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Doing More With Less: Towards More
Data-Efficient Syndrome-Based Neural Decoders

Ahmad Ismail, Raphaël Le Bidan, Elsa Dupraz, Charbel Abdel Nour
IMT Atlantique, Lab-STICC UMR CNRS 6285, Brest, France

Abstract—While significant research efforts have been directed
toward developing more capable neural decoding architectures,
comparatively little attention has been paid to the quality
of training data. In this study, we address the challenge of
constructing effective training datasets to maximize the potential
of existing syndrome-based neural decoder architectures. We
emphasize the advantages of using fixed datasets over generating
training data dynamically and explore the problem of selecting
appropriate training targets within this framework. Furthermore,
we propose several heuristics for selecting training samples and
present experimental evidence demonstrating that, with carefully
curated datasets, it is possible to train neural decoders to achieve
superior performance while requiring fewer training examples.

Index Terms—channel coding, block codes, soft-decision de-
coding, recurrent neural networks, transformers, datasets

I. INTRODUCTION

The remarkable achievements of deep learning in areas like
computer vision and natural language processing have sparked
significant interest in applying this approach to complex tasks
in other fields. Channel decoding is no exception [1]. Various
neural decoder architectures have been proposed to address
the limitations of traditional decoding algorithms and achieve
enhanced performance [2]. In this work, we focus on the
challenge of approaching the performance of optimal soft-
decision Maximum-Likelihood Decoding (MLD) for short
block codes using neural decoders. Our investigation is guided
by several key questions: Are current neural architectures
capable of achieving near-MLD performance for codes of
practical relevance? If so, how does the complexity of the
model scale with parameters such as code length or minimum
distance? Additionally, how does the performance of these
architectures evolve as a function of the size of the training
set?

In the literature, two main categories of neural decoders are
typically distinguished. Model-based decoders leverage graph-
ical representations and message-passing algorithms originally
designed for long sparse-graph codes, to develop decoders
that also perform effectively with more general linear codes.
Notable contributions in this area include the Neural Belief
Propagation (NBP) decoder and its various extensions [3]–[5],
as well as the Graph Neural Network (GNN) decoder [6], [7].
In contrast, model-free decoders encompass general decoding
architectures that have minimal dependence on the algebraic or
graphical structure of the code. A significant milestone in this
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category is the syndrome-based neural decoding framework
(SBND), initially proposed in [8] and further refined in [9],
[10]. A specific instance of SBND is the Error Correction Code
Transformer (ECCT), based on the Transformer architecture,
introduced in [11], with further enhancements subsequently
described in [12], [13]. Our study focuses on SBND decoders,
as these models exhibit less inductive bias compared to NBP
decoders, giving them greater potential to approach MLD.

The majority of prior research on neural decoders, includ-
ing most references cited in this paper, employs on-demand
data generation to create training examples dynamically. This
approach can be traced back to early work on deep learning-
based decoders; see, e.g., [1]. This practice contrasts with
the standard deep learning approach of using fixed reference
datasets and complicates the benchmarking of models under
consistent and fair conditions. Additionally, it makes it more
challenging to estimate the amount of training data needed to
reach a specific performance level. Notably, many published
models appear to have been trained on exceptionally large
datasets, even for relatively small codes. This raises the
question of whether such dataset sizes are truly necessary,
especially given the scale of some of these models.

In the field of deep learning, it is increasingly acknowledged
that not all training samples contribute equally to model
learning [14]. The rise of the Transformer architecture, which
has significantly increased both model size and the volume
of data required for training, has made the problem even
more acute. Consequently, there is a growing emphasis on
curating large-scale datasets not only to reduce training costs
but also to enhance the generalization capabilities of models.
Examples of proposed solutions include learning the most
relevant features from compressed datasets [15], subsampling
meaningful examples from training data [16], and modifying
the distribution of the training set [17]. In the context of
neural decoding, [18] was among the first to highlight the
importance of high-quality training data and to advocate for
smart sampling strategies to improve the efficiency of training
model-based NBP decoders.

The central premise of this work is that, to date, insufficient
attention has been devoted to the training data in the field of
neural decoding. Our primary contribution is to demonstrate
that, by using carefully designed fixed datasets, existing neural
decoders can be trained more efficiently to achieve comparable
or even better performance than before, using fewer examples.

The paper is organized as follows. Section II introduces
the transmission system and the decoder models. Section III
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Fig. 1. Transmission system model.

describes the on-demand training paradigm. In Section IV,
we highlight the importance of using curated datasets for
training and provide design principles and heuristics to con-
struct datasets that achieve superior test performance with
fewer samples compared to on-demand training. Experimental
results demonstrating the advantages of the proposed training
methodology are presented in Section V. Finally, Section VI
summarizes the key findings of this work.

II. PRELIMINARIES

A. Transmission model

The transmission model under consideration is depicted in
Fig. 1. Let C be an (n, k) binary linear code of length n
and dimension k, and H be a parity-check matrix for C. A
codeword c = (c1, . . . , cn) is modulated into the Binary-
Phase-Shift Keying (BPSK) sequence x = (x1, . . . , xn), using
the mapping x = (−1)c, and transmitted over a Memoryless
Binary-Input Output-Symmetric (MBIOS) channel. Let y =
(y1, . . . , yn) be the received word. Assume that the samples y
at the output of the channel are real-valued, with conditional
probability density functions f0(y) = f(y|x = +1) and
f1(y) = f(y|x = −1), and denote by Li = log f0(yi)

f1(yi)
the Log-

Likelihood Ratio (LLR) for code bit i. A soft-decision channel
decoder aims to infer the transmitted codeword from the LLR
vector L = (L1, . . . , Ln). Here, the focus will be placed on
the Binary-Input Additive White Gaussian Noise (BI-AWGN)
channel with variance σ2 = N0

2 , for which Li =
2
σ2 yi.

B. Optimal decoder

Assuming equiprobable codewords, it is well known (see,
e.g. [19]) that the optimal MLD rule consists in finding
a codeword c ∈ C that maximizes the correlation metric
⟨c,L⟩ =

∑n
i=1(−1)ciLi . Equivalently, one may take a hard-

decision zi on each received sample with

zi =

{
0 yi ≥ 0

1 yi < 0
,

calculate the syndrome s = zHt, and decode to ĉ = z − e
where e is the most likely error pattern, i.e. the pattern with
minimum reliability weight [19], [20]

wL(e) =
∑

i:ei=1

|Li| (1)

within the coset indexed by s. It follows that both the vec-
tor L and the pair (s, |L|) can serve as sufficient statistics
for decoding, where |L| denotes the bit reliability vector
(|L1|, . . . , |Ln|). The correlation-based and syndrome-based
formulations of the MLD rule described above are applicable
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Fig. 2. General architecture of a syndrome-based neural decoder.

to any MBIOS channel. In general, both decoding approaches
have O(2k) time complexity, unless specific structure in the
code C can be leveraged to simplify one approach or the other.

C. Syndrome-based deep learning decoders

In this work, we focus on training SBND decoders to
approximate the MLD rule and achieve near-MLD perfor-
mance at a reduced computational cost. The general structure
of an SBND decoder, as introduced by [8], is depicted in
Fig. 2. Using the input vector pair (s, |L|), the SBND decoder
infers the most likely binary error pattern ê within the coset
corresponding to the hard decision z on the received word.
The core component of the decoder, denoted as DNN, is a
Deep Neural Network in charge of estimating ê. In this study,
we consider two distinct DNN architectures: the recurrent
network composed of stacked Gated Recurrent Units (GRU)
introduced in [8] and the Transformer-based ECCT model
proposed in [11]. These two SBND models have garnered the
most attention in the literature to date. However, we stress that
the ideas presented here are not restricted to these models and
can be applied to other model-free decoders as well.

For the sake of conciseness, and because this paper fo-
cuses on training data and methodology, we do not provide
detailed descriptions of the two architectures. Instead, we
refer interested readers to the original works [8] and [11].
Here, we introduce the notations used to reference the models
throughout the paper. The stacked GRU model has three
hyperparameters: the hidden layer size h, the number of layers
ℓ, and the number of time steps t. Consistent with [8], we fix
the hidden size to h = 6(2n − k). Accordingly, GRU(ℓ, t)
denotes a stacked GRU model with ℓ layers, t time steps, and
h = 6(2n − k) hidden units. Similarly, the ECCT model has
three main hyperparameters: the embedding dimension d, the
number of attention layers ℓ, and the number of self-attention
heads a. Following [11], we fix a = 8 in this work. Therefore,
ECCT(d, ℓ) refers to an ECCT model with embedding size d,
ℓ layers, and a = 8 self-attention heads.

D. SBND models implementation, training, and testing

We used PyTorch to implement, train, and evaluate the mod-
els discussed in this work. This subsection provides detailed
information regarding the implementation process.

1) Model input: Since any scaled version of the LLR vector
L serves as a sufficient statistic for decoding, we use the
scaled reliability vector |y| in place of |L| as the input to
the SBND architecture in Fig. 2. Furthermore, to maintain



the reliability values |yi| within the range [0, 1], we normalize
them with respect to the maximum reliability value in each
received word, since this normalization does not alter the MLD
decision. No additional normalization is applied to the input
data. The syndrome s is represented in bipolar form rather
than as a bit vector, as we observed a slight improvement in
training under this representation. This observation aligns with
similar conclusions drawn by other authors [9], [11].

2) Core DNN implementation: Our stacked GRU decoder
is built using PyTorch’s GRU model. We found that the GRU
bias terms were unnecessary, which allowed us to reduce the
number of parameters. For the ECCT model, we used the
source code available in [21], retaining the default dropout
rate of 0.1 at the output of the multi-head attention layer.

3) Model output: From the pair (s, |y|), the SBND model
in Fig. 2 computes a real-valued estimate ê of the error pattern.
A tanh function is applied at the output of the core DNN to
squash the activations êi within the range [−1,+1]. These
activations can then be turned into bit probability estimates
through the inverse BPSK mapping Pr(ei = 1) ≈ (1− êi)/2.

4) SBND model training: Syndrome-based MLD can be
formulated as a multiclass classification problem, specifically
selecting the optimal error pattern e from the 2k candidate
error patterns that comprise the coset z + C, with the goal
of minimizing the reliability weight wL(e). Thus, minimizing
the cross-entropy loss would appear to be the most appro-
priate criterion for training SBND models in a supervised
manner. However, the large number of possible classes makes
this approach computationally intractable. To overcome this
challenge, the commonly adopted solution is to minimize the
Binary Cross-Entropy (BCE) loss instead, which is defined as:

L(e, ê) = 1

n

n∑
i=1

−ei log2

(
1− êi

2

)
−(1−ei) log2

(
1 + êi

2

)
This loss is computed between the binary target error pattern
e and the activation vector ê at the model’s output. By
employing this approach, the overwhelming multiclass error
pattern classification problem is effectively reduced to a more
manageable bit-by-bit binary classification task. The selection
of target error patterns e for training purposes will be discussed
in Sections III and IV. At this stage, it is important to
emphasize that the training data only include received words
with a non-zero syndrome, as these are the only words that
will be passed to the decoder in a practical setting. Training is
conducted at a single, carefully chosen Signal-to-Noise Ratio
(SNR) value. Additional details regarding the training setup
are provided in the Appendix.

5) SBND model evaluation: In line with standard channel
coding practices, we use the Frame Error Rate (FER) to
assess the performance of the model during the testing phase.
Specifically, a frame error is recorded when the estimated error
pattern ê differs from the true error pattern e = z−c by at least
one bit at the output of the decoder. The test FER is calculated
through Monte Carlo simulations of the model operating in
inference mode, across various SNR levels. While only the all-
zero codeword is employed during training, the testing phase

is conducted on randomly generated codewords to provide a
more comprehensive evaluation of model performance.

III. THE TRAINING WITH ON-DEMAND DATA PARADIGM

A. What does training with on-demand data mean?

Training with on-demand data involves generating new
batches of noisy received words at each step of the training,
resulting in a dataset that is dynamically created as training
proceeds. In this scenario, the concept of an epoch technically
loses relevance, as the model never encounters the same
training example twice. On-demand data generation aligns nat-
urally with the Monte Carlo simulation approach widely used
in research and design for communication systems. Although
varying the SNR across batches is a common practice [3], it
is not strictly necessary for effective training [1].

B. Pros and cons of this approach

Training with on-demand data is fast, as modern CPUs
and GPUs excel at generating random noisy codewords on
the fly. Additionally, it removes the need for storing large
datasets, potentially saving tens or even hundreds of gigabytes
of storage space. More importantly, the risk of overfitting is
significantly reduced since the model is continuously exposed
to new, unique examples throughout the training process.

Training with on-demand data offers several advantages
but also has a significant drawback: it requires considerably
more data compared to using a fixed dataset, where each
sample is reused in every epoch. Deep learning practice has
shown that stochastic gradient descent converges faster when
it repeatedly iterates over the same data. The second, and
perhaps more subtle, issue with on-demand data generation
is related to the choice of target variables. Decoder models
trained with on-demand data are usually trained for zero-error
decoding, meaning the true error pattern, echan = z − c,
or, equivalently, the transmitted codeword c, is used as the
target during training. However, since any channel decoder,
including MLD, inevitably makes errors, training with true
error patterns as targets creates a mismatch between the
intended function of the model and the way it is trained. This
mismatch can ultimately hinder the model’s performance. On
the other hand, using true error patterns during training avoids
the need to include the reference decoder in the on-demand
data generation loop, which would significantly slow down the
training process. By using a fixed dataset instead, it is possible
to achieve the best of both worlds.

IV. IMPROVING TRAINING WITH THE HELP OF
WELL-DESIGNED DATASETS

In this section, we argue that SBND models can be trained
to achieve superior performance with fewer training samples
by combining several straightforward yet effective strategies,
including: 1) utilizing a fixed dataset, 2) selecting alternative
target variables, and 3) adopting a distribution of training data
different from that induced by the channel model.



A. The benefits of training with a fixed dataset

In deep learning, the conventional approach involves using
a fixed dataset for model training. This approach provides
complete control over the training data. In the context of
channel decoding, it translates to generating the training data
once through offline processing, enabling careful selection
of training examples. Additionally, making these datasets
publicly available allows other researchers to benchmark their
models under identical conditions1. As shown in subsection
V-C, fixed datasets are also instrumental in analyzing how
model performance scales with the training set size for a
given learning architecture and model capacity. This leads to
a critical question: how should the pairs (y, e) that constitute
the dataset be selected?

B. Training to correct MLD error patterns

To closely approximate MLD, we argue that neural decoders
should be trained to replicate the output of an MLD decoder.
Thus, we propose replacing the true error patterns, echan =
z−c, used as targets when training with on-demand data, with
the most likely error patterns, eML = z−cML, where cML rep-
resents the MLD decision for each received word y. Using a
fixed dataset facilitates this replacement without compromising
training efficiency. An Ordered-Statistics Decoder (OSD) [22]
with a maximum reprocessing order of imax = ⌊dmin/4⌋ was
used to obtain cML and create the datasets used throughout this
study. The most straightforward method for constructing such
a dataset involves performing a Monte Carlo simulation of the
OSD decoder and collecting the resulting error patterns eML.
However, as will be discussed in the following subsections,
this may not be the most efficient approach.

C. Optimizing the distribution of training data

Monte Carlo methods are known to be inefficient for rare-
event simulations. We argue that on-demand generation of
training data inherits this same limitation: not all samples are
equally beneficial for training neural decoders, as previously
highlighted in [18]. Specifically, it is well known that the
AWGN channel induces a binomial distribution

pchan(w) =

(
n

w

)
pwb (1− pb)

n−w , w = 0, . . . , n (2)

on the Hamming weight wH(echan) of the true error patterns
at the channel output, where pb = 1

2erfc(
√

REb/N0). Con-
sequently, training with on-demand data or with a dataset
constructed from direct Monte Carlo simulation of the BI-
AWGN channel results in the model being exposed to a
disproportionate number of low-weight error patterns, which
are relatively easy to learn, compared to higher-weight error
patterns, which are considerably more challenging to assimi-
late. The key issue is that the model’s ability to correct higher-
weight error patterns impacts its FER performance, particu-
larly at moderate-to-low SNR. Our objective is to demonstrate
that, by carefully selecting the training examples (y, e) and

1Some of the datasets created for this study are available on the AI4CODE
project homepage https://ai4code.projects.labsticc.fr/.

appropriately designing their associated weight distribution
p(w) within the dataset, models can achieve improved learning
efficiency and better generalization, ultimately resulting in
lower test FER [17].

Identifying a provably optimal training distribution for neu-
ral decoding appears to be a challenging problem. Instead,
we propose comparing various heuristics for constructing the
training set. Our objective is twofold: 1) to provide empirical
evidence that employing distinct data distributions for training
and testing can lead to more data-efficient training and im-
proved model performance, and 2) to identify heuristics that
yield favorable results while being simple to implement. We
investigate four different methods, all based on Monte Carlo
simulation of the OSD decoder. These methods differ in how
the samples are selected to form the dataset. The first method
is used as a reference, while the other three sampling strategies
are designed to focus the learning process on the relevant MLD
error patterns that most significantly impact FER performance.
A brief overview of each method is provided below.

1) Using the channel noise distribution: This approach
serves as the natural reference against which the other methods
will be compared. As described in Subsection IV-B, the MLD
error patterns, eML, are collected directly as they emerge from
the decoder output. The MLD decoder effectively transforms
the binomial weight distribution pchan(w) at its input into a
different, more concentrated distribution pML(w), which tends
to emphasize lower-weight error patterns.

2) Using a uniform distribution of the weights: We begin
by discarding all error patterns eML with a Hamming weight
greater than a specified maximum threshold, wmax, at the MLD
decoder output. From the remaining error patterns, we then
sample to achieve a uniform weight distribution, denoted as
puni-w(w) = 1/wmax for w = 1, . . . , wmax, within the dataset.

3) Using a biased input noise distribution: The training
examples y provided to the MLD decoder are generated
according to an input distribution p(is)

chan(w), which differs from
the binomial distribution pchan(w) induced by the AWGN
channel. Specifically, the noise importance sampling distri-
bution p(is)

chan(w) is designed for efficient simulation of MLD
decoder performance by encouraging the occurrence of error
events near the decision boundaries of the MLD decoder. This
distribution is determined following the procedure outlined in
[23]. The corresponding weight distribution of error patterns
at the MLD decoder output will be referred to as pis(w).

4) Using a uniform distribution of the syndromes: Given
that the syndrome is integral to the MLD decision rule and
also part of the model input, it is reasonable to ensure that all
possible (non-zero) syndromes are adequately represented in
the training set. A straightforward approach to achieve this is
to filter the ML error patterns collected from the output of the
OSD decoder, ensuring that all syndrome values are present
in the dataset, with an equal number of error patterns for each
syndrome. The resulting weight distribution of error patterns
will be denoted by puni-s(w).

https://ai4code.projects.labsticc.fr/software
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Fig. 3. Frame error rate as a function of the number of training samples for
different SBND models and training strategies on the (31, 21, 5) BCH code,
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V. NUMERICAL EXPERIMENTS

This section presents numerical results that support the
training methodology proposed in Section IV. Most experi-
ments were conducted using the (31, 21, 5) BCH code. The
application to longer codes is explored in Subsection V-E.

A. Should one train with on-demand data or with datasets?

Fig. 3 illustrates the evolution of the test FER as a function
of sample complexity (i.e., the number of training examples)
for two SBND decoders trained on the (31, 21) BCH code at
Eb/N0 = 3 dB: the GRU(5, 3) model and the ECCT(64, 6)
model. The details of the training setup are provided in the
Appendix. This figure compares training with on-demand data
versus training with fixed datasets. For the latter, we also
compare learning to correct the true error patterns echan against
learning to correct MLD error patterns eML. First, consider the
scenario where the model is trained to correct the true error
patterns, which is the conventional paradigm. The results in
Fig. 3 show that, for both models, achieving a comparable
target FER requires significantly fewer samples—over two
orders of magnitude less—when training with a fixed dataset
compared to on-demand data. This observation is further
supported by the FER vs SNR plots in Fig. 4.2. Specifically,
GRU and ECCT models trained on datasets containing 4
million true error patterns perform on par with those trained
using 1 billion true error patterns generated on demand. This
highlights that training with fixed datasets is substantially more
data-efficient than training with on-demand data.

2It is noteworthy that, despite being trained at Eb/N0 = 3 dB, both models
generalize well across all other simulated SNR values.
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Fig. 4. Frame error rate as a function of Eb/N0 for different SBND models
and training strategies on the (31, 21, 5) BCH code.

B. Should one learn to correct MLD or true error patterns?

The results in Fig. 3 indicate that training models to correct
MLD error patterns, eML, consistently yields better perfor-
mance—reflected by a lower test FER—compared to training
on true error patterns, echan. This performance advantage is
even more pronounced when using smaller datasets or at lower
SNR values. As seen in Fig. 4, the combined advantages
of training with a dataset containing 16 million MLD error
patterns result in a gain of approximately 0.3 dB at a FER of
10−4, compared to the performance of a similar model trained
with 1 billion true error patterns generated on demand.

C. Performance limit of architectures and models

Fig. 3 shows that, for the (31, 21) code, the ECCT(64, 6)
architecture achieves a superior performance vs sample com-
plexity trade-off compared to the GRU(5, 3) architecture.
Specifically, the ECCT model makes more efficient use of a
given number of training examples, except when the dataset
size is very small. This observation is further confirmed by the
FER plots in Fig. 4. The ECCT model is also considerably
smaller, with only 304K parameters compared to 1.7M for
the GRU model. Interestingly, both architectures appear to
reach a performance ceiling in terms of FER, stabilizing
around 0.04 at the given SNR value, despite increasing sample
complexity. This plateau suggests that to closely approach the
performance of MLD, a larger model capacity—potentially
with more parameters—would be required. Additionally, it is
worth noting that for both architectures, a training set size of
around 8 to 10 million examples appears to be the threshold
beyond which data quality no longer outweighs data quantity.

D. Impact of the training distribution

Four different datasets, each containing 4 million MLD error
patterns, have been constructed according to the four methods
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described in Subsection IV-C, for the (31, 21) BCH code at
Eb/N0 = 3 dB. Fig. 6 presents the weight distribution of
error patterns in each dataset, along with the distribution of
true error patterns observed at the channel output in the test
set. It is evident that methods 3 and 4 place significantly
greater emphasis on weight-3 and weight-4 patterns, largely
at the expense of weight-1 patterns. Method 2 represents
an intermediate between these extremes. A GRU(5, 3) model
was trained on each of the four datasets, and the results are
displayed in Fig. 5. The primary takeaway is that training
sets with a distribution differing from the one induced by
the BI-AWGN channel, especially methods 3 and 4, yield
models with superior performance compared to those trained
using true or MLD error patterns collected via standard Monte
Carlo simulation. While there is no clearly superior method
in this example, the experiment emphasizes the advantages of
optimizing the training distribution, especially when working
with small datasets. We believe that even more effective dataset
construction techniques remain to be discovered.
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Fig. 7. Frame (and bit) error rate as a function of Eb/N0 for different models
and training strategies on the (63, 51, 5) BCH code.

E. Application to longer codes

Figures 7 and 8 present results for the (63, 51, 5) and
(63, 45, 7) BCH codes, respectively. These two codes are
frequently used as benchmarks for assessing neural decoders.

First, consider the (63, 51) code. Our GRU(5, 5) model
trained with 3 billion true error patterns generated on demand
achieves performance comparable to that reported in [9].
Notably, the same level of performance can be achieved by
training on a dataset consisting of only 50 million MLD
error patterns, resulting in a 60× reduction in the number of
required training samples. Superior performance can even be
obtained using just 32 million samples when employing the
optimized training distributions described in Subsection IV-C.
Also shown in the figure is the performance reported in [11]
for an ECCT(128, 6) model trained with 128 million true
error patterns generated on demand. Interestingly, our smaller
ECCT(64, 6) model, trained with a dataset of 50 million
MLD error patterns, slightly outperforms this larger model,
thereby reducing both model complexity—from 1.7M to 310K
trainable parameters—and sample complexity. However, it is
also worth noting that neither of these two ECCT models
matches the performance of the GRU(5, 5) on this code.

A similar trend is observed with the (63, 45) code. A
GRU(5, 5) model trained with a fixed dataset of 100 million
error patterns achieves performance comparable to that of
a model trained on 3 billion true error patterns generated
on demand. Furthermore, slightly better performance can be
attained using a dataset of only 32 million examples with the
sampling strategies from Subsection IV-C. Increasing the size
of the optimized training set to 64 million yields only marginal
improvements, not shown here. Similar to what was observed
with the (31, 21) and (63, 51) codes, we appear to be reaching
a performance ceiling for the GRU(5, 5) model here as well.

On a final note, we have also shown in Fig. 7 and 8 the BER
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Fig. 8. Frame (and bit) error rate as a function of Eb/N0 for different models
and training strategies on the (63, 45, 7) BCH code.

performance of our best models, to demonstrate that, while we
have not yet fully bridged the gap to MLD at the codeword
level, the BER performance is nearly equivalent.

VI. CONCLUSION

This research was motivated by the need to understand
why SBND decoders often fall short of achieving MLD
performance for many codes of practical interest. Our primary
finding indicates that greater emphasis should be placed on
the training data. Specifically, we have demonstrated that by
using fixed datasets, it is possible to train existing models
to achieve comparable or even superior performance levels
with significantly fewer training samples compared to the on-
demand data generation paradigm commonly used in previous
studies. Furthermore, we have shown that training models
to correct MLD error patterns rather than true error patterns
leads to improved model performance. We have also demon-
strated that using a training distribution different from the
one naturally induced by the channel can provide substantial
benefits in terms of both data efficiency and generalization
error. Importantly, most of these findings also extend to model-
based decoders, such as neural BP.

APPENDIX

All models were trained for a maximum of 256 epochs
with a batch size of 4096 samples. The AdamW optimizer
was used, with a weight decay factor of 0.02 for the GRU
models and 0 for the ECCT models, in conjunction with the
ReduceLROnPlateau schedule. The initial learning rate was set
to 0.001 for the length-31 code and 0.0005 for the length-63
codes. Dropout proved crucial in preventing overfitting, par-
ticularly when training with small fixed datasets. Specifically,
we applied a dropout rate of 0.2 for the GRU models and 0.01
for the ECCT models; however, no dropout was applied when

training with on-demand data. Training data was generated at
an Eb/N0 value of 3 dB for the (31, 21) and (63, 51) codes,
and 2 dB for the (63, 45) code.
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