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ABSTRACT

Significant changes in a system’s dynamics can be understood through modifications in the topological structure of its flow in phase space.
In the Earth’s climate system, such changes are often referred to as tipping points. One of the large-scale components that may pass a tipping
point is the Atlantic Meridional Overturning Circulation. Our understanding of tipping points can be enhanced using a recently proposed
mathematical concept—the templex—which enables the identification of dynamics of different classes. Unlike traditional topological invari-
ants, templex properties describe not only the topology of the underlying structure of a set of points in phase space associated with a finite time
series but also the non-equivalent pathways allowed by the flow around that structure. In this study, we investigate the dynamics produced
by an idealized autonomous model and its nonautonomous counterpart to consider long-term climate changes and reproduce phenomena
occurring during different epochs, such as glacial and interglacial intervals. In the nonautonomous system, the trajectory visits two distinct
domains in phase space, one of which shares certain properties with those found in the autonomous case. A dissection of the templex and the
definition of active templex properties improve our understanding of how the system tips from one regime to another. We also discuss the
relationship between our results and the nonautonomous model’s pullback attractor.
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Understanding dynamics from time series is one of the most sig-
nificant goals in nonlinear sciences. In the deterministic frame-
work, this goal can be achieved seeking and finding invariants
in phase space. Such invariants can be either metric or topolog-
ical, but only the topological ones provide information on how
the phase space is mapped onto itself under the action of the gov-
erning equations. Atlantic Meridional Overturning Circulation
(AMOC) models have never been studied from this perspective.
Here, we consider the time series produced by two idealized mod-
els: the first one describes the self-sustained chaotic oscillations
characteristic of the glacial intervals, and the second one incorpo-
rates the time-varying position of the edge of sea ice driving the
system in and out of this chaotic behavior. Using a templex, i.e.,
a mathematical object that describes the topology of a determin-
istic flow in phase space, this paper dissects the dynamics of the
AMOC into the different components that decrypt its evolution.
The approach is applied both in the autonomous and nonau-
tonomous settings, and compared with previous studies using the
concept of pullback attraction.

I. INTRODUCTION

The term tipping point, popularized in the climate scientific
community by Lenton et al.,1 was originally introduced in a non-
scientific context. Its early figurative use emerged in the 1950s,
primarily referring to social dynamics.2 The term was later repur-
posed in climate science to describe thresholds in environmental
systems.3 This adaptation emphasizes its applicability to complex
systems undergoing transitions, such as those observed in our
planet’s dynamics.4

The Earth’s climate system has experienced intervals of glacia-
tion and interglacial intervals. Paleoclimatic records from the last
glaciation, including data from the Greenland ice cores and North
Atlantic Ocean temperatures, reveal a chaotic variability corre-
sponding to the Dansgaard–Oeschger (D–O) events.5–7 These events
involve slow cooling over several centuries followed by abrupt
warming over a few decades. Recent studies have hypothesized that
the chaotic variability of the Atlantic Meridional Overturning Cir-
culation (AMOC) can be explained by deterministic self-sustained
oscillations between two alternating phases: a slow on-phase dur-
ing which the circulation strengthens, and a rapid off-phase during
which the circulation weakens. These on and off phases are char-
acteristic of relaxation oscillations,8 in contrast with the relative
stability of the Holocene epoch.9 Temporal changes in the position
of the edge of sea ice (ESI) have been proposed as a modification in
the system’s driving term.10

Chaotic relaxation oscillations, described as an assemblage of
slow and fast subsystems in increasingly higher dimensions,11 have
been studied from a topological perspective.12 Understanding the
topological structure of a flow in phase space allows researchers
to identify the stretching, squeezing, folding, or tearing mecha-
nisms that generate strange attractors.13 By analyzing the topology,
one can discern how trajectories evolve, aiding in the prediction
of transitions between different regimes.14 Additionally, topologi-
cal techniques facilitate the interpretation of complex behavior in
high-dimensional phase spaces.15 For three-dimensional systems,

the topological structure of an attractor can be thoroughly described
using knots,16 but knots unknot in four dimensions and beyond. To
deal with higher-dimensional chaos, it is necessary to use topological
tools without dimensional restrictions, such as cell complexes.17

A cell complex is a sort of skeleton made up of cells of differ-
ent dimensions,18 allowing for the computation of layered invariants
(homology and torsion groups), which can be used to distinguish
different topologies. The exploration of phase space with cell com-
plexes began in the nineties.19,20 Today, we have a special class of cell
complexes that approximate branched manifolds:12 they are called
BRAMAH complexes—the acronym stands for “Branched Manifold
Analysis through Homologies.”21 This approach was successfully
used, for instance, to analyze speech data20 or to detect Lagrangian
Coherent Sets in fluid flows.22 The difficulty with homologies, how-
ever, is that they do not consider the fact that a cell complex in
phase space is visited by the flow in a specific way, defining circuits
that can be homologically equivalent while topologically distinct.
Unveiling the non-equivalent paths of the flow upon the structure
is not possible without equipping the cell complex with a directed
graph (or digraph) that indicates how cells are connected by the
flow. The mathematical object incorporating the flow into the pic-
ture was introduced in 2022 under the name “templex.”23 It consists
of a BRAMAH complex endowed with a directed graph, whose
nodes coincide with the highest local dimension cells of the com-
plex. The edges of the graph contain the previously missing flow
information. The templex is nothing more than the generalization
of the cell complex for the algebraic extraction of the topological
properties of a flow in phase space.24 Its properties can be used
to identify the fundamental processes that are responsible for the
system’s behavior.

Understanding the AMOC dynamics is crucial because of its
impact on the planet’s heat distribution.25,26 There are a number
of mechanisms in the literature identified as responsible for the
AMOC dynamics. Idealized models coupling ocean, atmosphere,
and ice suggest that millennial oscillations are mainly endogeneous
and deterministic.27 Sévellec and Fedorov8 formulate a low-order
model of the AMOC that realistically reproduces the power spectra
for different sets of initial conditions. This model is a modification
of the Howard–Malkus loop,28 formulated for three variables: two
salinity gradients and the strength of the overturning circulation. It
is derived from the equations of motion of the ocean circulation in
its zonally averaged form in the depth-latitude plane.

To reproduce the interglacial intervals, the model is made more
complex.10 The latitudinal location of the AMOC with respect to the
atmospheric precipitation is found to control the stability properties
of the system, having a single stable steady state in the interglacials
that switches to solutions wandering between three unstable steady
states. Consistently with numerical studies, latitudinal shifts of the
AMOC are assumed to follow the southward edge of the sea ice. To
study this nonautonomous system, a sawtooth function with zero
mean and a period of 100 000 years is imposed. Nonautonomous
dynamical systems are often studied using the so-called pullback
approach,29–33 i.e., integrating the time-dependent equations of the
nonautonomous model over a chosen time interval from a large set
of initial conditions, and plotting the probability density function
of the system. Sévellec and Fedorov10 show that computing the pull-
back attractors for different diagnostic times separated by 5000 years
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is enough to unveil that the AMOC dynamics alternates between an
interglacial interval and a chaotic burst during the glacial interval.
In three-dimensional phase space, the pullback attractor has differ-
ent shapes depending on the choice of the initialization time and
contracts to a single point during the interglacials.

This work provides the first topological analysis of the flow
in phase space associated with these deterministic models of the
AMOC. The study is undertaken using the templex approach in
both autonomous and nonautonomous settings, with the assump-
tion that determinism and continuity imply topological invariance
in the absence of false neighbors, i.e., in the absence of differ-
ent states in phase space that are presented as coincident because
of a projection. Adding phase space dimensions to eliminate self-
crossings amounts to rewriting the nonautonomous system as a
higher-dimensional bounded system in an autonomous form.34 The
analysis will be conducted by building the templex directly from
the time series provided by the numerical solutions of both model
equations, with as many dimensions per case as required, and by
computing and comparing their templex properties.

The article is organized as follows. The first section is devoted
to describing the templex approach, using the Rössler spiral chaotic
attractor as a reference example. The following sections focus
on the templex-based analysis of the AMOC models. The three-
dimensional system is treated first to characterize the topology of
the chaotic dynamics of the glacial intervals reproduced by the
autonomous model.8 The same system is reconsidered when the
sawtooth time-dependent forcing is introduced. The new templex
is shown to be a compound structure that can be fragmented at cer-
tain joints. The concept of active templex properties is introduced
at this point. The terminology, borrowed from Rinzel’s active and
silent phases for bursting mechanisms in excitable systems,35 enables
the identification of tipping points within a deterministic templex.
A comparison with the pullback approach is provided. Conclusions
can be found in the last section.

II. A TEMPLEX AND ITS PROPERTIES

In algebraic topology, a cell complex K is a layered struc-
ture, made up of cells of dimension k with k ∈ N0. Thus, a 2-cell
is a polygon, whose faces are 1-cells or segments, whose faces are
0-cells or points. In a cell complex K every face of the cell complex
is in K, and so, every pair of distinct cells in K have disjoint inte-
riors. Such cells are the basic building blocks of homology theory.
Homology groups, which are a series of scaled invariants, can be
calculated from cell complexes. These invariants encode the infor-
mation on the existence, on the number, and on the location of holes
of different dimensions: they are called k-generators or k-holes. The
zero-order homology group H0(K) measures the connectivity of the
complex, and its rank is associated with the number of connected
components; the first homology group H1(K) identifies non-trivial
loops of 1-cells around the complex (these loops are called 1-holes);
the second homology group H2(K) accounts for the loops of 2-cells
enclosing empty cavities or 2-holes. Torsion groups can be com-
puted if the cell complex is uniformly oriented. Above the minimal
number of cells (for each dimension) needed to correctly approx-
imate a space,36 the topological invariants (number of connected
components, non-trivial loops, enclosed cavities or torsions) are

independent of the number or the particular arrangement of cells
in the cell complex.15

It has recently been shown that cell complexes, and current
tools in algebraic topology, are insufficient to distinguish between
attractors with the same number of holes and global torsions.23 For
instance, the spiral37 and funnel38 Rössler attractors are two variants
of the Rössler system (with different control parameters) which are
not dynamically equivalent in spite of having the same homology
groups: they both have one 0-hole, a single 1-hole and no 2-holes. As
mentioned in the introduction, traditional topology aims at describ-
ing an object in any space, but does not describe the flow if the
space is a phase space and the object is an attractor. To add the
flow information, the cell complex must be complemented with a
digraph. These two elements (the complex and the digraph) make
up the twofold mathematical object called templex.

Let us introduce here some details regarding the mathematical
construction of the templex from time series. The starting point is
a numerical solution of a deterministic dynamical system—a set of
time series—leading to a point cloud in phase space. For a deter-
ministic system, the point cloud must be free of false neighbors,
so as to study the topology of the solutions themselves and not
of their projection onto a lower-dimensional subspace. The point
cloud is segmented into d-cells where d is the local dimension of the
manifold on which the points lie. The set of points assembled in a
d-cell must also satisfy the condition of being a good approximation
to a d-dimensional Euclidean set.12 A cell complex constructed in
this manner is called a BRAMAH complex—full definitions can be
found in Sciamarella and Charó.24 The number of cells forming this
complex is neither too low as to risk losing details in the approx-
imation of the underlying structure, nor too high as to needlessly
increase the computational cost of calculating homology and torsion
groups.

By definition, the dimension of a cell complex is that of its
highest dimensional cell(s), and by construction, the dimension of
a BRAMAH complex coincides with the largest local dimension on
which the solution lies. Thus, if the structure supporting the point
cloud is a surface, the highest dimensional cells will be 2-cells and
the complex will be said to be of dimension 2. Note that in a complex
of dimension κ there can exist sections of highest local dimension κl

such that κl ≤ κ . The cells of largest local dimension are assigned a
node in the digraph of the templex, and the edges of the digraph
provide the flow-compatible connections between the nodes. The
templex approach inherits from homology theory the advantage of
canceling out extraneous information, and allowing for the algebraic
extraction of the fundamental properties of the topological structure
of the flow, regardless of the number and distribution of cells.

A templex can be studied homologically using its complex,
while its digraph can be analyzed in terms of the distinct cycles than
can be established through the junction(s) between different paths.
The cells in a junction make up what we call the joining locus. Join-
ing loci can be easily detected scanning the complex for sets of three
or more κl-cells sharing a (κl − 1)-cell. In other words, a joining
locus is the location in a cell complex where there are three or more
κl-cells held by a common hinge—if κl = 2 this hinge is a 1-cell (or
a singly connected chain of 1-cells) which may be called joining line.
The flow traverses such joining line going from two or more “ingo-
ing” 2-cells into a unique “outgoing” 2-cell: a templex fulfilling this
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condition concerning the cell structure at the joining locus is called
a generating templex.

To illustrate these concepts with a paradigmatic example, let
us consider the Rössler system. The spiral Rössler attractor was dis-
covered with the aim of simplifying39 the Lorenz equations.40 The
Lorenz equations present two nonlinear terms and lead to three
fixed points. The Rössler’s set of equations,







ẋ = −y − z,
ẏ = x + ay,
ż = b + z(x − c),

(1)

with a = 0.2, b = 0.2, and c = 5, exhibits chaos with fewer nonlin-
ear terms than the Lorenz system. It has only two fixed points, one
of them located in the main disk and the other one lying above. Tra-
jectories solving Eq. (1) loop around the first fixed point until they
start being pulled up by the second fixed point. The flow going up in
the z direction is folded back onto the main disk.

Henri Poincaré was the first to notice how phase portraits are
structured around fixed points. Fixed points, however, do not suffice
to determine the topology of a chaotic attractor.41 Let us build the
templex for the spiral Rössler attractor from a solution in R

3. The
BRAMAH complex is constructed following the strategy detailed by
Sciamarella and Mindlin,12 where the rationale is dividing the point
cloud into subsets that locally approximate d-disks to form d-cells
from them. The local dimension d and the number of points in these
d-disks is computed using singular value decomposition and linear
regressions within a range of maximum and minimum numbers of
points that are set beforehand for the entire computation. These d-
cells form the complex, endowed with a directed graph or digraph
every time a d-cell is connected with another one by the flow.

An algebraic code provided in https://community.wolfram.
com/groups/-/m/t/3079776 is available to compute the templex
properties from a generating templex of dimension 2. The code takes
as input a set of 2-cells spelled in terms of the indexed 0-cells, as
well as the digraph listing of the connections between the 2-cells.
It returns the indexed k-holes of the homology groups as well as
the torsion groups if there are any, the location of the joining loci,
if they exist, and the generatex/stripex set representing the non-
equivalent pathways. A generatex is a representative cycle of the
original digraph that starts in an outgoing node of a joining locus
and comes back to it. Two cycles in the digraph of a templex are
said to be equivalent if they share the same ingoing and outgoing
nodes. In general, there will be several equivalent cycles: a generatex
thus represents a family of equivalent closed paths around a join-
ing locus. To introduce the concept of stripex, we need to define the
order of a generatex. An order-p generatex, where p ∈ N and p ≥ 1,
has p ingoing nodes. A generatex is a stripex if p = 1, and it is com-
posed of p stripexes if p 6= 1. For a complete set of definitions, we
refer the reader again to Sciamarella and Charó.24

Let T(R) be the templex shown in Fig. 1(a), where R desig-
nates the point cloud obtained by integrating Eq. (1), K(R) is the
BRAMAH cell complex and D(R) is the digraph. The first panel dis-
plays a set of four 2-cells labeled γi, i = 1, 2, 3, 4. In the cell decompo-
sition mentioned above, we typically obtain around twenty 2-cells.
The number of 2-cells is purposefully reduced here for simplicity of

FIG. 1. A templex T(R) = (K(R),D(R)) for the spiral Rössler attractor. In the
cell complex K(R) (a) constructed upon the point cloud R, there are four 2-cells
named γi with i = 1 to 4. The joining line 〈0, 1〉 is marked in red and the 1-hole
[the generator ofH1(K(R))] in green. The digraphD(R) in (b) shows how the flow
connects the 2-cells. Stripexes S1(R) and S2(R) are indicated with oval-shaped
colored lines.

display. The corresponding digraph is shown in (b), with one node
per 2-cell and directed edges following the flow direction.

Let us now see how the templex properties are extracted from
T(R). We start with the homology groups, computed from K(R).
The complex has one 0-generator or 0-hole since all 0-cells are con-
nected between them, they are all homologous. Any of the 0-cells can
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play the role of generator of the zeroth order homology group. If the
representative 0-cell is labeled 〈0〉, this is written H0(K(R)) = [〈0〉]
' Z. A complex with one 0-hole is simply a single-piece com-
plex. K(R) has only one 1-generator or 1-hole, shown in green
in Fig. 1. All the 1-holes, i.e., all the non-trivial loops encircling
the superficial void in the center of the disk are homologous
to the green chain of 1-cells. We can, therefore, write H1(K(R))

= [〈1, 3〉 + 〈3, 6〉 − 〈1, 6〉] ' Z. There are no 2-holes (no enclosed
cavities) and so H2(K(R)) ' 0.

The Rössler attractor is hence a structure with a single 1-hole
contouring the fixed point in the main disk of the attractor. The
second fixed point is relatively far from the attractor, and leads to
the existence of a fold, not captured by homology groups, which
only capture voids. The fold is however related to the existence of
a joining locus in the templex. The joining locus is formed here by
three 2-cells: γ1 (outgoing), γ3 (ingoing), and γ4 (ingoing). The three
2-cells share the joining line 〈0, 1〉, the red 1-cell holding the three
joining 2-cells together, as shown in Fig. 1(a).

The existence of the joining locus leads to the possibility of
identifying distinct closed flow paths across the joining locus. Two
alternative paths are in fact available: one of them crosses the red
line without abandoning the disk, and the other one crosses the red
line through the folded part of the attractor. These two paths can be
extracted from the digraph of the templex. They form the generatex
set or stripex set—since both are of order p = 1. The stripexes are
labeledSj with j ∈ N and computed automatically using the digraph,

S1(R) ≡ 1 → 2 → 3 → 1,

S2(R) ≡ 1 → 2 → 4 → 1.

Nodes corresponding to outgoing cell(s) are underlined: here only
node 1 plays that role. Notice that S1(R) ∪ S2(R) is not empty: the
two stripexes share the edge connecting the first and the second
nodes (1 → 2). Shared paths in a templex (intersections between
stripexes) are called bonds, since they hold the non-equivalent path-
ways together. Thus, there are two alternative flow circuits from γ1

back to γ1: S1(R) traverses the joining line coming from γ3, whereas
S2(R) traverses the joining line coming from γ4. The branching of
paths is caused by the folding, and in this case, there is no “fault line”
or “notch” between the two paths. If there was such an empty space,
the complex would have had a second 1-hole around the space sep-
arating the two paths, but these two paths are glued together by the
1-cell 〈0, 5〉 and therefore pass unnoticed in a homological analysis.
The fact that the Rössler attractor is a two-stripex flow is visible in
the digraph shown in Fig. 1(b).

A stripex is said to have a local twist if its free edges change
their relative positions with respect to the orientation from the cen-
ter of the attractor to the periphery. In our case study, the second
stripex S2(R) has a local twist. If S2(R) was isolated from the rest
of the templex, it would have a torsion as the Möbius strip, while
S1(R) would have no torsions at all, as in the cylinder or standard
strip18 (see the Appendix). All the templex properties, namely, the
existence and location of (i) a single 1-hole in the complex, (ii) a sin-
gle joining line, (iii) two stripexes glued to each other, and (iv) a local
twist in the most external of them, provide a complete topological
description of the attractor. For a templex-based study of different
well-known chaotic attractors, the reader is referred to Charó et al.23

III. AMOC IDEALIZED MODELS

Let us now dive into the AMOC idealized models, starting with
the autonomous case, which has three degrees of freedom, derived
from the equations of motion for large-scale ocean dynamics. It
provides the conservation of heat, mass, and salt, as well as the
momentum equations along the three spatial directions. However,
the dynamics is simplified to reduce the problem to just one spatial
dimension by following a single streamline, as described by Sévellec
and Fedorov,8















ω̇ = −λω − εβSNS,

ṠBT = (�0 + ω)SNS − KSBT +
F0S0

h
,

ṠNS = −(�0 + ω)SBT − KSNS.

(2)

The system appears to take the form of a modified Lorenz model in
which symmetry is broken.42 The three model variables are anoma-
lies in the AMOC overturning rate (ω) and the ocean’s vertical
(bottom–top) and meridional (north–south) salinity gradients (SBT

and SNS, respectively), each depending on time (t). The steady com-
ponent of the circulation (denoted �0) is assumed to be set by mean
oceanic temperature gradients and surface winds, whereas the vari-
able part of the circulation (denoted ω) is controlled by meridional
salinity gradients; the total overturning rate is � = �0 + ω, where �,
�0, and ω are measured in yr−1. The two other equations describe
the evolution of the salinity gradients driven by advection, linear
damping (with the coefficient K), and surface salt fluxes (F0S0/h,
where F0 is freshwater flux intensity, S0 is a reference salinity, and
h is the depth of the level of no motion for the baroclinic flow). For
a linear stability analysis of this equation system (fixed points, Jaco-
bian, eigenvalues, bifurcation diagram), the reader is referred to the
original paper.8

The second model we will consider is presented by Sévellec
and Fedorov10 in 2015 to incorporate the interglacial phase. This
is achieved by assuming that glacial–interglacial variations in sea
ice cover control the northernmost extent of the AMOC, causing
it to move southward and northward. One of the important con-
sequences of this meridional shift in deep water formation and the
entire overturning circulation is its relative switch concerning mean
atmospheric precipitation. To investigate the leading-order effect of
such relative switches, the authors use a fixed latitudinal profile of
virtual surface salt flux (a sinusoidal function) but move the bound-
aries of the model basin southward during glacial intervals. The time
dependence of these changes is described by a sawtooth function
with a zero mean and a period of 100 000 yr = 100 kyr—black line
in Fig. 2(b)—, chosen to mimic a typical glacial–interglacial cycle of
the Late Pleistocene. This time dependence leads to corresponding
periodic variations in the Fourier amplitudes FBT and FNS (when the
edge of sea ice reaches 70◦N, FNS is equal to the total surface salt flux
and FBT=0, and vice versa when the edge of sea ice reaches 55◦N;
such variations conserve ocean mean salinity). The three-variable
model becomes nonautonomous,











ω̇ = −λω − εβSNS,

ṠBT = (�0 + ω)SNS − KSBT + FBT(t),

ṠNS = −(�0 + ω)SBT − KSNS + FNS(t),

(3)

Chaos 35, 013113 (2025); doi: 10.1063/5.0231713 35, 013113-5

© Author(s) 2025

 07 January 2025 17:55:12

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 2. Solutions for slightly different initial conditions (blue and green lines) for Eq. (2) in (a), and for Eqs. (3) and (4) in (b). The black sawtooth line is the time-dependent
forcing introduced by the position of the edge of sea ice (ESI). The values of the parameters are: S0 = 35 psu, h = 1000m, λ = 10−2 yr−1, ε = 0.35 yr−2, �0 = −2.5
× 10−2 yr−1, β = 7 × 10−4 psu−1, in (a): F0 = 1m yr−1, in (b): F0 = 0.5 m yr−1, K = 0.0001.

where

FBT + iFNS =
S0

2πh

∫ 2π

0

e−iθ dθ (4)

are Fourier projections of the surface salt flux. Figure 2 shows the
time series for the simulated variations in the overturning rate (−ω)
for two slightly different sets of initial conditions—solid blue and
green lines—for the autonomous (a) and the nonautonomous (b)
models.

Nonautonomous systems can, in principle, be rewritten in an
autonomous form at the price of scaling up in phase space dimen-
sion, as observed in Charó et al.43 Topological methods based on
knot-theoretical tools, which are limited to three dimensions, are
unable to handle higher-dimensional solutions, but the templex
approach is a “knotless” method and can therefore deal with sys-
tems having more than three dependent variables. When the forcing
corresponds to a periodic function, the nonautonomous system can
be seen as driven by a one-degree-of-freedom oscillator. When the
forcing is periodic, this involves, in principle, two additional phase
space dimensions. As the relationship between the two extra vari-
ables FBT and FNS is fixed here [see Eq. (4)], only one of the two
variables will be required to obtain a false-neighbor-free solution.
This is in agreement with false nearest neighbor (FNN) tests.44 FNN
is an algorithm usually used for estimating the embedding dimen-
sion. The FNN method is based on the principle that, in the step
from dimension d to dimension d + 1, one can differentiate between

true and false neighbors. A false neighbor is a point in the dataset
that appears to be a neighbor only because the points are being
projected onto a lower-dimensional space. Here, we apply the FNN
technique to the normalized time series and identify the false neigh-
bors in the point cloud. Figure 3 highlights the regions where points
that appear to be close together in three dimensions are, in fact,
separated (thickening the structure) by the missing dimension. The
algorithm used to identify these points, as shown in Fig. 3, is avail-
able in Python at https://git.cima.fcen.uba.ar/caterina.mosto/fnn.
Notice that the four-dimensional thickening concerns mainly the
base disk and a relatively small fragment of the detaching strips.

IV. THREE-DIMENSIONAL SYSTEMS

The first task in our analysis is to compute a generating templex
for point cloud N ∈ R

3 corresponding to the time window (from 0
to 120 kyr) in Fig. 2(a). The templex T(N) is composed of a complex
K(N) and a digraph D(N). The homologies of K(N) can be computed
from this cell complex. The results are as follows:

H0(K(N)) ' Z,

H1(K(N)) = [[h1, h2]] ' Z
2,

H2(K(N)) ' 0.

There is a single 0-hole, there are two 1-holes and no 2-holes. The
difference between the homologies of the Rössler’s case and that
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FIG. 3. Existence of false nearest neighbors in a three-dimensional projection of
the AMOC four-dimensional model (3). The points in red appear as closer than
they are when the fourth coordinate is added.

of N lies in the extra 1-hole (a non-trivial loop) located near the
extra fixed point of the system. The empty space associated with this
1-hole can be directly seen as the blank space detaching the 2-cells
of the main disk from those forming the detached branch in Fig. 4.

Templex T(N) has one joining locus, formed by the 1-cell that
is attaching the two ingoing 2-cells γ5, γ29 to the only outgoing
2-cell γ6. This is visible in the zoom box above Fig. 4(a). The
stripexes characterizing the non-equivalent paths traversing the
joining line are shown with oval-shaped closed curves in the digraph
of Fig. 4(b) and with schematic diagrams in Fig. 5. They read

S1(N) ≡ 6 → 7 → 8 → 1 → 2 → 3 → 4 → 5 → 6

S2(N) ≡ 6 → 7 → 8 → 1 → 2 → 3 → 9 → 10 → 11

→ 12 →→ 13 → 14 → 15 → 16 → 17 → 18 → 19

→ 20 → 21 → 22 →→ 23 → 24 → 25 → 26 → 27

→ 28 → 29 → 6

The bond between the two stripexes is given by 6 → 7 → 8
→ 1 → 2 → 3. The shared path splits at node number 3, leading
to 4 (in the first stripex) and to 9 (in the second stripex). The second
stripex S2 has a local twist.

The point set N corresponds to a two-stripex attractor with
a twisted path in the peripheral part of the cell complex, as in

FIG. 4. Templex T(N) = (K(N),D(N)) of the AMOC three-dimensional point
cloud obtained solving Eq. (2). The 2-cells γi , i ∈ N in the cell complex K(N) (a)
are connected by the flow as indicated by the digraph D(N) shown in (b). In the
zoom box above, we show the joining line (thick line) with the ingoing and outgoing
2-cells attached to it. Stripexes S1(N) and S2(N) are indicated with oval-shaped
colored lines.

the Rössler case. However, the homological description differs: the
twisted stripex is detached from the main disk in N, whereas this is
not true for R. This detachment leads to the formation of an addi-
tional 1-hole, which causes S1(N) and S2(N) to separate at node
3, i.e., after the flow passes through γ3. This tearing mechanism is
absent in R, making the two systems distinct in this aspect. In R,
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γ2 separates S1(R) and S2(R) without tearing them apart, keeping
their lateral boundaries attached. In this context, homologies can be
used to differentiate between tearing and folding. Due to the addi-
tional 1-hole separating the two stripexes, the weakening regime of
the AMOC is separated from the strengthening regime by a void of
states that the solution cannot access.

In studies using knots, where the topology of the flow is con-
sidered independently of the structure serving as support, branched
manifolds composed of a normal and a twisted strip (with the strip
in a knot-holder being the precursor to the stripex) may be regarded
as topologically equivalent to the spiral Rössler attractor. However, it
is possible to distinguish different mechanisms leading to this topol-
ogy by examining the first-return maps to a Poincaré section of the
flow.42,45 Each monotone branch of the map corresponds to a strip.
If the two monotone branches are separated by a critical point where
the map is differentiable, as in the case of the spiral Rössler attractor,
folding occurs. If the map is non-differentiable, tearing occurs (as
in a cusp). An example of a two-strip attractor with tearing was pro-
posed by Rössler and Ortoleva,46 where tearing can also be identified
by the presence of an additional 1-hole.

Another characteristic of the AMOC three-variable model is
the joining line, which does not traverse the entire main disk as in
the spiral Rössler case. In N, the joining line is a narrow “slit” near
the center of the main disk, as shown in the zoom of Fig. 4(a). The
Rössler–Ortoleva attractor shares this feature with N (see Fig. 2 in
Rössler and Ortoleva46), as do systems with a Shilnikov’s saddle-
focus homoclinic orbit,11,12 where the flow is expelled and rein-
jected near the disk’s center. Another example can be found in the
case discussed by Rössler with an artificially composed Lorentzian
equation.47

Figure 5 provides further illustration, offering a schematic
diagram of the stripexes in N.

FIG. 5. Schematic diagrams showing the two stripexes S1(N) in (a) and S2(N)

without the bonded part in (b) for templex T(N). Thick lines are used to highlight
the joining line in each diagram. Labels indicate how the two parts should be
assembled.

V. FOUR-DIMENSIONAL SYSTEMS

In this section, we present the templex analysis of the model
corresponding to the original nonautonomous case, where chaotic
variability alternates with nearly steady ocean conditions. We work
with a single glacial–interglacial cycle yielding point cloud M ∈ R

4.
The additional state variable is FBT.

Figure 6 shows the three-dimensional phase portrait of M
spanned by state variables ω, FNS and SNS. Both the glacial and
the interglacial intervals are represented, as well as the transitions
between them. The point cloud M is dissected into four parts. Let
M =

⋃4
i=1 Mi, where Mi ∈ R

4 (i = 1, . . . , 4) and M1, M2, M3, and
M4 correspond to point sets related to the four sections in the time
series. Section M2 corresponds to the glacial interval, characterized
by its chaotic dynamics. Sections M1 and M3 correspond to the tran-
sitions in and out of the glacial intervals, and M4 corresponds to the
interglacial interval.

We will, therefore, construct and analyze T(M) = (K(M),
D(M)), the templex of the complete four-dimensional point cloud
M, taking into account the dissection, K(M) =

⋃4
i=1 K(Mi), so that

K(Mi) is the cell complex obtained from subset Mi. The location of
the holes and stripexes of the dissected templex is accessible through
the 0-cells, whose coordinates in the cell complex are known by
construction. Indeed, the BRAMAH cell complex provides a link
between the topological and geometrical information, allowing for
a direct connection between the topological structure and the flow
in phase space.

One important caveat regarding the dissection of the templex is
that the topological properties of the subtemplexes should be consid-
ered with caution. A property such as a 1-hole in a subcomplex may
not correspond to a real void but simply indicate a missing section.
Just as with the figure of speech known as synecdoche, the whole
should not be mistaken for the part.

A. Glacial interval

Let us consider the glacial interval corresponding to subset
M2 ⊂ M. When constructing K(M2) from the point cloud, we find
that the cells forming the disk at the base of the structure in N
have thickened in the additional coordinate, forming a filled or solid
torus. This is consistent with the FNN analysis presented in Fig. 3. A
filled torus has 3-cells (polyhedrons) rather than 2-cells (polygons),
but the homology groups remain the same if the 3-cells are flat-
tened and treated as 2-cells in the algebraic handling of homology
group generators. As in the four-dimensional case studied by Charó
et al.,23 the thick disk will be approximated with 2-cells without loss
of generality. With this assumption, K(M2)—shown in Fig. 7—is a
BRAMAH subcomplex such that

H0(K(M2)) ' Z,

H1(K(M2)) = [[h1, h2, h3]]] ' Z
3,

H2(K(M2)) ' 0.

As usual, there is only one connected component or 0-hole. In the
center of the subcomplex, we re-encounter a 1-hole (h1), but in this
case, h1 is not associated with a focus-type hole as in N; rather, it is
associated with the fact that we are dealing with a subcomplex of M,
where this void is filled, as indicated in Sec. V C. We could refer to
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FIG. 6. In the left panel, the three-dimensional projection (ω, FBT and SNS) of the four-dimensional point cloud M =
⋃4

i=1 Mi corresponding to the time series shown below,
where Mi ∈ R

4, i = 1, 2, 3, 4 is associated with the four intervals. The chaotic part, corresponding to M2, is shown in the right panel using the ω, SBT , and SNS projection.
The colors of the ω time series for M2 and the trajectories in the phase portrait below correspond to the three stripexes S1,2,3(M2): the parts of S2(M2) and S3(M2) that
include the S1(M2) stripex corresponding to the base of the complex K(M2) are marked in red.

a sub-hole (of a sub-complex), but not to a hole à part entière. The
two 1-holes (h2, h3) correspond to real voids between the stripexes
in the structure. As expected, there are no enclosed empty cavities.

There is a joining locus within M2 near h1, which does not tra-
verse the entire disk, just as in N. The shared 1-cell is the hinge
attaching the following ingoing 2-cells: γ3, γ18, γ19 and feeding the
outgoing 2-cell γ4 (underlined node). Let us now compute the
stripexes for M2 restricting our analysis to the associated time win-
dow, i.e., momentarily disregarding M1, M3 and M4. We find three
stripexes, which are schematically represented in Fig. 8,

S1(M2) ≡ 4 → 5 → 6 → 1 → 2 → 3 → 4,

S2(M2) ≡ 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12,

→ 13 → 19 → 4,

S3(M2) ≡ 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12,

→ 14 → 15 → 16 → 17 → 18 → 4.

Local twists are found only in stripex S2(M2), which can be associ-
ated with the twisted stripex in N, namely, S2(N).

The latitudinal shift of the sea ice edge, absent in N, has clearly
altered the topological structure of the glacial chaotic regime, intro-
ducing a third stripex, S3(M2), separated from S2(M2) by h3. This
stripex is “new” in the sense that its cells visit regions of phase space

which remained unexplored in N. The sketch in Fig. 8 helps rec-
ognize the T(M2) stripexes in the projection spanned by ω, SBT,
and SNS.

Two regimes can be identified within the glacial interval of
the time series: the first regime, occurring in [5000 yr, 12 000 yr]
and [32 000 yr, 35 000 yr], presents an isolated extreme excursion
with ω exceeding 0.04. In contrast, the second regime, operating in
[12 000 yr, 32 000 yr], features twin extremes: a higher peak followed
by a lower one, both above 0.04. Figure 6 (right panel) illustrates
how these two regimes correlate with the templex structure. The
first regime in the time series of the glacial interval corresponds to
the trajectory visiting stripex S1(M2) (in red) and S3(M2) (in violet),
where there is only one excursion far from the main disk, resulting
in a single extreme value (with ω above 0.04). The second regime,
occurring in the middle of the glacial interval, corresponds to the
trajectory visiting S1(M2) (in red) and stripex S2(M2) (in blue). This
twisted stripex features a double-loop excursion far from the base
disk, as shown in Fig. 8. The stripex structure thus explains the twin
peaks in the middle regime and the single peak in the regime at the
beginning and the end of the glacial interval.

These results can be compared with the time series of the lower-
dimensional system discussed in Sec. IV, where only two stripexes
were available: the main disk responsible for the low-amplitude,
slowly increasing peaks in ω—stripex S1(N)—and the double-peak
extreme excursions through the twisted stripex S2(N). The forcing
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FIG. 7. Three-dimensional projection of the cell complex K(M2) corresponding
to the glacial interval in the nonautonomous model.

thus introduces the single-peak extreme excursions, which occur
when the ESI values are either below −0.01 or above 0.05.

In light of these results, tipping points between different
regimes can be interpreted based on the sets of stripexes being vis-
ited. As the ESI values increase, the dynamics switches or “tips”
from visiting S1,3(M2) to visiting S1,2(M2), resulting in qualitative
differences in extreme excursions and typical peak values.

B. Interglacial interval

This subsection considers the cell structure corresponding to
the interglacial time window. The system abandons the glacial
section through stripex S3(M2), specifically through the cell labeled
γ13. The interglacial interval exhibits regular oscillations as the sys-
tem transitions in and out of the glacial interval. Between M3 and
M1, there is M4, with nearly steady conditions.

Topologically, the interglacial interval is represented by a union
of subcomplexes, namely, K(I) = K(M1) ∪ K(M3) ∪ K(M4). The cell
structure involves 2-cells in M1 and M3, and a 1-cell in M4. These
cells are shown in Fig. 9 using the projection ω, SNS, and FBT, along
with the underlying point sets, all colored consistently with Fig. 6.

Transitions between the subsections of K(I) are signaled by
topological changes in the cell structure. Let us recall that the local
dimension κl rises from 2 to 3 when entering the solid torus—visited
by stripex S1(M2)—and drops from 2 to 1 when the orange surface
shrinks to the green line covered by the 1-cell labeled σ in M4.

We are now in a position to analyze the finite-time templex
of the glacial and interglacial dynamics from the four-dimensional
point cloud, re-establishing the union of the subsets described
separately thus far.

C. Glacial-interglacial cycle

Let us now reassemble the sections into a unique cell complex
and digraph: templex T(M). The homologies of K(M) are

H0(K(M)) ' Z,

H1(K(M)) = [[h2, h3]]] ' Z
2,

H2(K(M)) ' 0.

There is one connected component, as is customary. There are two
non-trivial 1-holes corresponding to slits separating the stripexes in
the chaotic phase, and there are no enclosed empty cavities. Here, we
confirm that sub-hole h1 in M2 is not a 1-hole in M. This is merely an
effect of the dissection of the time series; there is no central 1-hole in

FIG. 8. Schematic diagram showing the three stripexes (a) S1(M2), (b) S2(M2), and (c) S3(M2) without their bonded part in subtemplex T(M2). The thick line highlights
the joining locus.
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FIG. 9. Interglacial subcomplex K(I) formed by K(M1) (with point set in yellow),
K(M3) (with point set in orange) and K(M4) (with point sent in green). The 2-cells
are labeled γi , i ∈ N and the 1-cell in K(M4) is labeled σ .

the full complex for M. Cells γj with j = 21, . . . , 25 (belonging to M1)
fill h1 in M2: this phase space region is visited when the trajectory
enters the interglacial interval.

Let us now compute the stripex set for M. Since there is a way
in M to escape from the three-stripex cycle of M2, T(M) contains a
fourth stripex attached to the three that already existed in T(M2),

S1(M) = S1(M2),

S2(M) = S2(M2),

S3(M) = S3(M2),

S4(M) ≡ 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 → 13

→ 26 → 27 → 28 → 29 → 30 → 31 → 32 → 33

→ 34 → 20 → 21 → 22 → 23 → 24 → 25 → 1 → 2

→ 3 → 4.

From a topological perspective, the trajectory exits the glacial
phase due to the existence of a splitting locus in cell γ13 (belong-
ing to S3 in M2), which allows the flow to “tip” to γ26, as shown in
Fig. 10. Since the glacial interval is exited via S3(M2), the ω time
series exhibits single-peak excursions with ω values exceeding 0.04
before entering the interglacial interval. In other words, it is the
regime S1,3 in M2, followed by the quasi-periodic oscillations in M3

underlying S4 (cells γ13,26...33), that suggest the existence of a topo-
logical sign of the incoming interglacial interval. On the other hand,
the trajectory switches or “tips” from the interglacial interval to the
glacial one through cells or nodes γ20...25, which lead inexorably to γ1.

FIG. 10. Digraph D(M) of the glacial–interglacial time interval. The edges
between nodes γ13,26...33, followed by σ , and then by γ20...25,1 correspond to the
interglacial interval. The four stripexes are shown as colored lines, all consistent
with Figs. 6 and 9.S4(M) is the only one that visits both the interglacial and glacial
intervals.

Here, the oscillations of increasing amplitude in M1, represented by
the 2-cells following the 1-cell σ in S4, seem to constitute a topolog-
ical early warning signal (EWS) of the incoming glacial interval. The
changes in the local maximal dimension of the cell complex should
correspond to an increase in variance, which is consistent with the
statistical EWS approach to AMOC collapse.48,49

To assemble the results of the topological analysis of M into a
single picture that illustrates the topological transformations or tip-
ping points occurring within M, we introduce the concept of active
templex properties. In simple terms, when a templex property, such
as a stripex, is not visited for a certain time, it is considered inactive
or silent. The same applies to a 1-hole that ceases to be surrounded
by the trajectory, thereby becoming silent or inactive. Hereafter, we
will refer to active holes or active stripexes concerning a specific time
window and its associated subtemplex. This concept is summarized
in the table provided in Fig. 11, using the ω time series as reference.

FIG. 11. Active holes and stripexes for the four subsets in templex T(M).
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FIG. 12. Point clouds extracted from snapshots in the PBA approach corre-
sponding to probability densities above −22 in log scale for (a) t0 = −175 kyr,
(b) −150 kyr, (c) −100 kyr and (d) −125 kyr. Computations start 5 kyr before t0.
Templex cells are shown in juxtaposition.

Point clouds M1, M3, and M4 do not possess any active 1-holes;
the three 1-holes, h1, h2, and h3, are only active for cloud M2. The
stripexes S1, S2, and S3 are active in M2. We can discriminate
between the two regimes within the glacial interval in terms of active

stripexes: S1,3 at the beginning and end of the M2 interval, and S1,2

in the middle. During the interglacial interval, which covers I (M1,
M3, and M4), the only active stripex is S4. It is noteworthy that S4

remains bonded to the glacial part of the templex. Note also that the
part of S4 ⊂ I is composed of cells with progressively lower κl (from
3-cells to 2-cells and 1-cells). Subsequently, the local dimension of
the subcomplexes increases again to reach a new chaotic burst.

It is important to emphasize that our templex is constructed
from a single glacial–interglacial cycle, meaning that the non-
bonded part of stripex S4 is visited only once. The templex structure
remains consistent across all the cycles we have considered, pro-
vided that each cycle is analyzed separately. However, if the solution
used to build the templex encompasses multiple interglacial-glacial
cycles, the resulting structure will display features not studied here.
A multi-cycle templex for the non-autonomous case is left for future
work.

VI. PULLBACK APPROACH

Nonautonomous systems are often studied using the concept of
pullback attraction, which generalizes global attractors for nonau-
tonomous systems.31,33 Pullback attractors describe the long-term
behavior of a system as it is “pulled back” in time, offering insight
into how trajectories evolve in varying environments.30

The nonautonomous idealized model of the AMOC has been
analyzed by its authors through the lens of pullback attraction.
Figure 12 presents four snapshots in the pullback sense,10 juxtaposed
with different subsets of K(M). In gray, we plot the points represent-
ing the highest density regions, along with the subcomplexes in the
(ω, SNS, FBT) projection of the four-dimensional phase space.

The four snapshots of the pullback attractor are obtained for
different values of (t0, t), where t0 is the initialization time and t is
the diagnostic time. Computations start 5 kyr before t0. In the first
frame (A), the pullback point set lands along the cells in S1,2(M)

in accordance with the value of t0 = −175 kyr. In the second snap-
shot (B), the highest density regions visit the cells in S1(M) and
the periphery of S3(M), as expected for t0 = −150 kyr. In (C), the
pullback attractor is concentrated in the interglacial part of S4(M)

corresponding to M3,4 ⊂ I, in agreement with t0 = −100 kyr. In (D),
with t0 = −125 kyr, the central parts of S1,3 take the lead.

The time-varying point sets of the evolving pullback attractor
can hence be translated into the varying active properties of our
templex. T(M) supports the highest density regions (the most vis-
ited parts of the three-variable phase space) obtained from a very
large number of numerical experiments (two million), each with
different initial conditions. Let us note that calculating the pull-
back attractor for the idealized nonautonomous model requires as
much numerical effort as simulating several decades with a state-
of-the-art ocean general circulation model. This result suggests that
the most populated stripexes of the idealized model are contained
within our finite-time templex, which was constructed from a sin-
gle glacial–interglacial cycle and a single numerical experiment (one
initial condition). Taking into account the juxtaposition of the snap-
shots upon T(M), we can conclude that the not-yet-constructed
multi-cycle templex may have extra stripexes, but these should
correspond to seldom-visited ones. Using first-return maps to the
Poincaré section of the flow should help confirm this.
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VII. CONCLUSIONS

This work shows that tipping points in a deterministic dynami-
cal system’s behavior can be effectively analyzed through changes in
the topological active properties of its phase space flow, which can
be accurately detected using the templex approach. The method-
ology is applied to a recently proposed idealized model of the
Atlantic Meridional Overturning Circulation in autonomous and
nonautonomous settings. In the autonomous case, the model mim-
ics the chaotic variability of the glacial intervals using three vari-
ables: the anomalies in the overturning rate, the bottom–top, and
the north–south salinity gradient. In the nonautonomous case,
the model takes into account the glacial–interglacial variations in
the sea ice cover. The fourth variable is the Fourier projection
of the bottom–top surface-salt flux.

The templex is a mathematical object based on the definition
of a cell complex. Composed of cells of different dimensions that
are glued together, a cell complex allows for the computation of
topological properties that do not depend on the specific number
or arrangement of cells. These properties may include torsions and
voids, referred to as holes, which are quantified through homol-
ogy groups derived from the cell structure. These groups reveal the
presence of connected components (at level 0), non-trivial loops (at
level 1), empty cavities (at level 2) and higher-dimensional voids,
thus providing a layered description of the topology of the structure.
In chaos topology, this structure often takes the form of a mani-
fold with branches. A special type of cell complex called BRAMAH
can be constructed to describe features such as joining (splitting)
loci, where branches merge (separate). The main difference between
a templex and a cell complex is that the templex incorporates the
“arrows” of a flow on the cell structure. A templex is therefore a
BRAMAH cell complex endowed with a directed graph, which car-
ries information about how the cells are connected by the flow. As a
result, templex properties not only describe the topology of a struc-
tured point cloud in a phase space of arbitrary dimensions, but also
the topologically distinct cyclic paths allowed by the flow around
that structure. The structure itself is characterized by holes, torsions,
and joining or splitting loci, while the flow is represented by the
generatex/stripex set, which corresponds to a set of non-equivalent
pathways around the joining loci.

In the autonomous case, the chaotic oscillations represent the
irregular strengthening and weakening of the AMOC associated
with the Dansgaard–Oeschger events. The rapid switches between
these on- and off-phases correspond to a branched manifold with
two 1-holes and two stripexes, one of which is twisted. One of the
1-holes is of the focus type: the empty space is circled by the flow.
The other 1-hole is associated with a tearing of the flow, which
creates an empty gap between the two stripexes. The circulation
weakening is directly related to the twisted stripex.

In the nonautonomous scenario, when the driving force is
active, the dynamics can be embedded in four dimensions with-
out false neighbors. A third stripex and a third 1-hole appear in
this context, located in regions of phase space that remained unex-
plored in the projection spanned by the three variables of the
autonomous model. Stripexes have parts in common that keep them
bonded, but the interesting part of the dynamics is given by their
non-overlapping parts. Two regimes can be distinguished based on

how the stripexes are visited: one of these, associated with the two
stripexes already present in the autonomous case, exhibits a dou-
ble peak during the weakening phase, while the other shows a single
peak.

The term active templex properties is introduced in the nonau-
tonomous case to characterize the topological changes induced
by external forcing. These properties, which may or may not be
observed in a subtemplex during a given time interval, are referred
to as active or silent. For instance, in the nonautonomous model,
the three 1-holes are active only during the chaotic burst and remain
silent during the interglacial interval. Another key templex property
is the local dimension of the cell complexes, which marks topological
jumps in the time series. The local dimension of the cell structure is
1 during nearly steady intervals, 2 during quasi-periodic transitions,
and rises to 3 during chaotic bursts. Tipping points can therefore be
identified as the cells or nodes where the trajectory switches from
one set of active properties to another. Early warning signals can
also be formulated using the topological terms of this approach, as
both the glacial and interglacial intervals are preceded by specific
topological indicators. In contrast, there are no tipping points in
the autonomous case, as all templex properties remain continuously
active.

An important comment is necessary regarding how the tem-
plexes in this work were constructed. They are all finite-time objects
in the sense that they are built from finite time series, but there
are significant differences in terms of the number of cycles in
the time series considered for building the three-variable and the
four-variable templexes. The two stripexes of the autonomous case
correspond to approximately twenty strengthening and weakening
cycles; thus, the two stripexes are visited around twenty times. In
contrast, the interglacial interval, which is only reproduced by the
nonautonomous model, is traveled only once in the point cloud
used for the topological study. As far as we could test, the nonau-
tonomous templex properties seem to remain unchanged for differ-
ent glacial-interglacial cycles, as long as each cycle is investigated on
its own. Of course, a nonautonomous multi-cycle templex structure
is expected to present more complex interglacial properties related
to the repeated visits of different interglacial intervals. This aspect
has been left out of the scope of this study but will be considered in
a separate work.

When the nonautonomous templex properties are compared
with the analysis of the nonautonomous model conducted using the
pullback approach, the templex from our study serves as support for
the points corresponding to high probability densities of the pull-
back attractor. The most populated regions of snapshots computed
for different initializations and diagnostic times from two million
numerical experiments10 land within our nonautonomous templex.
This suggests that our topological results are robust enough to
describe the most visited stripexes of the idealized nonautonomous
model, despite being constructed from a single glacial-interglacial
time window based on only one numerical integration.

In conclusion, the templex approach has proven useful for
detecting early warning signals and tipping points of AMOC
collapse,48,49 formulated in terms of topological active properties.
This opens up the possibility of using the templex method to detect
AMOC tipping points under different forcings. Such analyses could
be conducted through the examination of state-of-the-art climate
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model simulations from both the historical period and future pro-
jections provided by the Coupled Model Intercomparison Project.50

This will also be the focus of future work.
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APPENDIX: PLANAR DIAGRAMS

In algebraic topology, planar diagrams are used as a visual and
combinatorial tool to represent cell complexes corresponding to
higher-dimensional objects in a flat form, with gluing instructions

FIG. 13. Planar diagram corresponding to a complex with a single 2-cell for a
standard band.

FIG. 14. Planar diagram corresponding to a complex with a single 2-cell for a
Móbius band.

indicated by repeating the labels of points or 0-cells to be joined,
just as one would when assembling a paper model.

Figure 13 shows a planar diagram for a cell complex with a
single 2-cell labeled α and 0-cells labeled P, Q, U, and V. By tak-
ing a rectangular piece of paper and gluing the left and right edges
together, making the repeated labels coincide, a cylinder is formed.
The cylinder can then be deformed into a standard band: a disk with
a hole in the middle.

Gluing instructions are crucial: if the repeated labels are posi-
tioned differently on the rectangular paper, a Möbius band can be
formed instead of the standard band, as shown in Fig. 14. In both
cases, the associated cell complex has a single 2-cell α, but the 1-cells
and 0-cells are assembled differently.

We can, of course, construct planar diagrams for the cell com-
plexes throughout our work. Let us start with point set N. The planar
diagram shown in Fig. 15 is drawn using the same labels as those in
the schematic diagram of Fig. 5. The simplified cell complex K′(N)

has two 2-cells labeled γ ′
1 and γ ′

2 , corresponding to γ1···8 and γ9···29

in Fig. 4. Thick lines are used to indicate the joining locus in the cell
complex. Five 0-cells are being used: P, Q, R, S, and W.

Let us consider the point set in Fig. 7 along with its schematic
diagram in Fig. 8. The corresponding planar diagram is shown in

FIG. 15. Planar diagram corresponding to a simplified cell complex K ′(N). Thick
lines indicate joining lines.
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FIG. 16. Planar diagrams corresponding to (a) a simplified cell complex K ′(M2) with only five 2-cells labeled γ ′
1,2,3,4,5, and (b) a simplified cell complex K

′(M) corresponding
to the glacial–interglacial time interval. The thick lines corresponding to the joining locus.

Fig. 16(a). The simplified cell complex is labeled K′(M2). Note that
the 2-cells in the main disk actually represent 3-cells that have been
flattened.

A planar diagram of a simplified cell complex K′(M) is given
in Fig. 16(b). The rectangle at the top corresponds to the main disk.
The labels correspond to the schematic diagrams in Fig. 8. The 1-cell
σ in Fig. 9 is shown here with its label in K(I).
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