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A B S T R A C T
Rehabilitation aims to assist individuals in recovering or enhancing functions that have been lost
or impaired due to injury, illness, or disease. The automatic assessment of physical rehabilitation
exercises offers a valuable method for patient supervision, complementing or potentially substituting
traditional clinical evaluations. However, acquiring large-scale annotated datasets presents challenges,
prompting the need for self-supervised learning and transfer learning in the rehabilitation domain. Our
proposed approach integrates these two strategies through Low-Rank Adaptation (LoRA) for both
pretraining and fine-tuning. Specifically, we train a foundation model to learn robust 3D skeleton
features that adapt to varying levels of masked motion complexity through a three-stage process.
In the first stage, we apply a high masking ratio to a subset of joints, using a transformer-based
architecture with a graph embedding layer to capture fundamental motion features. In the second
stage, we reduce the masking ratio and expand the model’s capacity to learn more intricate motion
patterns and interactions between joints. Finally, in the third stage, we further lower the masking ratio
to enable the model to refine its understanding of detailed motion dynamics, optimizing its overall
performance. During the second and third stages, LoRA layers are incorporated to extract unique
features tailored to each masking level, ensuring efficient adaptation without significantly increasing
the model size. Fine-tuning for downstream tasks shows that the model performs better when different
masked motion levels are utilized. Through extensive experiments conducted on the publicly available
KIMORE and UI-PRMD datasets, we demonstrate the effectiveness of our approach in accurately
evaluating the execution quality of rehabilitation exercises, surpassing state-of-the-art performance
across all metrics. Our project page is available online.

1. Introduction
Human motion analysis is a highly active research field
within computer vision. While the majority of studies in this
area focus on action detection and recognition [1, 2, 3, 4], the
domain of human movement quality assessment (HMQA) is
comparatively understudied. This area involves identifying
and quantifying deviations from standard movement patterns
and providing feedback on an individual’s execution of an
action. HMQA is crucial in various domains, including func-
tional capacity evaluation, sports movement optimization,
ergonomic risk assessment, and applications in physical
therapy and rehabilitation.
The assessment of physical rehabilitation exercises (APRE)
is crucial for optimizing patient care and facilitating recov-
ery from injuries or medical conditions. Traditional methods
often depend on evaluations by healthcare professionals,
which can be time-consuming, subjective, and resource-
intensive. The COVID-19 pandemic lockdowns have further
highlighted the need for secure, home-based rehabilitation
systems that use conventional sensors. These systems pro-
vide alternatives to in-person evaluations, ensuring continu-
ity of care during periods of restricted mobility or in isolated
areas.
In response to these challenges, there has been a growing in-
terest in leveraging advanced machine learning techniques to
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develop objective, data-driven approaches for HMQA. Com-
puter vision techniques provide practical and cost-efficient
solutions by utilizing standard RGB cameras or affordable
RGB+Depth sensors to capture detailed 3D poses, which
serve as crucial inputs for deep learning algorithms [5].
However, training these models requires substantial volumes
of diverse data. Furthermore, precise annotation by clinical
experts is essential to ensure accurate scoring, adding further
complexity to the process. Consequently, the scarcity of
large-scale datasets tailored for assessing physical rehabili-
tation exercises remains a significant obstacle to developing
robust and clinically effective models [6].
Recently, the integration of self-supervised learning (SSL)
techniques has emerged as a promising approach for ac-
quiring meaningful representations from raw data without
the need for explicit labeling in related tasks such as ac-
tion detection and recognition [7]. However, this approach
has not been extensively studied in rehabilitation, where
the issue of limited datasets is more significant. Our work
introduces a new foundation framework that utilizes SSL
pretraining to acquire robust 3D skeletal representations.
Through transfer learning, our approach avoids the need for
extensive manual annotation. This combination mitigates
the risk of overfitting, allowing the model to generalize
effectively across diverse datasets and unseen examples.
Similar to recent work in skeleton-based SSL for action
recognition Masked Motion Prediction (MAMP) [2], our
method adopts a transformer-based architecture to capture
the configurations of 3D skeleton motion through masked
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Fig. 1: The proposed training method comprises two phases: pretraining (left), aimed at gradually decreasing the masked motion
levels, and the fine-tuning phase (right). LoRA matrices A and B are incorporated to effectively reduce the model complexity.

motion modeling. MAMP proposes sorting the joints based
on their motion intensity, which involves ranking joints
based on how much they move throughout an activity se-
quence. This approach enables MAMP to focus on the most
dynamic joints first, as these typically carry more infor-
mation about the action being performed. For example, in
a walking motion, leg joints would exhibit higher motion
intensity than arm joints. Unlike [2], which selects a sin-
gle masking ratio (90%), our method considers different
masking ratios to learn 3D skeleton representations (Fig-
ure 1). This enables us to provide a more comprehensive
understanding of the importance of each joint in the mo-
tion sequence, leading to more robust features that capture
both subtle and significant motions effectively. Additionally,
the model gains adaptability to varying levels of noise or
missing information in the input data, enhancing its ability
to handle diverse and real-world scenarios. Furthermore, this
diversity enriches the learning process during SSL, enabling
the model to capture a broader range of motion patterns and
nuances in the data.
During pretraining, ensembling models for different mask-
ing ratios would lead to a large model size and signifi-
cant computation time. To address this challenge, we pro-
pose using parameter-efficient fine-tuning techniques in the
pretraining phase on the NTU-60 dataset [8]. Specifically,
we integrate LoRA (Low-Rank Adaptation) layers [9] to
learn distinct features tailored to varying degrees of motion
complexity while preserving pertinent information integrity
(Figure 1). This technique offers the flexibility needed to ac-
commodate diverse motion ranges while maintaining model
size. Our approach involves three pretraining stages, each
targeting different motion complexity levels. Initially, we
utilize MAMP [2] to learn features from 90% masked joints,
focusing on capturing high-level motion patterns. Subse-
quently, we introduce new LoRA layers and gradually reduce
the proportion of masked joints to 75% and 50% for the
second and third stages, respectively. This allows the model

to pinpoint the joints crucial for capturing intricate motion
details.
In the transfer learning phase, we employ LoRA as a fine-
tuning technique to leverage the knowledge acquired during
pretraining on unlabeled data for the downstream rehabilita-
tion assessment task. This approach harnesses the rich repre-
sentations learned in pretraining and refines them to capture
the specific nuances and complexities of the KIMORE [10]
and UI-PRMD [11] datasets.
Instead of utilizing convolution layers [12] as an embedding
projector [2], our approach employs a graph convolutional
network (GCN) [13]. This adjustment enhances the model’s
capacity to learn spatial features, resulting in more insightful
assessments of exercise quality. We conduct various data
augmentations and preprocessing techniques to improve the
performance of our model. In summary, the contributions of
this work are as follows:

• We propose an SSL-based method for assessing phys-
ical rehabilitation exercises. Our approach utilizes
decreasing masked motion modeling to learn robust
3D skeleton representations.

• We adopt the LoRA technique for both the pretraining
and tranfer learning phases of our model. This strategy
enables us to effectively preserve pertinent informa-
tion.

• We conducted extensive experiments on two rehabil-
itation datasets (KIMORE [10] and UI-PRMD [11]),
demonstrating superior performance compared to the
state-of-the-art.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related studies of our work. Section 3
explains the proposed method in depth and describes the
most important modules of our framework. Section 4 de-
scribes the experimental settings. Section 5 analyzes the
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obtained results on two public datasets and compares the
proposed approach against the state-of-the-art. Finally, Sec-
tion 6 presents the conclusion of the study and directions of
future work.

2. Related work
In this section, we present a thorough review of method-
ologies related to the APRE. Furthermore, we delve into
pertinent literature concerning action recognition utilizing
self-supervised learning with skeleton data that fall within
the perimeter of the current work.
2.1. Assessment of physical rehabilitation exercises
In recent years, there has been a growing interest in using
artificial intelligence-based techniques to improve the accu-
racy and efficiency of APRE [6, 14]. Early studies focused
on probabilistic approaches like Hidden Markov models
(HMMs) [15, 16] and mixtures of Gaussian distributions
[17] for assessing exercises. However, these approaches
require several preprocessing stages, such as feature extrac-
tion. This can be time-consuming, and computationally ex-
pensive while identifying the optimal parameter values that
lead to the best performance can be particularly challenging.
End-to-end deep learning models have demonstrated the
capacity to automatically assess a patient’s physical abilities
based on data collected from wearable [18, 19] or vision
sensors [20, 21]. First-generation methods typically clas-
sify movements as either correct or incorrect [22], without
however providing details on the quality of the movement.
More recent methods overcome this limitation by predicting
a continuous score for each movement [23, 24, 25, 26] that
can be more informative and enable monitoring of subtle
progress over time. Also, Du et al. [27] introduced a method
to quantify patient performance using a Gaussian Mixture
Model (GMM) log-likelihood metric. Their model utilized
hierarchical processing of joint displacements across various
body parts, incorporating convolutional and recurrent layers
to encode correlations in movement data. However, these
methods do not explicitly consider the topological structure
of the human body. This means that they do not take into
account how the different parts of the body are connected to
each other and how they move together. To address this lim-
itation, many recent approaches use GCNs to model skeletal
constraints among neighboring joints in a non-Euclidean
space.
GNNs can extract features from data that are arranged in an
irregular graph structure. The spatio-temporal graph convo-
lutional networks (ST-GCN) framework proposed by Yan
et al. [28] is the seminal work that captures both spatial
and temporal features from skeleton data, achieving remark-
able results in classifying actions. In subsequent works,
Chowdhury et al. [29] proposed a model that uses a GCN
to extract features from skeleton data, followed by an LSTM
[30] to predict the output quality score of an exercise. Chen
et al. [31] proposed an ensemble-based GCN for movement
assessment, which uses a combination of multiple GCNs to

learn more robust features from the movement data. Deb
et al. [32] proposed a GCN-based method that can process
variable-length inputs using long short-term memory net-
works (LSTMs) [33] and employs self-attention of body
joints indicating their role in predicting assessment scores.
Following this work, [34] merges modified STGCN and
transformer [35] architectures to handle spatio-temporal data
effectively and identify the most important joints. Also,
Réby et al. [20] used a transformer network to learn the long-
range dependencies in the input data, using a graph network
to learn the spatial and temporal relationships between the
different body joints. More recently, [36] proposed a multi-
task contrastive learning framework aimed at capturing sub-
tle yet crucial differences within skeleton sequences. This
framework is designed to address both the performance met-
ric and assessment quality assurance challenges encountered
in physical rehabilitation exercises. However, the aforemen-
tioned methods typically involve training models with exten-
sive architectures, such as transformer-based and LSTMs-
based models, on relatively small datasets, thereby posing
challenges for both training and testing. Specifically, train-
ing on small datasets may result in a lack of diversity in
the captured motion patterns, limiting the model’s ability
to accurately assess the quality of rehabilitation exercises
across various patient demographics and movement char-
acteristics. To address this issue, we propose employing a
self-supervised learning approach to acquire 3D skeleton
representations from large-scale datasets [8]. Subsequently,
we fine-tune the model using smaller annotated datasets
[11, 10] for APRE.
2.2. Self-supervised 3D action recognition
SSL has gained considerable attention in recent years thanks
to its capacity to harness large amounts of unlabeled data
for training deep neural networks. In the domain of 3D ac-
tion recognition, numerous methodologies have emerged to
exploit the temporal and spatial information inherent in 3D
action sequences without necessitating explicit annotations.
Contrastive learning has become increasingly popular in
self-supervised 3D action recognition. For instance, Shah
et al. [7] leverage contrastive learning to provide valu-
able guidance across diverse skeleton modalities, while Zhu
et al. [37] explore better action data augmentation through
this approach. Additionally, Zhou et al. [38] utilize con-
trastive learning to constrain the distance between confident
and ambiguous samples, thereby enhancing the performance
of ambiguous action recognition. Moreover, recent works
have delved into self-supervised learning combined with
GCNs for 3D action recognition [39, 40], enabling models to
learn robust representations capturing spatial dependencies
between joints.
However, while contrastive learning is effective in captur-
ing spatial relationships, it lacks explicit constraints for
exploring the temporal context of motion. To address this
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limitation, Mao et al. [2] depart from conventional self-
reconstruction objectives by introducing the MAMP frame-
work. This framework explicitly models contextual motion,
resulting in significantly improved performance compared to
raw skeleton reconstruction methods such as SkeletonMAE
[41]. However, this work reconstructs motion using only
one ratio of the masked joints, which may limit its ability
to capture the full spectrum of motion complexities. In
contrast, our approach utilizes various masked motion ratios
to achieve a more comprehensive understanding of motion
dynamics. In addition, we incorporate Low-Rank Adapta-
tion layers [9] to efficiently reduce the number of trainable
parameters while maintaining high performance, ensuring
that the model remains both accurate and computationally
efficient.

3. Methodology
The necessity for SSL and transfer learning in APRE arises
from the challenges associated with acquiring large-scale
annotated datasets. Annotating datasets for physical reha-
bilitation exercises is difficult and resource-intensive due to
the need for precise and detailed labeling by domain experts.
Additionally, the variability in individual patient movements
and the diverse range of exercises further complicate the
annotation process.
SSL alleviates this burden by enabling models to learn
meaningful representations from unlabeled data, reducing
the need for extensive manual annotation. This approach is
not only resource efficient but further allows for the use of
vast amounts of readily available unlabeled data. Specifi-
cally, our approach does not rely on high-level task-specific
labels, such as action categories or clinical assessments.
Instead, it leverages the inherent structure of motion data.
Namely, the joint coordinates, which can be directly inferred
from the input. Meanwhile, transfer learning facilitates the
adaptation of pre-trained models to APRE. Consequently,
by fine-tuning the pre-trained model on a smaller dataset of
labeled rehabilitation exercises, we enable effective knowl-
edge transfer and model adaptation.
We propose an SSL method using decreasing masked motion
modeling to learn robust 3D skeleton representations (Sec-
tion 3.2). Our approach, illustrated in Figure 2, comprises
two main phases: (i) pretraining on a large-scale dataset, and
(ii) fine-tuning on a small-scale rehabilitation dataset. We
adopt the LoRA technique for both phases, reducing model
size while preserving pertinent information (Section 3.3).
Additionally, we employ a GCN-based embedding layer to
capture spatial dependencies between joints (Section 3.1).
The network architecture is explained in Section 3.4.
3.1. GCN-based embedding layer
Human actions can be viewed as a set of spatio-temporal
changes in motion. Inspired by the natural graph represen-
tation of the human body, we propose using GCNs as an
embedding layer (Figure 2). This approach leverages the

Notation Definition
G Graph structure
J Set of nodes of G
E Set of edges of G
U Adjacency graph matrix for G
Ū Normalized adjacency graph matrix
D Degree matrix
I Identity matrix
W Learnable parameters
k Number of GCN layers
⊕ Concatenation operation
⋅ Dot product
+ Element-wise addition
x Input sequence
n Number of sequences
T Number of LoRA stages
S Number of attention heads
Q Query matrix in attention
K Keys matrix in attention
V Values matrix in attention
M Masked motion
ℎ Attention head
MHA Multi-head attention layer
A Projection matrix of LoRA
B Reconstruction matrix of LoRA
GeLU Gaussian Error Linear Units
ReLU Rectified Linear Units
L Loss function
y True values
ȳ Predicted values

Table 1
Summary of commonly used notations

inherent graph structure of skeletal data, enabling the captur-
ing of complex relationships between joints and facilitating
the extraction of richer and more meaningful features from
the skeletal data. In contrast, works such as [2] employ
2D convolution layers that treat each joint independently,
which may lead to failure in capturing the inherent structural
dependencies within the skeletal data.
A graph, denoted by G = (J ,E) is a data structure that
consists of a set of nodes J , and a set of edges E, where the
edges represent connections between the nodes. GCNs take
into account the relationships between the nodes in a graph
represented by the adjacency matrixU , which allows them to
learn more complex patterns than ordinary neural networks.
GCNs learn to represent nodes in a graph by aggregating
information from their neighbors. The adjacency matrix
of the graph is used to select the neighboring nodes that
contribute to each node’s representation. The propagation
rule typically used in GCNs is defined as:

H (k+1) = �
(

D− 1
2 ŪD− 1

2H (k)W (k)
)

(1)

where � is the ReLU activation function, H (k) and W (k) are
the features and the weights in the ktℎ layer, respectively. The
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Fig. 2: The overall architecture of the proposed SSL-based assessment of physical rehabilitation exercises is depicted. From
top to bottom, the three components represent: the LoRA Transformer Block, the pretraining architecture, and the fine-tuning
architecture. Our quality estimation model is trained to align with the score of the clinical expert, who determines the ground
truth score.

adjacency matrix Ū = U + I includes self-loops. The term
D− 1

2 ŪD− 1
2 normalizes the adjacency matrix symmetrically

where D is its degree matrix. This normalization helps
prevent gradient issues, ensuring stable and efficient training
of GCNs. In our architecture, we use two GCN layers that
follow the internal structure presented in [13]
3.2. Decreasing masked motion modeling
Recently, Mao et al. [2] proposed that instead of relying
on traditional pretext tasks such as masked self-component
reconstruction of human joints [41], effective feature rep-
resentation learning for 3D action recognition depends on
explicit contextual motion modeling. Their empirical find-
ings within the MAMP framework demonstrate that using a
masking ratio of 90% yields the best results. However, this
approach may not be adaptable to varying levels of motion
complexity. Additionally, its ability to generalize to different
types of movements encountered in rehabilitation exercises
may be limited. These exercises encompass a broad spec-
trum of movements, ranging from fundamental gross motor
actions to intricate fine-grained gestures. Each movement
type targets distinct muscle groups and contributes uniquely
to overall physical recovery.
Our methodology involves a progressive reduction of the
proportion of masked joints across different training stages.
The numbers in Figure 1 indicate the sequence of training
stages. After completing the training of each stage, we freeze
the weights before progressing to the next stage. During

fine-tuning, we leverage our pretrained model to adapt it
to specific tasks by fine-tuning only a subset of the model
parameters. This ensures that the knowledge acquired during
pretraining is effectively utilized, while allowing the model
to adapt to new data and tasks with minimal adjustments.
By systematically adjusting the number of masked joints,
we can effectively simulate and capture a diverse array of
motion complexities, ultimately leading to more robust and
generalized learning. As we will demonstrate in the ablation
study of Section 3.2, our approach outperforms MAMP.
In the initial stage, we mask 90% of the joints. This stage
presents the model with the most challenging scenarios,
forcing it to learn essential features from scratch. By con-
fronting such high levels of occlusion, the model develops a
strong foundation of basic motion patterns and relationships
between joints. This training technique helps in capturing
critical spatio-temporal dependencies within the skeletal
data, essential for understanding gross motor movements.
Following the high masking stage, we reduce the proportion
of masked joints to 75%. At this stage, the task becomes
moderately challenging. The model leverages the founda-
tional knowledge acquired in the first stage to refine its
understanding and representation of motion patterns. This
intermediate stage allows the model to start focusing on
more detailed aspects of movement while still dealing with
occlusion. It is useful for capturing more intricate move-
ments that involve a combination of gross and fine motor
skills. In the final pretraining stage, the proportion of masked
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Fig. 3: The pretraining loss curves for the proposed three masked motion modeling stages.

joints is further reduced to 50%. By this stage, the model can
effectively utilize the previously learned complex motion
patterns to handle simpler, less occluded scenarios. This
stage is crucial for capturing fine-grained gestures, which
target specific muscle groups and joints. We have adhered to
the same masking procedure as the one outlined in MAMP
[2] for the initial stage of masking. Initially, the joints are
sorted based on their motion intensity, following which the
first 90% are masked. Subsequently, in the second and third
stages, we adopt a similar strategy by masking 75% and 50%
of the joints, respectively. This approach is motivated by the
understanding that merely masking 90% of the joints may
not yield adequate insights into the significance of each joint
for a specific exercise. Instead, by exploring varying levels
of masked motion, we can obtain more nuanced and reliable
representations.
3.3. Parameter-efficient pretraining and

fine-tuning
Parameter efficient finetuning (PEFT) is a strategy to adapt
large pre-trained models to specific tasks without retrain-
ing the entire model. By minimizing the number of train-
able parameters, PEFT reduces computational and storage
needs while maintaining performance. LoRA [9] is a PEFT
method that reduces parameter space by approximating large
weight matrices with lower-rank matrices. This approach
captures significant features while discarding redundant in-
formation, leading to fewer parameters and often faster con-
vergence [42].
Rather than pretraining a separate model for each stage, our
approach advocates for training a single model from scratch
in the first stage. The model is trained with 90% masked
joints to encourage it to learn generalized representations
of movement patterns. As the training progresses, additional
LoRA layers are added to the model architecture. These lay-
ers are specifically designed to accommodate different levels
of masking, allowing the model to learn distinct features for
each level without significantly increasing complexity. This
strategy not only streamlines the training process by avoiding
the need for multiple pretraining models but also ensures
that the model remains adaptable to changes in movement
complexity.
We adopt the motion reconstruction loss formulation as
defined in [2] and illustrate the loss curve for each stage

of our framework in Figure 3. The first stage exhibits a
significantly higher loss compared to subsequent stages,
which can be attributed to the challenges inherent in masked
motion modeling. Consequently, we observe peaks in the
loss curve, indicating the model’s initial difficulty in recon-
structing highly masked motions. This stage requires 400
epochs to stabilize. As training progresses and the masking
ratio decreases in the later stages, the model leverages more
effectively the learned features, resulting in a smoother loss
curve and improved performance.
During the fine-tuning phase, we adapt our pretrained model
to the APRE task on KIMORE [10] and UI-PRMD [11]
datasets. The regression loss for APRE on the KIMORE and
UI-PRMD datasets is defined as:

Lreℎab =
1
n

n
∑

i=1
‖yi − ŷi‖

2 (2)

where y and ȳ are the ground-truth and predicted quality
score values.
3.4. Network architecture
The proposed network architecture for the pretraining phase
is illustrated in Figure 2 (middle). The input skeleton is
first processed by the motion-aware masking module, which
masks the joints based on their motion intensity [2]. The
output from this module is then fed into a GCN-based
embedding layer to learn the spatial dependencies between
the joints. Subsequently, the processed data is passed to a
transformer-based encoder-decoder, which reconstructs the
input motion using a regression layer. The model is trained in
an end-to-end manner. The figure represents the final mask-
ing stage (50%) where previous LoRA layers are frozen.
In the fine-tuning phase (Figure 2, bottom), the 3D pose is
input into the frozen GCN-based embedding and encoder
block. We then train the regressor and the LoRA fine-tuning
module to estimate the quality score. Note that the red/green
triangles represents frozen and learnable LoRa matrices (A
and B), respectively.
The Transformer model, as described by [35], is composed
of various blocks as shown in Figure 2 (top). We have modi-
fied these blocks to incorporate LoRA layers. Specifically,
the Multi-Head Attention (MHA) mechanism enables the
model to simultaneously attend to information from different
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Fig. 4: The left image represents the self-attention layer of the original transformer, while the right image illustrates our proposed
multi-stage masked motion modeling module.

representation subspaces at various positions:
MHA(x) = (ℎ1(x)⊕ ℎ2(x),… , ⊕ℎS (x)) ⋅W O (3)

Each head is computed as:
ℎi(x) = Attention(Qi, Ki, Vi) (4)

Qi(x) = x ⋅W Q
i , Ki(x) = x ⋅W K

i , Vi(x) = x ⋅W V
i (5)

where x is the input andS is the number of heads,W Q
i ,W K

i ,
and W V

i are projection matrices for the i-th head, and W O

is the output projection matrix.
In our case, we obtain MHA-LoRA by computing the Qi, Kiand Vi as follows:

Qi(x) = x ⋅W Q
i +

T
∑

j=1
x ⋅ BQ

j ⋅ AQ
j (6)

Ki(x) = x ⋅W K
i +

T
∑

j=1
x ⋅ BK

j ⋅ AK
j (7)

Vi(x) = x ⋅W V
i +

T
∑

j=1
x ⋅ BV

j ⋅ AV
j (8)

where T is the number of stages, Aj and Bj are LoRA ma-
trices for stage i. Figure 4 illustrates the difference between
the original self-attention layer of the transformer and our
MHA-LoRA layer. In our approach, a summation operation
is performed on each projected query, key, and value from
the different LoRA layers before the attention operation.
Notably, during stage T training, all layers are frozen except
for the corresponding LoRA layer.

4. Experimental settings
In this section, we begin by presenting the datasets used,
including their sources and characteristics. In the sequel, we
explore data augmentation techniques aimed at enhancing
model performance and describe the preprocessing methods
employed to prepare the data optimally. Additionally, we
provide comprehensive information on the protocols used
for training and evaluation in the implementation details.
Finally, we discuss the evaluation metrics used to assess
model performance.
4.1. Datasets
We conducted our experiments using the NTU-60 dataset
[8] for the pretraining phase and two publicly available
rehabilitation exercise datasets for the fine-tuning phase,
namely KiMORE [10] and UI-PRMD [11].
The NTU-60 dataset [8] is a prominent and publicly avail-
able resource for researchers and developers working in
the field of 3D human action recognition. It encompasses
over 60, 000 video samples categorized into 60 distinct
action classes. The dataset captures a broad spectrum of
human actions, ranging from commonplace activities like
walking and eating to more intricate tasks like playing
golf and using tools. Each video sample incorporates both
RGB and depth data, providing complementary information
about the visual appearance and 3D structure of the human
body. This richness allows algorithms to leverage both spa-
tial and temporal cues for improved recognition accuracy.
The dataset incorporates variations in lighting, clothing,
and camera viewpoints, mimicking real-world scenarios and
posing challenges for action recognition algorithms. This
fosters the development of robust and generalizable models.
The KIMORE dataset [10] is a valuable resource for re-
search on human motion analysis and rehabilitation. It is
a well-curated dataset that has been carefully annotated by
medical experts. The KIMORE dataset includes a variety
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of low-back pain exercises and has three data inputs: RGB,
depth videos, and skeleton positions for 25 joints acquired
using a Kinect sensor. It was collected from 78 subjects,
including 44 healthy subjects and 34 patients with pain and
postural disorder (Parkinson, back-pain, stroke). This dataset
also provides a set of clinical features, which are invariant
among people and selected on the basis of the scope of the
exercise.
The UI-PRMD dataset [11] contains human motion data
collected from healthy individuals performing ten common
rehabilitation exercises targetting different body regions.
The dataset includes positions and angles of the body joints
in the skeletal models provided by the Vicon and Kinect
sensors. For each exercise, ten healthy subjects perform ten
repetitions in both a correct and incorrect manner. Each
sequence is about 20 seconds, and the number of joints is 25
and 39 for Kinect and Vicon, respectively. The performance
scores are generated based on a Gaussian mixture model.
A scoring function is defined to map the performance metric
values into movement quality scores in the range [0, 1]. Since
this dataset is collected from healthy individuals, the data
may be less representative of the movements of patients with
injuries or disabilities.
4.2. Data augmentation and pre-processing
Due to the scarcity of annotated data, there is a lack of
rehabilitation exercise datasets. The KIMORE [10] and UI-
PRMD datasets [11] are small-scale and suffer from a data
imbalance problem, especially pronounced in UI-PRMD,
where healthy individuals outnumber unhealthy individuals
by a significant margin. Training a model with data augmen-
tation could lead to better performances.
In our experiments, we augment the size and diversity of
the datasets by generating new motion sequences from the
existing data. We introduce variations in speed by randomly
adding or removing L frames, ensuring that L falls within
the range of [0 − 25%] of the sequence length. Feedback
from clinicians indicates that adjusting the speed of the
original sequence does not compromise the quality score, as
individuals may perform actions at varying speeds due to
factors such as age and physical condition. Experiments val-
idate this data augmentation configuration, ensuring that the
sequence’s validity is maintained, as the added or removed
frames are non-consecutive.
Lastly, to enhance the dataset’s diversity, we employed ro-
tation augmentation that introduces controlled variations in
skeleton orientation, simulating different poses and view-
points. By doing so, we strengthen the dataset’s ability to
generalize across a wider range of real-world scenarios,
improving the model’s performance. We also use a balanced
data loader during training to ensure that each batch of data
contains samples from all classes in equal proportions. This
is important to avoid overfitting to majority classes.
For the NTU-60 dataset, we apply the same rotation aug-
mentation as used for the rehabilitation datasets to introduce

controlled variations in skeleton orientation. Additionally,
we enhance the dataset through random sequence cropping,
where sequences are randomly cropped by a proportion
between 0 and 0.5. This method helps simulate variations
in sequence length and further increases the diversity of
the training data, ensuring that the model is exposed to a
wide range of scenarios, thus improving its performance on
unseen data.
To ensure consistent origin points across all sequences, we
employ a sequence-based normalization technique as de-
scribed in [2]. Specifically, we subtract the spine coordinates
of the first frame from each skeleton in the sequence. This
standardization enhances model performance by mitigating
potential biases introduced by variations in initial skeleton
positions. By using a uniformly set reference frame, the
model can more accurately learn the underlying patterns and
spatial dependencies of the data without being influenced by
irrelevant positional discrepancies. This preprocessing step
is applied during both the pretraining and fine-tuning phases,
maintaining uniformity and consistency in the training pro-
cess.
4.3. Implementation details
We performed all experiments using the PyTorch framework
on a machine with an Intel i7 4.20 GHz processor and four
Tesla T4 graphics cards.
During pretraining, the proposed model is trained on the
skeletal data of the NTU-60 dataset, where the normalized
3D joint positions of the skeletons are used as input to
the GCN-based embedding layer. An extensive grid search
was conducted to select the hyperparameters of the GCNs.
Specifically, we set the number of layers to k = 2 and use the
mean function to aggregate information from adjacent joints
at each layer in the two GCNs.
We adopt the AdamW optimizer [43] with a weight decay of
0.05 and betas of (0.9, 0.95). We pretrain the network for 400
epochs for each stage with a per-device batch size of 16. The
learning rate is decreased from 1e − 3 to 5e − 4 following
a cosine decay schedule. The LoRA rank is set to 8 for all
stages.
During fine-tuning, following [27], the network is trained
on a 80%∕20% train/validation ratio, following a cross-
validation split scheme. We use the Adam optimizer with
an initial learning rate of 1e− 4 and a batch size of 16, with
the number of epochs set to 500. In our testing, a rank of
8 strikes a balance between maintaining the integrity of the
information and ensuring computational efficiency. Also, we
fix the alpha hyperparameter to 1 for all stages.
4.4. Evaluation metrics
In the context of human movement quality assessment, the
Mean Absolute Deviation (MAD) is ordinarily used to mea-
sure the difference between the ground truth movement
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quality scores and the predicted ones:

MAD = 1
n

n
∑

i=1
‖y − ȳ‖ (9)

where n is the sample size and y refers to the ground truth
movement quality scores, which are the actual performance
levels observed during the evaluation of movement quality.
These scores are derived from expert annotations [10] or
standardized assessment methods [11] that accurately reflect
the true quality of the movements being evaluated. On the
other hand, ȳ corresponds to the predicted movement quality
scores generated by our model based on the input data.
MAD serves as a straightforward yet effective measure of
model performance. It offers a robust evaluation metric that
is less sensitive to outliers compared to other measures such
as the mean squared error (MSE).
In addition to the MAD metric, we report Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE), which are commonly used in the field of APRE to
assess the accuracy of predictive models. In our evaluation,
lower values across all metrics indicate better performance.
RMSE, measures the average magnitude of the errors be-
tween predicted scores and the ground truth. In particular,
it is calculated by taking the square root of the average of
the squared differences between predicted and actual values.
It provides a single measure of the magnitude of prediction
errors, with lower values indicating better accuracy. It is sen-
sitive to large errors due to the squaring operation, making
it particularly useful for identifying outliers or extreme de-
viations in predictions. Mathematically, it can be expressed
as:

RMSE =

√

√

√

√

1
n

n
∑

i=1
(y − ȳ)2 (10)

MAPE, on the other hand, measures the average absolute
percentage difference between predicted and actual values.
This metric is particularly useful because it expresses the
accuracy of the model’s predictions as a percentage, making
it easier to interpret and compare across different datasets
and contexts. Mathematically, it can be expressed as:

MAPE = 1
n

n
∑

i=1

|

|

|

|

|

|

y − ȳ
y

|

|

|

|

|

|

× 100 (11)

5. Results
In this section, we comprehensively evaluate our approach
by comparing it against state-of-the-art methodologies on
the two referenced rehabilitation datasets [10, 11]. We also
analyze the computational time of our method across the pro-
posed three stages. Additionally, we conduct several ablation
studies to validate our contributions
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Fig. 5: Comparison of the prediction of the proposed approach
ȳ against the clinical assessment y for the KIMORE dataset.

5.1. Comparison with state-of-the-art approaches
To ensure a fair assessment of our approach, denoted as
SSL-rehab, against state-of-the-art deep learning techniques
[36, 34, 32, 24, 45, 23, 26, 44, 27, 28], we strictly adhered to
the same evaluation criteria and training-test partitioning as
specified in [32]. We note that the metric scores provided
in our comparison are reported directly from the original
papers.
Initially, we present our findings based on the analysis
conducted on the ten exercises comprising the UI-PRMD
dataset. Subsequently, we provide detailed results for each of
the five exercises within the KIMORE dataset. As illustrated
in Table 2 and Table 3, our proposed model demonstrates
superior performance across multiple evaluation metrics, in-
cluding MAD, RMSE, and MAPE. Notably, we achieve the
lowest average scores on both the UI-PRMD and KIMORE
datasets, with more pronounced improvements observed on
the KIMORE dataset.
The superior performance can be attributed to several fac-
tors. Firstly, the KIMORE dataset encompasses more com-
plex exercises involving both healthy and unhealthy subjects
which calls for more effective training. Additionally, the
data collected from the Kinect v2 sensor introduces noise
and variability, contrasting with the more precise poses
obtained using Vicon in the UI-PRMD dataset. This vari-
ability and complexity in the KIMORE dataset pose a greater
challenge for developing generalizable models. In contrast,
the controlled and straightforward nature of the UI-PRMD
dataset allows for various methods to demonstrate relatively
comparable performance levels.
To further demonstrate the effectiveness of our method, we
visualize the ground truth and predicted movement quality
scores for all test sequences in the KIMORE dataset, as
shown in Figure 5. As it can be observed, the predictions of
our model closely align with the assessments of clinicians,
which is a strong indicator that our method can capture the
subtle nuances of human movement quality (ideal perfor-
mance is depicted as the diagonal blue line).
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Table 2
Results of ten exercises on the UI-PRMD dataset using the evaluation metric MAD (bold typeface shows best performances)
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1 0.007 0.015 0.009 0.008 0.011 0.022 0.011 0.011 0.018 0.030
2 0.005 0.012 0.006 0.020 0.006 0.008 0.028 0.029 0.044 0.077
3 0.009 0.015 0.013 0.036 0.010 0.016 0.039 0.056 0.081 0.137
4 0.005 0.008 0.006 0.014 0.014 0.016 0.012 0.014 0.024 0.036
5 0.008 0.009 0.008 0.014 0.013 0.008 0.019 0.017 0.032 0.064
6 0.005 0.010 0.006 0.020 0.009 0.008 0.018 0.019 0.034 0.047
7 0.010 0.011 0.011 0.021 0.017 0.021 0.038 0.027 0.049 0.193
8 0.009 0.018 0.016 0.022 0.017 0.025 0.023 0.025 0.051 0.073
9 0.007 0.010 0.008 0.025 0.008 0.027 0.023 0.027 0.043 0.065
10 0.024 0.044 0.031 0.026 0.038 0.066 0.042 0.047 0.077 0.160

Average 0.008 0.015 0.011 0.020 0.014 0.021 0.025 0.027 0.045 0.088

Table 3
Results of five exercises on the KIMORE dataset (bold typeface shows best performances)
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M
AD

1 0.372 0.444 0.641 0.799 0.977 1.757 1.141 0.889 1.378 1.271
2 0.291 0.303 0.753 0.774 1.282 3.139 1.528 2.096 1.877 2.199
3 0.122 0.142 0.210 0.369 1.105 1.737 0.845 0.604 1.452 1.123
4 0.107 0.121 0.206 0.347 0.415 1.202 0.468 0.842 0.675 0.880
5 0.280 0.292 0.399 0.621 1.536 1.853 0.847 1.218 1.662 1.864

Avg 0.234 0.260 0.441 0.582 1.063 1.937 0.965 1.129 1.408 1.467

RM
SE

1 0.512 0.569 2.020 2.024 2.165 2.916 2.534 2.017 2.344 2.440
2 0.354 0.390 1.468 2.120 3.345 4.140 3.738 3.262 2.823 4.297
3 0.171 0.180 0.487 0.556 1.929 2.615 1.561 0.799 2.004 1.925
4 0.129 0.148 0.527 0.644 2.018 1.836 0.792 1.331 1.078 1.676
5 0.363 0.378 0.735 1.181 3.198 2.916 1.914 1.951 2.575 3.158

Avg 0.305 0.333 1.047 1.305 2.531 2.884 2.108 1.872 2.164 2.699

M
AP

E

1 1.049 1.105 1.623 1.926 2.605 5.054 2.589 2.339 3.491 3.228
2 0.742 0.864 0.974 1.272 3.296 10.436 3.976 6.136 5.298 6.001
3 0.417 0.437 0.613 0.728 2.968 5.774 2.023 1.727 4.188 3.421
4 0.318 0.341 0.541 0.824 2.152 3.901 2.333 2.325 1.976 2.584
5 0.752 0.808 1.217 1.591 4.959 6.531 2.312 3.802 5.752 5.620

Avg 0.655 0.711 0.993 1.268 3.196 6.339 2.647 3.266 4.141 4.170

The results achieved by our method can be attributed to
several factors. Firstly, the utilization of decreasing masked
motion modeling with SSL enables the model to learn ro-
bust 3D skeleton representations from a larger-scale skeletal
dataset NTU-60 [8]. Subsequently, transfer learning using
LoRA for rehabilitation leverages these features to achieve
strong performance. Furthermore, our findings underscore
the effectiveness of GCNs and transformers in capturing
spatial and temporal features.

5.2. Computational cost
To thoroughly assess performance metrics, computational
time, and overall efficiency, we conducted a series of three
experiments (Model 1, Model 2 and Model 3). In each, we
applied fine-tuning progressively after each stage, enabling
us to evaluate the incremental benefits and better understand
how each step enhances the model’s effectiveness.
We present the training and testing times of the KIMORE
dataset, where our model demonstrates efficiency with an av-
erage testing time of 22.5 milliseconds per video on a single
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Table 4
Computational time of model variants with different pretraining masking strategies.

Model variant Training type Training time Masked motion ratios MAD Inference time

Model 1
(MAMP)

Pretraining
with Stage 1 masking 1.1 d 90 % 0.472 20.4 ms

Fine-tuning 1.1 h

Model 2
Pretraining

with Stage 1 and 2 masking 1.8 d 90 %, 75 % 0.341 21.8 ms
Fine-tuning 1.4 h

Model 3
(SSL-Rehab)

Pretraining
with Stage 1, 2 and 3 masking 2.9 d 90 %, 75 %, 50 % 0.234 22.5 ms

Fine-tuning 1.6 h

Tesla T4 GPU. This indicates that our model is capable of
providing real-time results, especially considering the avail-
ability of real-time skeleton data generation. Additionally,
Table 4 shows that incorporating LoRA layers significantly
enhances performance without notably increasing inference
time.
During pretraining, our strategy of adding LoRA layers only
in the second and third stages effectively reduces the model’s
parameter requirements compared to duplicating the full
model size across all stages. In particular, Model 1 in Table 4
has 17.5 million parameters, while Models 2 and 3 increase
this by only 2% through the addition of LoRA layers, keeping
the model size manageable.
However, training time increases in Models 2 and 3 due
to LoRA’s need for two forward passes one through the
base model and another through the LoRA-specific A and
B matrices. Furthermore, training of the first stage is also
faster, as the mask size is set to 90%, reducing the input
volume to only 10%. In contrast, stages 2 and 3 have mask
sizes of 75% and 50%, respectively, leading to a greater input
proportion and, consequently, longer training times.
During fine-tuning, our model with 14 million parameters
achieves a MAD of 0.234. In contrast, the MAMP approach
(Model 1 in Table 4), with 13.2 million parameters, results in
a MAD of 0.472. This comparison highlights the significant
improvement achieved by our model, despite only a minimal
increase in parameter count.
5.3. Ablation studies
We conducted several ablation studies on the challenging
KIMORE dataset to examine the specific contributions of
individual components within our SSL-Rehab model and
identify the optimal configurations for best performance. For
these comparisons, we selected the MAD metric to report
the performance of the experiments, as it provides a robust
measure of accuracy in the context of rehabilitation exercises
and is the most commonly used metric in this domain.
5.3.1. Effect of the selected finetuning technique
In the experiment A, we aim to demonstrate the necessity
of transfer learning for small-scale rehabilitation datasets.
To verify this, we train a transformer architecture [35] from
scratch on the KIMORE dataset. Results in Table 5 show
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Fig. 6: The proposed method of gradually decreasing the
masked motion achieves remarkable MAD improvements in the
first three stages on the KIMORE dataset.

that this approach does not yield good performance because
starting from scratch lacks the ability to leverage the rich
features learned from pre-training on larger datasets (NTU-
60). Additionally, training a large model on a small dataset
is challenging due to the limited data available for optimiza-
tion, which leads to suboptimal performance. We did not
apply our gradually decreasing motion mask because this
approach does not leverage a pre-trained model.
In the second experiment, we conducted a thorough in-
vestigation of different fine-tuning strategies through three
distinct approaches. Firstly, we employed linear probing
(B), which involves freezing all the pre-trained weights and
adding a linear layer for regression. This method allows us
to evaluate how well the pre-trained features perform when
only the final layer is trained to adapt to the specific task. We
also
The approach C involved fine-tuning the entire pre-trained
model along with the linear layer. We adjusted the parame-
ters of all layers, not just the final one, to allow the model
to adapt more fully to the specific task. We systematically
tuned the learning rate to optimize the model’s performance
during the fine-tuning phase, ensuring that the model could
leverage the rich features learned during pretraining.
5.3.2. Effect of decreasing masked motion modeling
This experiment is crucial as it validates our proposed ap-
proach. We compare Experiment D, which integrates LoRA
within the MAMP framework [2] to learn a foundation
model exclusively for 90% masked joints, with our proposed
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Table 5
Ablation studies of the proposed approach on the KIMORE dataset using the MAD metric.

Component
Method SSL-Rehab A B C D E F G H

Training from scratch ✓

Linear probing ✓ ✓

Full fine-tuning ✓ ✓

MAMP + LoRA fine-tuning ✓

Gradually increasing the motion mask ✓

Gradually decreasing the motion mask ✓ ✓ ✓ ✓

GCN-based embedding ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MAD 0.234 0.663 0.534 0.512 0.472 0.380 0.244 0.519 0.241

method, SSL-Rehab. SSL-Rehab involves three stages with
varying masking ratios (90%, 75%, and 50%), allowing for a
more comprehensive evaluation of the model’s adaptability
and performance across different levels of motion complex-
ity. Table 5 and Figure 6 illustrate the results, indicating that
our approach achieves superior performance compared to
the baseline D.
These results can be attributed to the process of gradually
decreasing the proportion of masked joints across different
stages. This approach allows our model to adapt more effec-
tively to varying levels of motion complexity. In the initial
stage, where 90% of joints are masked, the model confronts
the most challenging scenarios, enabling it to learn essential
features from scratch. Subsequently, as the proportion of
masked joints diminishes in later stages, the model leverages
the acquired knowledge to tackle less challenging problems.
Our method facilitates the capture of a wider range of motion
patterns, enriching the learning process. This diversity en-
hances the model’s ability to generalize effectively to unseen
data during finetuning.
Furthermore, as shown in Table 5, incorporating the grad-
ually decreasing motion mask into the linear probing E
and full fine-tuning F configurations improved model per-
formance of these approaches (B and C). However, linear
probing did not outperform the LoRA fine-tuning method
used in our SSL-Rehab experiment. The LoRA approach
preserved adaptability in the intermediate layers, enhancing
the model’s fine-tuning performance. This contrasts with
Linear Probing, where adjustments are limited to the final
layer, thereby restricting adaptability.
Moreover, full fine-tuning with a decreasing mask achieved
competitive performance, but it requires additional time due
to gradient computations across all model parameters. In
comparison, the LoRA approach only fine-tunes specific lay-
ers, making it significantly more efficient. Additionally, this
experiment indicates that fine-tuning the A and B matrices
from the pretraining stages is not very beneficial. Focusing
on selective fine-tuning, as done in LoRA, proves more
advantageous for efficiently adapting the model to dataset-
specific motion patterns.

5.3.3. Gradually increasing vs. decreasing the masked
motion

In this experiment, we conduct a comprehensive compari-
son between two pretraining strategies for our model: one
utilizing three stages with increasing masked motion ratios
of 50%, 75%, and 90% (G), and the other progressively
reducing the proportion of masked joints from 90% to 75%
to 50% SSL-Rehab. The latter approach clearly outperformed
the former, showing better results (Table 5).
This superiority can be attributed to several key factors.
Firstly, the initial stage, where the model begins training
from scratch with 90% of the joints masked, plays a crucial
role. Despite its difficulty, this stage enables the model
to learn essential features from the ground up, laying a
solid foundation for subsequent stages. As the proportion
of masked joints decreases in the second and third stages,
the task becomes progressively less challenging, allowing
the model to refine its representations effectively with the
assistance of LoRA layers. In contrast, initializing with a
large number of learned weights from the pretrained model
to tackle a simpler problem (50% masking) may lead to
increased difficulty in subsequent stages. In such cases, the
adaptability of LoRA layers may not be sufficient to handle
the complexities of the masks.
5.3.4. Effect of choosing the number of stages
In our experiments, we conducted a comprehensive compar-
ative analysis of our model’s performance across different
training stages and joint masking ratios. Our findings high-
light several key insights:
First, we observed diminishing returns beyond the third
stage. Specifically, while the initial stages significantly con-
tribute to model improvement, the performance gains taper
off after the third stage, suggesting that further stages are not
necessary and inefficient (Figure 6). Additionally, we eval-
uated the impact of various joint masking ratios on model
performance. Our results indicate that using a masking ratio
of less than 50% does not yield significant performance
improvements. These findings underscore the importance of
carefully balancing the complexity of the training stages and
the degree of joint masking. By optimizing these parameters,
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Table 6
Effect of LoRA rank selection on the proposed SSL-Rehab
method using the KIMORE dataset.

Rank MAD # of parameters
2 0.307 13.2 million
4 0.268 13.3 million
8 0.234 14 million
16 0.252 15.4 million

we can enhance model performance while maintaining effi-
ciency in terms of training and inference time.
5.3.5. Effect of using the GCN-based embedding layer
In the experiment H, we compare the proposed GCN-based
embedding layer with traditional convolution layers. The
results in Table 5 clearly demonstrate that the GCN-based
approach enhances performance. This improvement can be
attributed to GCNs’ superior ability to capture spatial depen-
dencies and intricate patterns within the 3D skeleton data.
By leveraging graph-based representations, GCNs excel at
modeling relationships between different joints in the skele-
tal structure, enabling them to extract more nuanced and
informative features.
5.3.6. Effect of LoRA rank on performance
To identify the best LoRA rank for our method, we con-
ducted a series of experiments using our SSL-Rehab ap-
proach on the Kimore dataset. We systematically evaluated
various ranks, specifically 2, 4, 8, and 16, to determine their
effects on model performance. The results of these experi-
ments are summarized in Table 6 indicate that a LoRA rank
of 8 achieves the highest performance compared to the other
configurations. This superior performance at rank 8 can be
attributed to its ability to balance expressive power and
model complexity. At this rank, the model retains enough
capacity to capture complex patterns without the drawbacks
of overfitting or excessive computational costs.

6. Conclusions and future work
Our proposed method introduces a comprehensive frame-
work for the robust assessment of physical rehabilitation
exercises, leveraging self-supervised learning with 3D skele-
tal data. Through meticulous experimentation and ablation
studies, we have showcased the effectiveness of our approach
in gradually decreasing masked motion ratios, thereby facil-
itating the learning of robust features. This adaptive mecha-
nism enables our model to effectively accommodate varying
levels of motion complexity. Furthermore, the incorporation
of LoRA layers throughout both stages enhances this process
by effectively managing model complexity while maintain-
ing high levels of accuracy and efficiency. Our method offers
valuable insights into the importance of modeling motion
complexity and leveraging transfer learning for improved
generalization of APRE approaches.

In future works, our focus will be on scaling our approach
to accommodate larger models and datasets, broadening its
applicability and effectiveness. Furthermore, we are com-
mitted to exploring the synergy between parameter-efficient
fine-tuning and knowledge distillation, with the ultimate
goal of optimizing model complexity and reducing inference
time.
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