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ABSTRACT
Bioacoustic sound event detection allows for better under-
standing of animal behavior and for better monitoring biodi-
versity using audio. Deep learning systems can help achieve
this goal. However, it is difficult to acquire sufficient anno-
tated data to train these systems from scratch. To address
this limitation, the Detection and Classification of Acoustic
Scenes and Events (DCASE) community has recasted the
problem within the framework of few-shot learning and orga-
nize an annual challenge for learning to detect animal sounds
from only five annotated examples. In our study, we intro-
duce a regularization to supervised contrastive loss, to learn
non redundant features that exhibit effective transferability to
few-shot tasks involving the detection of animal sounds not
encountered during the training phase. Our method achieves
a high F-score of 61.52%±0.48 when no feature adaptation
is applied, and an F-score of 68.19%±0.75 when we further
adapt the learned features for each new target task. This
work aims to lower the entry bar to few-shot bioacoustic
sound event detection by proposing a simple and yet effective
framework for this task, and by providing open-source code.1

Index Terms— Supervised contrastive learning, total
coding rate, transfer learning, few-shot learning, bioacous-
tics, sound event detection.

1. INTRODUCTION

Bioacoustics delve into the study of sound production, emis-
sion, reception, and processing in living organisms. This di-
verse domain encompasses a wide range of research, from
understanding the vocalizations of marine life to decipher-
ing the intricate communication patterns of various animal
species. Given the abundance and complexity of acoustic data
in bioacoustics, the application of deep learning techniques
has emerged as a powerful approach to extract meaningful in-
sights from this soundscape [1].

Despite the considerable successes of deep learning in
bioacoustics, there exists a significant challenge that hin-

1https://github.com/ilyassmoummad/RCL_FS_BSED
This work is co-funded by the AI@IMT program of the ANR (French

National Research Agency) and the company OSO-AI.

ders its widespread applicability – the scarcity of labeled
data [1]. Annotating acoustic data is a laborious and time-
consuming task that requires expertise in the understanding
of the species. Consequently, available labeled bioacoustic
datasets are often limited in size, impeding the full potential
of data-hungry deep learning models. It is in this context
that ”few-shot bioacoustics” emerges as a promising area of
research [2].

Few-shot learning (FSL) is a subfield of machine learn-
ing that aims to train models using only a limited number of
labeled examples. In the context of bioacoustics, this trans-
lates to developing robust and effective deep learning models
that can generalize from a small number of annotated record-
ings, alleviating the data scarcity challenge. By harnessing
few-shot learning techniques, researchers can circumvent the
need for massive labeled datasets, making bioacoustic analy-
ses more feasible for lesser-known species or habitats where
extensive annotated data is lacking.

While FSL offers a compelling solution to mitigate the
data scarcity challenges in bioacoustics, the effectiveness of
these models heavily relies on the quality of the learned rep-
resentations. In this context, representation learning plays a
pivotal role in shaping the success of FSL-based approaches.
A good starting initialization is crucial for FSL, and this is
where representation learning techniques, like contrastive
learning (CL) [3], come into play.

CL is a learning paradigm designed to learn a metric space
where similar samples are pulled together while dissimilar
samples are pushed apart. CL has been widely used in the lit-
terature and has shown promising results in audio representa-
tion learning [4]. However, CL can have the dimensional col-
lapse phenomenon, where embedding vectors collapse along
certain dimensions, thus only spanning a lower-dimensional
subspace [5].

We propose a system that learns good intialization for FSL
using supervised contrastive pre-training. To remedy the di-
mensional collapse of CL, we constrain the learned features
to be diverse and non-redundant, using a regularization from
information theory literature [6]. Our goal is to learn features
that are discriminative, ideally features that can cover a space
of the largest possible dimension [6].
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We apply the above pre-training strategy to train a general
feature extractor for bioacoustic few-shot sound event detec-
tion (BSED). At inference, the feature extractor is either used
directly for fast inference or fine-tuned for each binary valida-
tion task, specific to each audio file, for to the presence or ab-
sence of the event of interest, utilizing a prototypical loss. To
make predictions, we slide a window over the audio file and
compute an euclidean distance between the representations of
each query window and the two prototypes (computed by av-
eraging the representation of the annotated segments of pres-
ence/absence of the event of interest). We demonstrate the ef-
fectiveness of our approach on the diverse bioacoustic valida-
tion datasets of the DCASE challenge, showcasing its ability
to achieve remarkable performance on the few-shot setting.

This work builds upon our previous work [7], where we
pre-trained a feature extractor using CL and then trained a lin-
ear classifier on the available shots. While this system was the
second best one in the challenge, the training of linear clas-
sifier using cross-entropy resulted in instability in some vali-
dation runs due to the large imbalance between the segments
for the presence and absence of an event. Here, we replace
the cross-entropy classification with a robust metric approach
that is more stable and that optionally adapts the features to
the task at hand. Additionally, we further enhance the pre-
training stage by regularizing the learned representations.

2. RELATED WORK

The DCASE community propose a benchmark for BSED that
consists in detecting animal vocalizations in audio recordings
given only five annotated examples [2]. Liu et al. [8] use pro-
totypical networks on the concatenation of per-channel en-
ergy normalization and delta mel-frequency cepstral coeffi-
cients, and trained on extra animal data from AudioSet [9] to
increase generalization. Tang et al. [10] use a frame-level ap-
proach using semi-supervised learning to exploit unlabeled
query data. Our previous work [7] shows the strong per-
formance of supervised contrastive pre-training followed by
cross-entropy linear classification. Yan et al. [11] improve
over their previous work [10] by adding target speaker voice
activity detection to form a multi-task frame-level system, and
by adding a transformer encoder in their model architecture.

MetaAudio [12] is a few-shot audio classification bench-
mark with diverse audio types (including bioacoustics). Our
work doesn’t address classification and reserves it for future
research. BirdNet [13], a deep learning system trained on di-
verse data sources to identify 984 bird species, and Google
Perch, another model trained on an extensive bird corpus,
have shown superior transferability for few-shot bioacous-
tic classification tasks when compared to models trained on
generic audio datasets such as AudioSet [9], as demonstrated
by Ghani et al. [14].

https://tfhub.dev/google/bird-vocalization-classifier/4

The litterature of representation learning has shown great
transfer performance thanks to CL [3, 15, 4]. Regularized
methods constrain the embeddings to have non-redundant
information by measuring the cross-correlation between the
representations of two views [16], decorrelating the feature
variables from each other [17], or by maximizing the total
coding rate of the features [18, 6]. The combination of con-
trastive and regularized methods has not been yet explored.
We investigate them in the context of transfer learning for
few-shot bioacoustic sound event detection.

3. METHOD

In this section we describe the methodology employed in our
study (Fig. 1). We train a feature extractor on a general, la-
beled training set using supervised contrastive learning (SCL)
combined with a coding rate regularization that constrains the
embeddings to be non-redundant. The resulting trained model
is transferred to the validation sets and optionally fine-tuned
on the available shots using a prototypical loss. The predic-
tions are made by computing the distances to the positive and
negative prototypes, for the presence and absence of sound
events of interest, respectively.
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Fig. 1. Overview of our approach: Supervised contrastive
pre-training, optionally fine-tuning the features, followed by
nearest prototypical classifier.

3.1. Supervised Contrastive Learning

SCL consists in learning an embedding space in which the
samples with the same class labels are close to each other, and
the samples with different class labels are far from each other.
Formally, a composition of an encoder f and a shallow neural
network h called a projector (usually a MLP with one hid-
den layer) are trained to minimize the distances between rep-
resentations of samples of the same class while maximizing
the distances between representations of samples belonging
to different class. After convergence, h is discarded, and the
encoder f is used for transfer learning on downstream tasks.
SCL loss is calculated as follows:

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

n∈N(i)

exp (zi · zn/τ)
(1)



Table 1. Performance on the validation datasets.
System Precision Recall F1-score HB ME PB

Pr Re F1 Pr Re F1 Pr Re F1
No extra data

Template Matching 2.42 18.32 4.28 - - - - - - - - -
ProtoNets 36.34 24.96 29.59 - - - - - - - - -
Moummad et al. [7] 73.93 55.59 63.46 82.95 82.32 82.63 67.69 84.61 75.21 72.72 33.33 45.71

No fine-tuning (Ours) 60.99 62.08 61.52 75.81 78.00 76.89 54.94 92.95 69.04 56.36 40.48 47.11
±0.58 ±1.21 ±0.48 ±1.16 ±1.21 ±1.10 ±2.36 ±0.96 ±2.03 ±2.16 ±1.97 ±1.97

Fine-tuning (Ours) 65.00 71.75 68.19 74.63 85.11 79.52 58.12 95.73 72.30 64.44 51.01 56.93
±1.19 ±1.22 ±0.75 ±1.21 ±2.33 ±1.58 ±2.48 ±1.86 ±1.97 ±1.97 ±1.40 ±1.24

Extra data
Liu et al. [8] 76.56 49.54 60.16 97.95 79.46 87.74 86.27 84.62 85.44 57.52 27.66 37.36
Tang et al. (SL) [10] - - 66.6 - - 85.8 - - 79.2 - - 48.1
Yan et al. (FL) [10, 11] 73.0 67.6 70.2 - - 77.0 - - 90.0 - - 53.7
Yan et al. (MTFL) [11] 76.2 75.3 75.7 - - 86.7 - - 90.2 - - 58.9

*We highlight in bold the best score for each metric.

where i ∈ I is the index of an augmented sample within a
training batch, containing two views of each original sam-
ple. These views are constructed by applying a data aug-
mentation function A twice to the original samples. zi =
h(f(A(xi))) ∈ RDP where DP is the projector’s dimension.
P (i) = {p ∈ I : yp = yi} is the set of indices of all positives
in the two-views batch distinct from i sharing similar label
with i. |P (i)| is its cardinality, N(i) = I \ {i}, the · symbol
denotes the dot product, and τ ∈ R+∗ is a scalar temperature
parameter.

3.2. Regularization : Total Coding Rate

In Information Theory, the coding rate is the proportion of bits
that carry non-redundant information. Let Z = [z1, ..., zb] be
a batch of b features of dimension d. The total coding rate
(TCR) [18] R of Z is defined as follows:

R(Z) =
1

2
log det

(
I +

d

bϵ2
ZZT

)
(2)

where ϵ > 0 is a chosen precision. The training loss is:

LTrain = LSCL − λR(Z) (3)

where λ > 0 is a hyperparameter coefficient for the regular-
ization term. We want the coding rate of Z to be as large
as possible. The TCR regularization can be seen as a soft-
constrained regularization of covariance term in VICReg [17],
where the covariance regularization is achieved by maximiz-
ing TCR [18].

3.3. Fine-tuning

Using the same annotations as section (3.1), we define the
fine-tuning loss as:

LFinetune = − log
exp (zi · zc)∑

c′≠c

exp (zi · zc′)
(4)

This loss is similar to the ProtoNets loss [19], which produces
a distribution over classes for a query point based on a soft-
max over distances to the prototypes in the embedding space.
However, we do not do meta-testing using episodes as in Pro-
toNets, we instead do regular batch training by fine-tuning
the model using the augmented batch similarly to the super-
vised contrastive pre-training stage. We slightly modify the
ProtoNets loss by removing the distance to the corresponding
prototype from the summation in the denominator. Our intu-
ition is drawn from the work of DCL [20], which enhanced
performance by removing the positive comparison from the
denominator of the normalized temperature-scaled cross-
entropy loss (NT-Xent) originally used in SimCLR [3](Eq.5).

LSimCLR = − log
exp (zi · zi′)∑

j ̸=i,i′
exp (zi · zj)

(5)

We observe that in the NT-Xent loss (Eq. 5), when substitut-
ing the second element of each similarity term with the corre-
sponding prototype, we obtain the LFinetune loss.

3.4. Nearest Prototype Classifier

To make predictions, for each audio file, we compute the Eu-
clidean distances between the queries and the prototypes to
assign the labels of presence/absence of the event of interest.
For robustness, each segment (both query and prototype) is
augmented to create multiple views. The representations of
these views are averaged to one representation vector, in ad-
dition, the positive and negative segments are also averaged
to have one positive and one negative prototypes. Using the
annotations from subsection( 3.2), let Zi be the subset of Z
with class label i, we then define the prototype Z̄i for each
class label i as:

∀i : Z̄i =
1

|Zi|
∑
z∈Zi

z (6)



Let q be a query, we predict its label iq as:

iq = argmin
i

∥q − Z̄i∥2 (7)

The onsets and offsets decision of the event of interest is made
based on the precise moment when the label for the next query
transitions from a negative class to a positive class and from
a positive class to a negative class, respectively.

4. EXPERIMENTS

We experiment on the BSED datasets from DCASE and refer
the reader to the work of Nolasco et al. [2] for more details
about these datasets.

4.1. Model Backbone

Our architecture is the same as the one used in our previ-
ous work [7]. We use a ResNet consisting of three blocks
(64→128→256), each comprising three convolutional layers.
We employ max pooling operations after each block of a ker-
nel of size 2x2 for the first and second blocks, and of size 1x2
for the third block.

4.2. Training and validation procedure

We train our model from scratch on the training set using SCL
framework with a temperature of 0.06, regularized with TCR
with a square precision of 0.05 and a regularization coefficient
of 0.001. We use SGD optimizer with a batch size of 128, a
learning rate of 0.01 with a cosine decay schedule, momen-
tum of 0.9, and a weight decay of 0.0001 for 100 epochs. We
use the data augmentation policy in table 2.

Table 2. Training data augmentations. SM: Spectrogram
Mixing, FS: Frequency Shift, RRTC: Random Resized Time
Crop, PG: Power Gain, AWGN: Additive White Gaussian
Noise.

Augs SM FS RRTC PG AWGN
Params factor bands ratio factor std
Values β(5, 2) [0-10] [0.6,1.0] [0.75-1] [0-0.1]

During the validation phase, we optionally fine-tune the
whole model using LFinetune for adapting the features for
each audio recording using a learning rate of 0.01 for 40
epochs. For this purpose, we used random resized time crop
(RRTC) of ratio sampled uniformly between 90% and 100%
of the total duration, and power gain (PG) of coefficient
sampled uniformly between 0.9 and 1. This data augmen-
tation procedure is lighter than the one performed during
pre-training (2), and is also used to create multiple views for
each query window during inference. In all our experiments,
we train the backbone with three different seeds, and for each
backbone, we conduct three evaluations, resulting in a total
of 9 runs per experiment.

5. RESULTS

Table 1 shows our results, the baseline and the first two rank-
ing teams of the 2022 and 2023 DCASE challenge editions.
Our method outpeforms that of Liu et al.[8] (both with and
without fine-tuning). We also improve upon our previous
work [7] with fine-tuning. While Yan et al.[10] and Tang
et al.[11] achieve better results with their semi-supervised
frame-level (FL) approach, we outperform their segment-
level (SL) approach. For a fair comparison, we divide Ta-
ble 1 into methods that utilize extra data (such as AudioSet
Strong [8] or the reuse of training data for the adaptation of
features on each audio recording [10, 11]) and those that do
not. We note that our approach utilizes only the available
shots during inference, making it practical for real-time ap-
plications or settings with limited resources. In Table 3, we
study pre-training strategies without fine-tuning, showing the
superiority of regularized SCL (+TCR) compared to vanilla
SCL, SimCLR and Cross-Entropy. In Table 4, we analyze
fine-tuning methods : SCL, original Prototypical Loss, and
LFinetune, confirming insights about removing the positive
comparison from the denominator of the prototypical loss.

Table 3. Ablation of the pre-training method w/o fine-tuning.
Method Precision Recall F1-score
Cross-Entropy 34.59±1.21 62.35±0.93 44.49±1.22
SimCLR 54.75±0.77 61.16±1.62 57.75±0.41
SCL 56.80±2.98 62.77±0.77 59.59±1.75
SCL+TCR 60.99±0.58 62.08±1.21 61.52±0.48

Table 4. Ablation study on the fine-tuning method.
Method Precision Recall F1-score
SCL 62.75±1.34 70.92±0.72 66.58±1.05
Original Proto 55.62±2.68 72.13±0.67 62.77±1.86
LFinetune 65.00±1.19 71.75±1.22 68.19±0.75

6. CONCLUSION

In this work, we have presented a simple yet effective ap-
proach for bioacoustic few-shot sound event detection. Our
approach involves pre-training a feature extractor using super-
vised contrastive learning with a regularization that enforces
learning non-redundant features. The feature space learned
by our approach allows for computing directly distances to
the prototypes for making prediction. We also propose to fur-
ther enhance the performance by fine-tuning the features for
each audio file at the cost of longer inference. For our fu-
ture work, we want to generalize our approach to bioacoustic
sound event classification and explore robust feature adapta-
tion techniques for when fewer shots are available (one-shot).
We will also explore the frame-level approach, as well as a
proposal-based approach for detecting variable length tempo-
ral regions of interest, that have not been previously investi-
gated in this task.
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