 and

  7,11 

	σ *		
	π *	π *	
			2p x , 2p y , 2p z
	6p x , 6p y , 6p z		
	π	π	O
	At +		
	σ		

Table 5 . 1

 51 Calculated SOF and SOC excitation energies (in eV) of AtO + at the NEVPT2(8/6)/AVTZ//2c-PBE0/AVDZ and c-SOCI/NEVPT2(8/6)/AVTZ//2c-PBE0/AVDZ levels of theory.
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 52 Calculated SOF excitation energies (in eV) at the NEVPT2(8/6)/AVTZ//SR-PBE0/AVDZ level of theory.

  cluster is 0.55 eV lower in energy than the singlet-spin one (see E in Table

	triplet-spin	
	T 0 ( 3  -) S 0 ( 1 ) S 1 ( 1 ) S 2 ( 1  + ) E	AtO + AtO + (H 2 O) 1 , C 2v AtO + (H 2 O) 1 , C s 0.00 0.00 0.17 0.56 0.54 0.00 0.56 0.55 0.70 1.00 0.97 2.08 0.55

1 

 state of the free AtO + cation. The implication of the S 2 ( 1  + ) state (i.e. of the 1  + state of AtO + ) in this process is definitely ruled out. However, at the NEVPT2(8/6)/AVTZ//SR-PBE0/AVDZ level of theory, the
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 5 

			4 Vertical excitation energies (in eV) obtained at the 2c-PBE0/AVDZ geometries of the	  2 AtO H O n 	clusters
	(n=2-6). The E non-adiabatic energy differences between the essentially-singlet-spin and essentially-triplet-spin
	clusters are also given (a positive value means that the essentially-spin-triplet cluster is more stable). Unless indicated
	otherwise, all values are calculated at the c-SOCI/NEVPT2(8/6)/AVTZ level of theory.	
			  2 AtO H O 	2	  2 AtO H O 	3	  2 AtO H O 	4	  2 AtO H O 	5	  2 AtO H O 	6
	Essentially-triplet-spin clusters, 2c-PBE0/AVDZ			
		0	0.00		0.00		0.00		0.00		0.00
		1	0.37		0.43		0.44		0.62		0.71
		2	0.37		0.44		0.45		0.64		0.74
		3	0.91		0.97		0.96		1.01		1.03
		4	0.91		0.98		0.97		1.14		1.22
	Essentially-singlet-spin clusters, 2c-PBE0/AVDZ			
		0	0.00		0.00		0.00		0.00		0.00
		1	0.89		1.44		2.04		2.21		2.31
		2	0.89		1.44		2.12		2.33		2.45
		3	1.05		1.47		2.21		2.36		2.48
		4	1.37		1.83		2.34		2.45		2.51
	Energy differences							
	E These values are calculated at the c-SOCI/NEVTP2(8/6)/AVTZ//2c-PBE0/AVTZ level of theory. These values  0.33 0.30 0.10 -0.10 -0.23 0.32 a 0.30 a ---0.29 b 0.28 b ---a
	show that there is no bias introduced by the use of equilibrium geometries calculated with the smaller AVDZ basis
	set. b These values are calculated at the c-SOCI/NEVPT2(8/6)/AVQZ//2c-PBE0/AVTZ level of theory. These values
	show that there is only trifling change introduced by the use of the larger AVQZ basis set.	

  3  -) state (~70%), and a secondary contribution from the spin-component of the S 2 ( 1  + ) ) and S 1 ( 1 ) states (~81%), respectively. It is hence undoubtedly that these set of SOC states correlate with X 0 + , the twofold-degenerate a 1 state and twofold-degenerate a 2 state of the isolated AtO + cation.

	state (~25%), (ii) the first two excited SOC states, 1  and 2  , have both large contributions from
	the |M S |=1 spin-components of the T 0 ( 3  -) state (~86%), and (iii) the wave functions of the next two
	excited SOC states, 3  and 4  have both dominant contributions from the components of the
	S 0 ( 1

  3  -) state (~42%). Hence, we observe a concerted change in the SOF compositions of 0  and 3  . As n increases from 2 to 6, several aspects can be observed, (i) the energy gaps between the 1  -) and T 1 ( 3 )), (iii) while 4  is destabilized, it has less and less contribution from the S 1 ( 1 ) component while it exhibits, beyond n=4, contributions from the |M S |=1 spin-components of the T 1 ( 3 ) state (a SOF state that correlates with 3 ), and (iv) 0  exhibits more and more S 0 ( 1 ) character, in line with the tremendous (relative) stabilization of this SOF state. Therefore, it is obvious that the essentially-singlet-spin AtO + (H 2 O) n clusters exhibit essentially closed-shell groundstates that correlate with the essentially closed-shell component of the a 2 state.

	 and 2 
	states gradually increases while they are both destabilized with respect to 0  (see Table 5.4), (ii)
	1  , 2  and 3  exhibit mixtures of the different M S components of the lowest two SOF triplet-
	spin states (T 0 ( 3

Table 5 . 5

 55 Calculated EBOs at the NEVPT2(8/6)/AVTZ and c-SOCI/NEVPT2(8/6)/AVTZ levels of theory for the lowest-lying SOF states in AtO + . All EBOs are obtained at the 2c-PBE0/AVDZ equilibrium geometry (1.928 Å).

  Thus, we can safely derive EBOs from their natural numbers. Lastly, we note that all the MOs shown in Fig.5.11 clearly exhibit  or  character, and are denoted indeed to refer back to the  and  orbitals of AtO + . Calculated EBOs corresponding to the ground SOF and SOC states of the essentiallysinglet-spin AtO + (H 2 O) n clusters (n=2-6) are presented in Table5.6. Also, for each n case, we print the relative energies between the  and  * , and between the ̅ and ̅ * (where the top bar indicates an average energy) pairs of SA-CASSCF natural orbitals.

		State	This work	Ref. 4 a
		3  -	1.75	1.76
	SOF	1  1  +	1.66 1.59	1.69 1.62
		X 0 +	1.69	1.71
	SOC	a 1	1.65	1.66
	a 2 The EBOs were calculated at the NEVPT2(8/6)/ANO-RCC-QZP and c-1.56 1.58 a
	SOCI/NEVPT2(8/6)/ANO-RCC-QZP levels of theory, and at the uc-
	SOCI/NEVPT2(8/6)/ANO-RCC-QZP equilibrium geometry (1.893 Å).

occupation

Table 5 . 6

 56 EBOs calculated at the NEVPT2(8/6)AVTZ and c-SOCI/NEVPT2(8/6)/AVTZ levels of theory for the SOF S 0 ( 1 ) and SOC Ψ 0 ground states of the essentially-singlet-spin clusters. The 2c-PBE0/AVDZ equilibrium geometries were used.

  CASSCF natural orbitals for the essentially-singlet-spin AtO + (H 2 O) 6 cluster are shown. ) (̅ ,̅ * ) State EBO  EBO  EBO

	Species (, AtO + (H 2 O) 2 -0.55	-0.24	S 0 ( 1 ) 0.92 0  0.88	0.76 1.68 0.80 1.68
	AtO + (H 2 O) 3 -0.54	-0.26	S 0 ( 1 ) 0.90 0  0.88	0.83 1.73 0.83 1.71
	AtO + (H 2 O) 4 -0.51	-0.27	S 0 ( 1 ) 0.88 0  0.86	0.90 1.77 0.89 1.74
	AtO + (H 2 O) 5 -0.50	-0.28	S 0 ( 1 ) 0.87 0  0.85	0.92 1.78 0.91 1.76
	AtO + (H 2 O) 6 -0.50	-0.28	S 0 ( 1 ) 0.86 0  0.84	0.93 1.79 0.91 1.76

* 

  elongation of the AtO + bond and longer interaction distances between the At center and the two hydroxide fragments (by more than 0.1 Å). The

	.13) G are free energies of the i conformer of interest and of all the identified j stable G , j where i conformers, respectively. For the present   2 AtO OH  case, the Boltzmann populations of the C 2 and AtOBr  species exhibits a single relevant structure of C 2v symmetry. At the 2c-B3LYP+CPCM-UAHF//UAKS and 2c-MP2//2c-B3LYP+CPCM-UAHF//UAKS levels of theory, we have obtained Log K 2exc values of 12.0 and 13.0, respectively. They lead to Log K hyd,2 values of -9.1 and -8.1, respectively. These values appear to be consistent and, apparently, suggest that the measured value for the equilibrium constant, Log K=-6.9±0.2, can correspond to C 2 reaction 6.3. However, the 2c-DFT value is ~2 logarithmic units off the experimental one,

s conformers, in aqueous solution, are 20% and 80%, respectively. Definitely, the latter conformer predominates and mostly influences the reaction equilibrium constant. Comparing the equilibrium geometry of this conformer with the one of AtO(OH) (see Fig.

6

.1), one can note for the present case a slight

   

	* s	g	* sol	2 AtO OH H O 2	n	* sol	2 Br H O	1	2	* sol	Br
		* sol	2 AtOBr H O 2	n	* sol	2 HO H O	1	2	* sol	HO

Table 6 . 1

 61 Values of Log K 2exc and Log K hyd,2 computed at different levels of theory. Stepwise additions of explicitlytreated water molecules are considered. These Log K hyd,2 values should be compared to the experimental one of -6.9±0.2.Compared to the case when only bare species were considered, these values appear slightly improved. Nonetheless, there is still ~1.5 logarithmic units of disagreement between the calculated Log K hyd,2 value and the experimental Log K value of -6.9±0.2. Two hypotheses can be formulated regarding this issue, (i) the explicit treatment of a single water molecule in the hydration shells of the considered anionic species is not sufficient for obtaining accurate estimates of the free energies of solvations; hence the value of n must be increased, and (ii) the use of the thermodynamic cycle shown in Scheme 6.3 did not allowed the computation of a more accurate Log K 2exc value since the molecule interacts with the sp 2 O center of the AtO + moiety in the most stable

	n=1						
	Considering a single water molecule in the hydration shells of the	2 AtOBr  and
	  2 AtO OH						
	interaction-by-interaction error cancelations are not sufficient enough. The equilibrium geometries
	of the most stable	 	  2 1 AtOBr H O 2	  and 	 	    2 2 1 AtO OH H O	  conformers, obtained at the 2c-
	B3LYP/AVDZ level of theory, are shown in Fig. 6.3. On the LHS of the studied reaction, the water

 species, and only bare ligands (i.e. m=0), values of 12.5 and -8.6 for Log K 2exc and Log K hyd,2 , respectively, are obtained at the 2c-B3LYP+CPCM-UAHF//UAKS level of theory.

Table 6 . 2

 62 Summary of the water-solute interactions occurring on the LHS and RHS of reaction 6.10, for the microsolvation case when two water molecules are clustered with the involved At-containing species (n=2).

  species can be formed through the hydrolysis of AtO(OH). However, which one of the two candidates is actually formed could not be discerned only from the experimental data, and quantum mechanical studies have been performed. Our strategy was to bring computational estimates for the equilibrium constants associated with the formation of the species could be formed. Our computational estimate for the equilibrium constant associated with this latter candidate reaction, Log K hyd,2 = -7.1, is in great agreement with the experimentally determined one (-6.9±0.2). A firm identification of the formed species is thus possible.AtO OH species is the one that predominates over At -in basic and oxidizing conditions, and this species should be added to the Pourbaix diagram of At (see Fig. 6.6). Although the border between At -and   2 AtO OH  can be drawn from the available data, it cannot be further confirmed by experiment due to kinetic considerations. More importantly, it is not yet known if another species can predominate above pH=11. Therefore, we do not consider that this diagram is yet complete.

			5, this species transforms into
	AtO(OH). Furthermore, the corresponding equilibrium constant has been measured. Then, two
	hypotheses arose, (i) either the	2 AtO  species can be formed through the deprotonation of AtO(OH),
	or (ii) the	  2 AtO OH
			2 AtO 
	and	  2 AtO OH
		It is now clear that the	  2
		The identification of	  2

  species, and to compare them with the experimentally determined one. In a first step, we have ruled out the possibility that the former species, i.e.

2 AtO  , is formed through the deprotonation reaction of AtO(OH) since our computational estimate of Log K a (AtO(OH)), below -11, is in great disagreement with the measured constant of -6.9±0.2. We then considered the second candidate reaction, in which the   2 AtO OH 

  AtO OH was achieved after relativistic quantum mechanical calculations relying on established 2c-DFT approaches, were performed. These calculations resulted in a hydrolysis constant of AtO(OH) in excellent agreement with the measured equilibrium constant when the  2AtO OH  species is considered. The identification of the predominance domain of this species represents an important advance regarding the completion of the astatine Pourbaix diagram, and is crucial for current radiolabeling protocols based on the At -precursor. For instance, if its involvement is required in a nucleophilic substitution, non-reductive conditions should be avoided.As a perspective, even though it is not trivial, it is of interest to complete the Pourbaix diagram of At, and notably assess the bordering domain of

	Functional		At 2	HAt	AtF 3 C2v		AtF 3 D3h	AtO +	MSE MUE RMSD MaxD
	LSDA SVWN a		3.010	1.749	-	-	2.086	1.945	1.2	1.2	1.1	2.0
	identification as GGAs BLYP a BP86 a PW91 a PBE a revPBE a HCTH a OLYP a	3.155 3.086 3.074 3.075 3.097 3.107 3.092	  2 1.764 1.756 1.753 1.754 1.756 1.746 1.746	-------	-------	2.136 2.118 2.116 2.118 2.128 2.175 2.118	1.983 1.967 1.965 1.966 1.972 1.957 1.961	4.5 3.4 2.4 2.4 2.8 3.2 2.4	4.5 3.4 2.4 2.4 2.8 3.2 2.4	4.7 3.8 2.0 2.1 2.4 3.0 2.1	Its firm 7.5 6.6 3.4 3.5 4.0 6.3 3.5
	Meta-GGAs PKZB a TPSS a		3.010 3.061	1.751 1.747	--	--	2.123 2.108	1.967 1.960	1.9 2.0	1.9 2.0	1.9 1.7	3.8 3.0
	VS98		3.130	1.743	2.110	2.066	2.112	1.958	2.9	2.9	3.1	4.1
	M06-L		3.137	1.750	2.107	2.068	2.104	1.946	2.8	2.8	3.1	4.3
	M11-L		3.056	1.717	2.007	1.946	2.016	1.887	-1.0	1.6	1.7	2.2
	Hybrid GGAs										
	B3LYP		3.085	1.746	2.105	2.062	2.101	1.947	2.4	2.4	2.6	3.8
	X3LYP		3.080	1.744	2.102	2.057	2.098	1.945	2.3	2.3	2.4	3.5
	B3PW91		3.020	1.737	2.089	2.042	2.085	1.933	1.4	1.4	1.7	2.8
	BH&HLYP		3.025	1.724	2.069	2.010	-	1.909	0.4	0.9	0.9	1.2
	PBE0		3.015	1.734	2.085	2.034	2.082	1.928	1.2	1.2	1.5	2.4
	B97-2		3.086	1.733	2.092	2.044	2.087	1.932	1.8	1.8	2.1	2.9
	B98 Hybrid meta-GGAs 3.093 TPSSh 3.039	1.737 1.740	2.096 2.098	2.049 2.053	AtO OH 2.093   2 2.094	1.938 1.945	2.1 1.9	2.1 1.9	2.3 2.1	3.1 3.3
	MPW1B95		3.013	1.730	2.078	2.027	2.076	1.934	1.0	1.0	1.2	2.0
	PW6B95		3.032	1.734	2.086	2.037	2.083	1.929	1.3	1.4	1.6	2.5
	MPWB1K		2.986	1.721	2.062	2.005	-	1.905	0.0	0.8	0.9	1.3
	PWB6K M05 a		2.990 3.133	1.720 1.757	2.062 2.101	2.004 2.069	-2.096	1.904 1.926	0.0 2.6	0.7 2.7	0.8 3.0	1.3 4.2
	M06		3.116	1.754	2.092	2.053	2.089	1.925	2.2	2.3	2.5	3.7
	M05-2X		2.948	1.720	2.065	2.002	2.064	1.919	0.0	0.9	1.0	1.9
	M06-2X		2.971	1.725	2.071	2.009	-	1.919	0.2	0.9	1.0	1.2
	M08-HX		2.949	1.724	2.074	2.009	-	1.921	0.1	1.0	1.2	1.9
	M08-SO		3.065	1.751	2.094	2.047	-	1.928	1.8	1.9	2.1	3.0
	Range-separated								
	CAM-B3LYP 3.021	1.733	2.084	2.033	-	1.921	1.0	1.2	1.4	2.3
	LC-PBE		2.966	1.728	2.086	2.037	-	1.915	0.6	1.4	1.6	2.5
	HSE06		3.032	1.736	2.090	2.041	2.087	1.932	1.5	1.5	1.7	2.7
	BNL		3.016	1.763	2.107	2.060	-	1.939	2.0	2.0	2.4	3.6
	M11		2.972	1.733	2.088	2.032	-	1.921	0.7	1.4	1.5	2.3
	Ab initio HF b		3.007	1.715	2.050	1.975	-	1.877	-0.6	0.7	1.3	2.7
	MP2		3.046	1.726	2.091	2.035	2.090	1.953	1.6	1.6	1.8	2.4
	Reference	3.006 1 1.718 2	2.046 3	1.987 3	2.046 3	1.930 4			
	a										

 in strong basic conditions (i.e. above pH=11).

Table A1 . 2

 A12 Calculated equilibrium constants (in Log units) using several XC functionals in conjunction with the AVDZ basis set and the CPCM-UAHF//UAKS(B3LYP) solvation scheme.

	Functional	AtCl	AtSCN	AtOCl	AtOSCN	AtOOH	2 AtCl 	2 AtSCN 	2 AtOCl 
	LSDA								
	SVWN	1.1	3.5	2.4	5.1	11.1	2.7	4.8	4.2
	GGAs								
	BLYP a	0.7 (0.7) 4.2 (5.1) 1.9 (1.8)	5.2 (6.0)	8.5 (8.6)	2.1 (2.0) 5.4 (7.2)	3.5 (3.3)
	BP86	0.9	3.9	2.2	5.0	9.9	2.3	5.0	3.8
	PW91	0.7	3.8	2.1	4.8	10.0	2.2	5.0	3.7
	PBE	0.8	3.8	2.2	4.8	9.9	2.3	5.1	3.8
	revPBE	0.7	3.9	2.1	5.8	9.7	2.1	5.0	3.7
	HCTH	0.7	3.6	2.1	5.0	10.1	2.2	4.8	3.7
	OLYP	0.7	3.7	2.1	5.8	10.0	2.2	5.0	3.7
	Meta-GGAs								
	PKZB	0.9	4.2	2.3	3.8	10.8	2.3	5.1	3.9
	TPSS a	1.0 (1.0) 3.9 (4.4) 2.4 (2.4)	4.4 (4.9)	11.7 (11.7) 2.5 (2.5) 4.7 (5.9)	4.1 (4.0)
	VS98	0.6	4.1	1.9	4.2	10.4	2.3	5.0	3.6
	M06-L	-0.6	1.3	1.6	3.3	14.3	2.0	2.7	3.9
	M11-L	3.8	6.1	5.1	7.5	23.3	5.7	6.8	7.3
	Hybrid GGAs								
	B3LYP a	0.9 (0.9) 3.9 (4.7) 2.4 (2.4)	2.6 (3.3)	11.3 (11.4) 2.5 (2.5) 5.1 (6.7)	4.2 (4.1)
	X3LYP	1.0	4.0	2.5	2.4	11.6	2.7	5.2	4.3
	B3PW91	1.0	3.6	2.6	2.0	12.6	2.7	5.0	4.5
	BH&HLYP	1.3	4.2	3.0	6.0	15.3	3.4	5.5	5.3
	PBE0	1.0 (1.0) 3.8 (4.2) 2.7 (2.7)	1.9 (2.4)	13.1 (13.1) 2.8 (2.7) 5.3 (6.2)	4.7 (4.6)
	B97-2	0.8	3.6	2.5	1.9	12.4	2.5	4.7	4.3
	B98	1.0	3.9	2.6	2.0	12.2	2.6	4.8	4.4
	Hybrid meta-GGAs							
	TPSSh a	1.1 (1.0) 3.8 (4.4) 2.6 (2.6)	2.8 (3.4)	12.7 (12.8) 2.7 (2.6) 4.8 (6.0)	4.4 (4.3)
	MPW1B95	1.0	3.7	2.9	2.0	13.3	2.5	4.6	4.1
	PW6B95	0.9	3.7	2.8	2.0	12.6	2.4	4.9	4.1
	MPWB1K a	1.2 (1.2) 3.8 (4.2) 2.9 (2.9)	3.4 (4.1)	14.8 (14.8) 2.8 (2.8) 4.4 (5.4)	4.6 (4.5)
	PWB6K	1.1	3.8	2.9	4.0	14.8	2.8	4.6	4.8
	M05	0.6	1.5	2.9	3.4	12.1	2.8	3.7	4.9
	M06 a	0.3 (0.3) 1.8 (1.8) 2.4 (2.4)	2.2 (2.3)	12.6 (12.6) 2.5 (2.5) 2.8 (2.9)	4.6 (4.6)
	M05-2X	2.9	5.8	4.3	10.0	15.8	4.4	6.0	6.3
	M06-2X	2.1	5.0	3.6	8.5	15.5	4.1	6.2	6.0
	M08-HX	2.9	5.5	4.1	10.7	15.8	4.5	5.6	6.3
	M08-SO	1.1	3.4	2.6	4.3	11.2	2.7	3.6	4.6
	Range-separated								
	CAM-B3LYP	1.2	3.8	2.9	3.8	13.6	3.3	5.2	5.1
	LC-PBE	1.2	3.6	3.1	2.3	13.9	3.3	4.8	5.4
	HSE06	0.9	3.8	2.6	1.9	12.6	2.6	5.3	4.4
	BNL	1.6	4.4	3.4	5.4	13.4	3.7	5.8	5.5
	M11	1.7	4.0	3.2	8.7	13.0	3.4	4.0	5.3
	Ab Initio								
	HF	2.1	5.1	3.8	14.5	21.3	4.6	6.4	6.8
	MP2 b	1.2	4.3	3.2	1.7	13.1	2.7	5.9	5.0
	Reference	1.9 5	3.8 5	2.5 5	2.8 5	12.1 6	2.		

Table A1 . 3

 A13 Calculated equilibrium constants (in Log units) using selected XC functionals in conjunction with the AVTZ basis set and the CPCM-UAHF//UAKS(B3LYP) solvation scheme.

	Functional	AtCl AtSCN AtOCl AtOSCN AtOOH	2 AtCl 	2 AtSCN 	2 AtOCl 
	LSDA								
	SVWN	1.1	2.9	2.6	2.9	11.0	2.7	3.9	4.5
	GGA								
	PBE	0.8	3.1	2.4	2.3	9.5	2.2	4.5	4.0
	Meta-GGA								
	TPSS	1.1	3.1	2.6	2.3	11.4	2.6	4.2	4.4
	Hybrid GGAs								
	B3LYP	1.0	3.4	2.6	1.5	11.1	2.6	4.7	4.5
	X3LYP	1.0	3.4	2.6	1.4	11.3	2.7	4.7	4.5
	PBE0	1.0	3.1	2.8	0.9	12.5	2.7	4.2	4.8
	Hybrid meta-GGAs							
	TPSSh	1.1	3.1	2.8	1.6	12.4	2.8	4.2	4.6
	PW6B95	0.9	2.9	2.5	0.7	11.7	2.6	4.3	4.1
	M06	0.0	1.5	2.2	2.2	10.6	1.9	2.4	4.2
	M06-2X	1.6	3.3	3.3	6.1	14.3	3.6	4.2	5.6
	Range-separated							
	HSE06	1.0	3.1	2.7	1.1	12.0	2.6	4.3	4.6
	Reference	1.9 5	3.8 5	2.5 5	2.8 5	12.1 6	2.3 5	5.9 5	3.0 5

Table A1 . 4

 A14 Calculated errors/deviations (in units of Log) associated with the equilibrium constants shown in TableA1.3. 

	Functional	MSE	MUE	RMSD	MaxD
	LSDA				
	SVWN	-0.3	0.9	1.1	2.0
	GGA				
	PBE	-0.7	0.9	1.2	2.6
	Meta-GGAs				
	TPSS	-0.3	0.8	0.9	1.7
	Hybrid GGAs			
	B3LYP	-0.4	0.8	1.0	1.5
	X3LYP	-0.3	0.8	1.0	1.5
	PBE0	-0.3	1.0	1.2	1.9
	Hybrid meta-GGAs			
	TPSSh	-0.2	0.9	1.0	1.7
	PW6B95	-0.6	0.9	1.1	2.1
	M06	-1.2	1.5	1.8	3.5
	M06-2X	1.0	1.6	1.9	3.3
	Range-separated			
	HSE06	-0.4	0.9	1.1	1.7

Table A1 . 5

 A15 Calculated equilibrium constants (in Log units) using selected DFT functionals in conjunction with the AVDZ basis set and different solvation schemes.

	Functional		AtCl	AtSCN	AtOCl	AtOSCN	AtOOH	2 AtCl 	2 AtSCN 	2 AtOCl 
	LSDA									
		UAHF	1.0	3.7	1.9	6.3	11.3	2.6	4.9	3.8
	SVWN	UAKS	1.1	2.1	1.9	2.1	13.7	2.8	1.9	4.3
		UFF UFF a	2.0 1.6	2.3 3.3	1.7 1.4	15.0 14.6	23.3 21.8	4.2 3.7	1.8 3.1	5.3 4.7
	GGA									
		UAHF	0.8	4.0	1.7	5.5	10.2	2.2	5.1	3.4
	PBE	UAKS UFF UFF a	0.8 1.7 1.3	2.4 2.4 3.6	1.7 1.5 1.2	1.9 13.1 12.7	12.5 22.1 20.6	2.4 3.8 3.3	2.2 1.6 2.9	3.9 4.9 4.3
	Meta-GGA									
		UAHF	0.9	4.0	1.9	5.0	11.9	2.5	4.8	3.7
	TPSS	UAKS UFF UFF a	1.0 1.8 1.5	2.4 2.5 3.6	1.9 1.7 1.4	1.5 13.3 12.9	14.3 23.9 22.4	2.7 4.1 3.6	1.9 1.3 2.6	4.2 5.2 4.6
	Hybrid GGAs								
		UAHF	0.9	4.0	1.9	3.2	11.6	2.5	5.2	3.8
	B3LYP a	UAKS UFF UFF a	1.0 1.8 1.4	2.5 2.5 3.7	1.9 1.7 1.4	2.5 15.3 17.6	13.9 23.5 22.0	2.5 4.1 3.5	2.9 1.7 3.0	4.3 5.3 4.7
		UAHF	0.9	4.1	1.9	3.1	11.8	2.6	5.3	3.9
	X3LYP	UAKS UFF UFF a	1.0 1.8 1.5	2.5 2.6 3.8	2.0 1.8 1.4	3.0 18.6 18.2	14.2 23.8 22.3	2.8 4.2 3.7	2.4 1.8 3.1	4.4 5.4 4.8
		UAHF	1.0	3.9	2.2	2.6	13.3	2.8	5.2	4.3
	PBE0	UAKS UFF UFF a	1.0 1.9 1.5	2.3 2.4 3.6	2.2 2.0 1.7	3.1 18.7 18.3	15.6 25.2 23.8	2.9 3.5 3.8	3.0 1.8 3.1	4.7 5.8 4.8
	Hybrid meta-GGAs								
		UAHF	1.0	3.9	2.1	3.4	13.0	2.7	4.8	4.0
	TPSSh a	UAKS UFF UFF a	1.1 1.9 1.6	2.7 2.4 3.6	2.1 1.9 1.6	0.8 15.5 15.1	15.3 24.9 23.4	2.8 4.3 3.8	2.0 1.3 2.6	4.5 5.5 4.9
		UAHF	0.9	3.8	2.3	2.8	12.8	2.3	4.9	3.7
	PW6B95	UAKS UFF UFF a	1.0 1.8 1.5	2.2 2.3 3.5	2.3 2.1 1.8	3.4 19.0 18.6	15.2 24.8 23.3	2.5 3.9 3.4	2.6 1.4 2.7	4.2 5.2 4.6
		UAHF	0.2	4.6	1.9	2.9	12.8	5.2	3.0	4.2
	M06	UAKS UFF UFF a	0.3 1.1 0.8	0.3 0.4 3.6	1.9 1.7 1.4	-0.5 13.3 13.0	15.2 24.8 23.3	2.6 4.1 5.5	-0.1 0.1 1.5	4.7 5.7 5.1
		UAHF	2.0	5.1	3.1	7.8	15.7	4.0	6.3	5.6
	M06-2X	UAKS UFF UFF a	2.1 2.9 2.6	3.6 3.6 4.8	3.1 2.9 2.6	11.9 27.4 27.1	18.1 27.7 26.2	4.2 5.6 5.1	3.9 2.7 4.0	6.1 7.1 3.5
	Range-separated								
		UAHF	0.9	3.9	2.0	2.7	12.8	2.6	5.4	4.0
	HSE06 Reference a	UAKS UFF UFF a	1.0 1.8 1.5 1.9 5	2.3 2.4 3.6 3.8 5	2.1 1.9 1.5 2.5 5	2.7 18.2 17.9 2.8 5	15.2 24.8 23.3 12.1 6	2.7 3.3 3.6 2.3 5	3.0 1.8 3.1 5.9 5	4.5 5.5 4.9 3.0 5

Table A1 . 6

 A16 Calculated errors/deviations (in units of Log) associated with the equilibrium constants shown in TableA1.5.

	Functional		MSE	MUE	RMSD	MaxD
	LSDA					
		UAHF	0.2	1.0	1.4	3.5
	SVWN	UAKS	-0.6	1.4	1.8	4.0
		UFF UFF a	2.7 2.5	4.3 3.7	6.2 5.6	12.2 11.8
	GGA					
		UAHF	-0.2	1.0	1.3	2.7
	PBE	UAKS UFF UFF a	-0.8 2.1 2.0	1.2 3.8 3.2	1.6 5.4 4.8	3.7 10.3 9.9
	Meta-GGA					
		UAHF	0.1	0.8	1.0	2.2
	TPSS	UAKS UFF UFF a	-0.6 2.4 2.3	1.5 4.1 3.5	1.8 5.9 5.3	4.0 11.8 10.3
	Hybrid GGAs				
		UAHF	-0.2	0.6	0.6	1.0
	B3LYP	UAKS UFF UFF a	-0.4 2.7 2.9	1.2 4.3 4.0	1.5 6.3 6.4	3.0 12.5 14.8
		UAHF	-0.1	0.5	0.6	1.0
	X3LYP	UAKS UFF UFF a	-0.3 3.2 3.1	1.3 4.7 4.1	1.6 7.2 6.7	3.5 15.8 15.4
		UAHF	0.1	0.7	0.8	1.3
	PBE0	UAKS UFF UFF a	0.1 3.4 3.3	1.5 4.9 4.3	1.8 7.5 7.0	3.5 15.9 15.5
	Hybrid meta-GGAs				
		UAHF	0.1	0.7	0.8	1.1
	TPSSh a	UAKS UFF UFF a	-0.4 2.9 2.8	1.7 4.6 4.0	2.1 6.7 6.1	3.9 12.8 12.3
		UAHF	-0.1	0.5	0.6	1.0
	PW6B95	UAKS UFF UFF a	-0.1 3.3 3.1	1.4 4.9 4.3	1.8 7.5 7.0	3.3 16.2 15.8
		UAHF	0.1	1.4	1.7	2.9
	M06	UAKS UFF UFF a	-1.2 2.1 2.5	2.5 4.8 4.2	3.1 6.4 5.8	6.0 12.7 11.2
		UAHF	1.9	1.9	2.5	5.0
	M06-2X	UAKS UFF UFF a	2.3 5.7 5.2	2.9 6.6 5.7	4.1 10.5 10.0	9.1 24.6 24.3
	Range-separated				
		UAHF	0.0	0.5	0.6	1.0
	HSE06 a	UAKS UFF UFF a	-0.1 3.2 3.1	1.4 4.7 4.2	1.7 7.3 6.8	3.1 15.4 15.1

Table A2 .

 A2 

	Table A2.2 Contributions (in kJ•mol -1 ) to the		3h D E 	C	2 v

1 Dissociation energies (in kJ•mol -1 ) obtained at (2c-)PBE0 levels.

  3 → XF +F 2 XF 3 → XF 2 + F

			ClF 3 BrF 3 IF 3 AtF 3		124.3 228.2 349.5 364.0			184.0 231.5 274.8 238.8	
		NEVPT2		c-SOCI/NEVPT2		(2c-)CCSD(T)
	ClF 3 BrF 3 IF 3	3h D C 2 v E   67.2 59.6 59.9	3h SOC D E -0.1 -1.9 -9.3	2 v SOC C E -0.1 -1.4 -6.8		3h SOC D E  -0.0 C -0.5 -2.5	2 v	3h D C 2 v E   67.2 59.2 57.4	3h D C 2 v E   96.7 a 70.7 a 67.8 1

a Values calculated in the present work according to the computational details presented in chapter 4, section 4.4.

étudiés (formules brutes, structures géométriques, stabilités relatives et propriétés physicochimiques). Antérieurement, les calculs ont surtout été menés par des chercheurs de l'équipe de modélisation du laboratoire CEISAM, maintenant aidés par des chercheurs du laboratoire SUBATECH. Ces approches complémentaires (modélisation et expériences) constituent actuellement la voie privilégiée par les laboratoires SUBATECH et CEISAM pour étudier la chimie de base de l'astate. Cette thèse constitue une étude théorique de l'astate et de plusieurs de ses espèces à l'aide de méthodes issues de l'état de l'art de la mécanique quantique, afin d'identifier des espèces à base de l'astate qui sont stables en solution, de caractériser les liaisons chimiques à l'origine de ces espèces, et de définir des méthodes efficaces qui peuvent être sereinement utilisées pour prédire différentes propriétés d'espèces de l'astate.Cette thèse s'articule en six chapitres. Les deux premiers chapitres constituent une introduction générale de ce travail. Dans le chapitre 1, une revue de la littérature est donnée, dans laquelle sont présentés les protocoles de radiomarquage avec 211 At actuellement envisagés, et la nécessité d'investigations théoriques est également soulignée. Les méthodes théoriques non relativistes et relativistes qui sont utilisées dans le cadre de ce travail sont présentées dans le chapitre 2. Les résultats sont présentés dans les quatre chapitres suivants. Leurs objectifs et les conclusions principales associées sont brièvement repris ci-après.Le chapitre 3 vise à établir des protocoles théoriques efficaces, basés sur la théorie de la fonctionnelle de la densité (« Density Functional Theory », DFT), qui peuvent être utilisés pour évaluer avec précision les structures et les propriétés physico-chimiques d'espèces de l'astate de moyenne et grandes taille. Plus précisément, l'objectif est d'identifier des fonctionnelles d'échange et de corrélation qui sont pertinentes pour étudier la chimie de base de l'astate, dans un formalisme quasi-relativiste. Un ensemble de 36 fonctionnelles non relativistes a été examiné dans le but de prédire aux mieux les géométries, les énergies de transition électroniques et les propriétés thermodynamiques de 19 espèces. Nous avons trouvé que la fonctionnelle hybride méta-GGA (« GGA » pour approximation des gradients généralisée) PW6B95, développée par le groupe du professeur Truhlar en 2005, représente globalement le meilleur choix. Cette fonctionnelle a permis le calcul (i) de géométries avec une erreur (en valeur absolue) moyenne de 1,1%, (ii) d'énergies de transition électronique avec une erreur (en valeur absolue) moyenne de 0,13 eV, et (iii) de constantes d'équilibre avec une erreur (en valeur absolue) moyenne de 0,9 unité logarithmique. En outre, nous avons établi que les fonctionnelles hybrides GGA généralistes telles que PBE0 et B3LYP sont aussi pertinentes, en particulier pour le calcul de géométries d'équilibre (PBE0) ou encore pour le calcul de constantes d'équilibre (B3LYP).Résumé de la thèse vLe chapitre 4 se focalise sur une géométrie atypique du système AtF 3 , qui fait l'objet de controverses dans la littérature en raison d'interférences entre les effets relativistes et l'effet pseudo Jahn-Teller. En particulier, nous avons analysé la topologie de la surface d'énergie potentielle (SEP) de l'état fondamental du système AtF 3 . Cette étude a été réalisée en utilisant différentes approches relativistes, basées sur la DFT ou sur la fonction d'onde, ces dernières prenant en compte l'effet de couplage spin-orbite a posteriori. Premièrement, nous avons montré que cette approche en deux étapes est appropriée pour étudier le potentiel caractère multiconfigurationnel de la fonction d'onde de l'état fondamental du système AtF 3 , et nous avons constaté qu'il est essentiellement mono-configurationnelle et à couches fermées. Deuxièmement, nous avons trouvé que la topologie de la SEP de l'état fondamental de AtF 3 est différente de celles de ses analogues plus légers, et donc de celle de IF 3 . Même dans des systèmes relativement simples, l'astate peut se comporter différemment de l'iode contrairement à ce qui est (trop souvent ?) considéré. Deux types de minimum ont été identifiés sur la SEP de l'état fondamental de AtF 3 , avec trois minima globaux équivalents ayant une structure de symétrie C 2v en forme de T, et un minimum local ayant une structure trigonale plane de symétrie D 3h , dans lesquelles l'astate est lié chimiquement aux atomes de fluor par des liaisons essentiellement ioniques. Après avoir pris en compte les corrections liées aux effets de température, nous avons établi que la géométrie D 3h devrait être la géométrie apparente observable dans les expériences, si elles étaient possibles. En utilisant l'approche en deux étapes basée sur la fonction d'onde, nous avons constaté que la géométrie D 3h résulte de la somme et de la synergie entre les effets relativistes scalaires et la corrélation électronique.Le chapitre 5 vise à élucider le changement d'état fondamental d'AtO + induit par la solvatation de ce dernier en solution aqueuse. Ce phénomène peut expliquer la réactivité de ce cation en solution aqueuse avec des ligands à couches électroniques fermées, c'est à dire singulets de spin. En phase gaz, AtO + a un état fondamental 3  -. Lorsque le couplage spin-orbite est pris en compte, la composante M S =0 de cet état constitue la contribution majeure à l'état spin-orbite fondamental X 0 + (~68%), qui a donc un caractère dominant triplet de spin. Néanmoins, l'état spinorbite X 0 + a également un caractère singulet à couches fermées marqué (~26%, provenant de l'état relativiste scalaire 1  + ). En l'absence de couplage spin-orbite et en présence de molécules d'eau, nous avons montré qu'AtO + adopte un état fondamental essentiellement à couches fermées (donc essentiellement singulet de spin), ce qui est en accord avec de précédentes études. Nous avons montré pour la première fois que cet état est corrélé avec la composante à couches fermées de l'état 1 . Lorsque le couplage spin-orbite est pris en compte, nous avons constaté que les systèmes AtO + (H 2 O) n les plus stables (n≥5) ont des états fondamentaux spin-orbite qui sont essentiellement

2 2 *2 *0 *0

Scheme 6.3 Thermodynamic cycle used to compute the free energy change of the reaction 6.10 when solvent molecules are explicitly treated.
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For describing their remaining 25 valence electrons, we have used the aug-cc-pVDZ-PP basis set for Br 14 and the aug-cc-pVDZ-PP basis set 18 supplemented by the 2c extension generated by Armbruster et al., 15 and improved by Champion et al., 9 for At. For the H and O centers, the standard aug-cc-pVDZ basis sets have been used. 16,17 Hereafter, we will refer this combination of basis sets as AVDZ, for the sake of simplicity. We have performed (2c-)MP2 calculations as well on the previously obtained (2c-)B3LYP/AVDZ geometries. The same PPs for Br and At centers were used but in conjunction with, this time, AVTZ basis sets, i.e. aug-cc-pVTZ-PP for Br, 14 aug-cc-pVTZ-PP-2c for At, 14,15 and the standard aug-cc-pVTZ for H and O centers. 16,17 Note that in all MP2 calculations, the At 5s, 5p and 5d semi-core electrons, the Br 3s, 3p semi-core electrons, and the O 1s core electrons, were frozen according to the construction of the used basis sets and PPs. Note that the results obtained from the combination of (2c-)MP2/AVTZ energies and (2c-B3LYP/AVDZ structural and vibrational parameters will be re referred to as 2c-MP2//2c-B3LYP.

Using the aforementioned AVDZ basis sets and PPs, solvation free energies in water for the different species are calculated using the CPCM-UAHF//UAKS scheme (and associated details as presented in Chapter 3, notably regarding the construction of the solute cavities). Note that this particular combination of electronic structure methods, PPs, basis sets and solvation scheme, led to calculated equilibrium constants for eight reactions involving At species with a MUE of ~0.6 logarithmic units (see Table 3.3 and refs. 9,11). We finally note that all (2c-)DFT calculations were carried out using the NWChem program package, 18 the (2c-)MP2 ones using the TURBOMOLE program package 19 while all the solvation calculations were performed with the Gaussian one. 20 

On the potential predominance of the 2 AtO  species

In this section, we would like to assess through a quantum mechanical study if the predominant At species in basic and oxidizing conditions could be 2 AtO  . This can be done in a straightforward manner by simply (i) calculating the acidic constant of the AtO(OH) species, K a (AtO(OH)), and (ii) confronting it to the measured equilibrium constant, K. The targeted K a (AtO(OH)) can be derived from the free energy change in aqueous solution of the reaction 6.2, which in turn can be calculated simply from a thermodynamic cycle based on this reaction and by using the experimental free energy of solvation for H + . Nonetheless, proceeding in this way we expect some accumulation of errors. Indeed, the errors that affect the description of the electron correlation/relativistic/solvation effects differ in the species occurring on the LHS and RHS of the reaction, and may add up when calculating the reaction free energy change. As we have proceeded in Chapter 3, we propose to obtain K a (AtO(OH)) according to a scheme based on a thermodynamic Appendix 1   

S

  is out of the state-averaging space, we only report a lower limit for the corresponding excitation energy.