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ABSTRACT
Intrusion Detection Systems (IDSs) always had difficulties in detect-
ing Zero-Day attacks (ZDAs). One of the advantages of Machine
Learning (ML)-based IDSs, which is their superiority in detecting
ZDAs, remains largely unexplored, especially when considering
multiple ZDAs. This is mainly due to the fact that ML-based IDSs
are mainly using supervised ML methods. Although they exhibit
better performance in detecting known attacks, they are by de-
sign unable to detect unknown attacks because they are limited
to detecting the labels present in the dataset they were trained on.
This paper introduces SECL, a method that combines Contrastive
Learning and a new regularization method composed of dropout,
Von Neumann Entropy (VNE) and Sepmix (a regularization inspired
from mixup). SECL is close to, or even better than supervised ML
methods in detecting known attacks, while gaining the ability to de-
tect and differentiate multiple ZDAs. Experiments were performed
on three datasets, UNSW-NB15, CIC-IDS2017 andWADI, effectively
showing that this method is able to detect multiple ZDAs while
achieving performance similar to supervised methods on known
attacks. Notably, the proposed method even has an overall better
performance than a supervised method knowing all attacks on the
WADI dataset. These results pave the way for better detection of
ZDAs, without reduction of performance on known attacks.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Human-
centered computing→ HCI design and evaluation methods;
• Computing methodologies→Machine learning.
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1 INTRODUCTION
Standard approaches in Intrusion Detection based on signatures
have always been quite efficient in detecting properly identified pat-
terns. However, signature-based approaches are by design limited
and struggle to detect cyberattacks when there is a (small) change
in behavior with regard to the reference patterns, and even less
needs to be said about Zero-Day Attacks (ZDAs). Machine Learning
(ML) approaches, however, are by design able to detect cyberattacks
with small changes in behavior, and possibly also ZDAs.

Traditionally, ML approaches to detect cyberattacks rely on ei-
ther supervised methods or anomaly-based methods. Supervised
methods learn with labeled datasets and exhibit a high performance
on known attacks but are unable to detect ZDAs. Anomaly-based
methods are able to detect attacks, including ZDAs, but are unable
to distinguish them. More recent research has focused on Open-Set
Learning (OSL) methods. They are generally based on supervised
methods that constrain the problem to a multi-class problem for
known classes, and allow to reject samples that are outliers to all
known classes. Rejected samples are then all identified as belonging
to a big anomaly class.

However, current attack methodologies are generally complex
and composed of multiple steps, e.g., reconnaissance, lateral move-
ment, privilege escalation, data exfiltration, impact1, etc. Therefore,
a human expert that will handle alerts raised by an IDS needs at-
tacks, both known and ZDAs, to be properly distinguished. Being
able to distinguish between different steps of ZDAs allows to much
more quickly decide on the actions to take to respond to a raised
alert, and thus should not be overlooked.

When using ML-based IDSs to detect multiple ZDAs in a real-
world scenario, there are two possibilities:
• Scenario 1: They are completely new. In this case, the traffic
never existed and the attacks can only be detected during
testing.

1https://attack.mitre.org/
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• Scenario 2: They have been present for some time, and
have remained unidentified. In this case, the traffic exists, is
unlabeled but can still be used to train ML-based IDSs.

Both of these scenarios are very distinct and, ideally, both should
be considered from the perspective of training ML-based IDSs. In
scenario 2, an IDS that was already trained using a labeled dataset
would be able to be updated with unlabeled data to better differen-
tiate ZDAs. This is similar to Incremental Learning (IL), where new
classes are incrementally learned, but extends IL to use unlabeled
data.

Multiple ML methods and datasets [10, 13] exist to develop and
evaluate ML-based IDSs. Besides supervised methods, ML methods
can be unsupervised, semi-supervised or self-supervised. Both un-
supervised and self-supervised methods do not require any labeled
data while semi-supervised methods can leverage both labeled and
unlabeled data. Self-supervised methods are a subcategory of unsu-
pervised methods that train in a supervised way with self-created
labels. Unsupervised methods, other than anomaly-based, are gen-
erally able to distinguish between more than two classes and can
group together “similar” instances. When labeled data is available,
however, their performance is generally lacking compared to super-
vised methods. Ideally, the chosen approach should be able to both
leverage labeled data to reach a performance similar to supervised
methods on known classes, and be able to detect and distinguish
ZDAs.

Contrastive Learning (CL) has gained popularity in recent years
by decreasing the difference in performance between supervised
and unsupervised Deep Learning (DL) on image applications [15].
CL is based on Neural Networks (NNs) that will learn a new repre-
sentation of the data, to be used in downstream tasks. It typically
relies on self-supervised learning, which is based on augmenta-
tions. Augmentations are transformations of the data that retain
the semantic information, e.g., color shifts in images still represent
the same object. These augmentations are used to create samples
that share the same semantic information and are called positives.
Other samples or augmentations of other samples are considered
as negatives samples. The goal is then to learn a representation
space where anchors are close to their positives and far away from
their negatives. However, augmentations are much more difficult
to define in the case of IDS datasets where modifications of some
information, e.g., ports and protocols, can be too complex or even
counterproductive because they do not retain the semantic infor-
mation.

Consequently, there are two main difficulties to use CL to train
IDS. First, as stated previously, augmentations are impossible to
properly define. Secondly, CL, as any ML method for IDSs, also
suffers from the high imbalance in the datasets, and tends to overfit
on more prevalent classes, e.g., typically normal traffic.

The proposed approach, SECL (for Sepmix rEgularized Con-
trastive Learning) solves both of these difficulties. It will combine
CL with a supervised contrastive loss [17] to remove the need to
define proper augmentations. Additionally, it will use a new regu-
larization method that combines dropout, Sepmix (for Separation
through Mixup), and VNE. All components of this regularization
method impact different parts of the approach and are all required.
Dropout prevents co-adaption of neurons inside all layers of NNs

and reduces overfitting. VNE forces SECL to learn richer representa-
tions by penalizing when eigenvalues of the NN’s last layer are not
well distributed. Finally, Sepmix creates virtual samples between
classes to force SECL to reduce intra-class differences and obtain
more compact representations for known classes. SECL will be
tested on three well known IDS/Industrial Control Systems datasets:
UNSW-NB15, CIC-IDS2017 and WADI. To the best knowledge of
the authors, this is the first paper that considers the ability to detect
and classify both known and multiple new unknown attacks and
shows performance similar to supervised methods while having a
relatively high performance (in both detection and classification)
on new unknown attacks.

The rest of the paper is organized as follows: Section 2 presents
related works. Section 3 describes the proposed approach, while
Section 4 presents the experimental setup. Section 5 presents and
analyzes the results. Finally, Section 6 concludes the paper and
discusses future avenues of research.

2 RELATEDWORK
2.1 Open-World vs. Open-Set Learning
The problem of trying to detect and classify new unknown classes is
a very difficult problem that has been first formalized in [3], and is
named Open-World Learning (OWL). It extends Open-Set Learning
(OSL) [27] that considered all unknowns as a single anomaly class by
considering multiple unknown classes. It also extends it by applying
IL to incrementally add in a supervised manner the multiple new
classes that were detected. In [4], it is shown that although small
steps are taken in the direction of OWL, mainly with advances in
OSL, this is not sufficient and much remains to be done. Since then,
recent works on image applications [5, 30] have shown that most
recent ML methods are slowly gaining the ability to detect and
distinguish unknown classes.

Much of the work in Intrusion Detection and detection of new
classes has focused on OSL. In [7, 14, 19, 26], it is shown that using
OSL methods can lead to detection of unknown classes with a rate
ranging between 20% and sometimes up to 90%. However, these
approaches only consider a single anomaly class, and sometimes are
tested on relatively small datasets. Furthermore, they are always
tested by leaving out one attack of the dataset, which restricts
the distribution of unknown attacks to that of a single class. As
such, this is unclear if and how these methods would scale when
considering multiple different new classes, even if considering them
as a single anomaly class.

2.2 Contrastive Learning for ZDAs
CL appears to be a promising solution to detect ZDAs, but this is a
relatively new ML topic for cybersecurity, and research using CL
in Intrusion Detection is relatively scarce. In [34], it is shown that
using a contrastive loss alongside a more common cross-entropy
loss can achieve state-of-the-art results in Intrusion Detection. Un-
fortunately, the detection of new classes is not addressed. In [23],
CL is used to perform Intrusion Detection and new class detec-
tion, where it shows similar performance ranges to [7, 14, 19, 26].
Unfortunately, it also remains in the OSL setting.

An important component of CL that requires careful considera-
tion is how anchors, positives and negatives are chosen for training.
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This generally relies on methods that will refine the selection of
positives and negatives with regard to their respective anchor, to
select cases that will better contribute to learning. The supervised
contrastive loss in [17] allows to use multiple positives and multi-
ple negatives per anchor, and requires to have at least one of each.
Current approaches generally try to select hard negatives (the clos-
est negative) [16] or hard negatives and easy positives (the closest
positive) [33]. A method based on [33] will be used in this paper.

Finally, since CL is a self-supervised method, it is possible to
leverage labeled data and perform semi-supervised learning. While
semi-supervised learning can be framed as in [11] to reduce the
amount of labeled samples, it is also possible to consider semi-
supervised learning when there are classes that are present in the
data but are unlabeled. As such, the previously mentioned scenario
2 can be considered as an incremental semi-supervised learning
problem where new classes without labels are added to improve
detection of both known classes and ZDAs.

2.3 Regularization methods
In order to be able to generalize and detect new unknown classes,
it is also important to prevent the model from overfitting. Regular-
ization methods in Deep Learning (DL) are numerous [32], and are
generally effective to regularize for in-distribution (known classes)
samples. However, it is still unclear if they will be sufficient to
enable detection of unknown classes.

Multiple regularization methods are used with CL for applica-
tions on images [21], such as Cutout, mixup [35], CutMix, AugMix.
Excluding mixup, these methods are using operations specific to
images and are not applicable to Intrusion Detection data. However,
mixup has been shown to work in multiple application domains,
including tabular data [9, 20].

Additional methods such as VNE [18] regularization have shown
multiple benefits such as better generalization, learning represen-
tations of better quality or preventing representation collapse in
self-supervised learning. In the proposed approach, VNE will be
used, as well as Sepmix, a regularization inspired from mixup.

2.4 Datasets
In order to train and evaluate ML-based IDSs, labeled datasets
are required. Furthermore, it is important for these datasets to
closely resemble realistic traffic with sufficiently diverse cyberat-
tacks. KDD’99 [1] and NSL-KDD [31] are the twomost used datasets
[13]. However, these datasets, and particularly the former, are heav-
ily criticized because of their age and various other problems such
as redundancy [8].

The UNSW-NB15 [25] and CIC-IDS2017 [28] datasets are more
recent and based on quite complete environments. Both being more
recent datasets, it also ensures that the environment and simulated
traffic are more representative of nowadays’ real-world traffic.

It is also possible to use ICS (Industrial Control System) datasets
where cyberattacks are often more specific and normal traffic less
diverse. Because ICSs are now often connected through networks or
even the internet, security of ICSs is currentlymuchmore important
than it was a decade ago and it can be beneficial to include them
when testing ML-based IDSs. One such dataset is the WADI dataset
[2], which represents a water treatment plant.

Details of the three datasets used in this paper, UNSW-NB15,
CIC-IDS2017 and WADI, are available in Table 1.

3 PROPOSED APPROACH
The proposed approach consists of a CL algorithm to learn better
representations that will be used by a combination of a K-Means
and a K-Nearest Neighbors algorithm to cluster and assign a label to
these representations. The difficulty of the task in scenario 1 comes
from the fact that an unknown number of classes do not exist in
the training dataset, and they only appear during testing, as shown
in Figure 1. The goal is thus to, along with correctly classifying
known classes, detect all unknown classes and be able to classify
them. In scenario 2, this unknown number of classes is present in
the training dataset but is unlabeled.

During training, the proposed approach uses the supervised
contrastive loss to circumvent the need for data augmentation, a
memory bank to compensate for the high imbalance in the data,
Sepmix (a regularization method inspired from mixup) and VNE.
The contrastive model is composed of a Contrastive Encoder (CE)

Table 1: Datasets details

Dataset Number of instances per class Total

UNSW-NB15
Normal: 2218761, Generic: 215481, Exploits: 44525, Fuzzers: 24246,
DoS: 16353, Reconnaissance: 13987, Analysis: 2677, Backdoor: 2329,
Shellcode: 1511, Worms: 174

2540047

CIC-IDS2017

Benign: 2273097, DoS Hulk: 231073, Portscan: 158930, DDoS: 128027,
DoS GoldenEye: 10293, FTP-Patator: 7938, SSH-Patator: 5897,
DoS Slowloris: 5796, DoS Slowhttptest: 5499, Botnet: 1966,
Web Attack Brute Force: 1507, Web Attack XSS: 652, Infiltration: 36,
Web Attack SQL Injection: 21, Heartbleed: 11

2830743

WADI

Normal: 947347, Attack_3−4: 1742, Attack_10: 1620, Attack_1: 1502,
Attack_5: 852, Attack_6: 808, Attack_9: 700, Attack_8: 672,
Attack_7: 632, Attack_2: 592, Attack_13: 578, Attack_14: 204,
Attack_15: 89

957338
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Figure 1: Proposed approach with CL, Sepmix and VNE. The number of new classes is unknown during training.

and a projection head. During testing, this CE will output repre-
sentations that will be used by a combination of a K-Means and
K-Nearest Neighbors algorithms to detect and classify known and
unknown classes. An algorithm describing a single training step
of a batch (a group) of samples is shown in Algorithm 1, with all
three hyperparameters’ (𝜆, 𝛼𝑚𝑒𝑚 and 𝛼𝑉𝑁𝐸 ) values being found
using grid search. All components of the approach and their use in
Algorithm 1 will be more detailed in Section 3.1, and Section 3.2.

SECL, the approach proposed in this paper, will be tested on
both scenario 1 and 2.

3.1 Contrastive Learning
The performance of CL is directly related to how data is augmented
to create positives. Manual methods would require finding values
or ranges of values where semantic information is retained for each
feature. Furthermore, this would also differ for different datasets,
and need to be changed every time data changes or the IDS is
retrained, which makes such approach unusable in practice. On the
other hand, the supervised contrastive loss as introduced in [17]
allows to define positives and negatives without introducing bias
and will adapt as data changes. With regard to an anchor, positives
are samples of the same class while negatives are samples of other
classes.

This supervised contrastive lossL𝑠𝑢𝑝𝑐𝑜𝑛 is shown in Eq. 1, where
𝑖 ∈ 𝐼 ≡ {1...𝑁 } is the index of a sample in a batch of size 𝑁 and
represents the chosen anchor, 𝑦𝑖 is the label of sample 𝑖 . With F
representing the CE and𝑔 being the projection head,ℎ𝑖 = F (𝑥𝑖 ) are
the representations, with 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑁 } the representation
matrix, and 𝑧𝑖 = 𝑔(ℎ𝑖 ) the outputs of the model. 𝐴(𝑖) ≡ 𝐼 \ {𝑖},
and 𝑃 (𝑖) ≡ {𝑝 ∈ 𝐴(𝑖) : 𝑦𝑝 = 𝑦𝑖 } represents the set of positives
(samples of the same class). 𝑧𝑝 thus represent positives with regard
to 𝑧𝑖 and 𝑧𝑎 are all outputs excluding 𝑧𝑖 . Finally, 𝜏 is a temperature
hyperparameter. The goal of this loss is to penalize when negative
samples are closer to an anchor than positive samples.

Algorithm 1: A training step (for a single batch)
Data: X, y the data and labels from a batch,
F the Contrastive Encoder,
g the projection head,
𝜆 the hyperparameter for Sepmix,
𝛼𝑚𝑒𝑚 the hyperparameter for the memory bank,
𝛼𝑉𝑁𝐸 the hyperparameter for VNE

/* Compute the representation matrix */

𝐻 ← F (𝑋 )
/* If memory is full, it is updated following

the method described in Section 3.1 */

𝑚𝑒𝑚𝑜𝑟𝑦 ← save to memory bank(H, 𝛼𝑚𝑒𝑚)

/* Mixed representations are computed using the
memory and batch representations and using
the 𝜆 hyperparameter, as described in Eq. 4 */

𝑚𝑖𝑥𝑒𝑑_𝐻,𝑚𝑖𝑥𝑒𝑑_𝑦 ← get mixed samples(H,𝑚𝑒𝑚𝑜𝑟𝑦, 𝜆)

/* Get positives and negatives used for loss

computation */
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 ←get positives and negatives(H,
y, mixed_H, mixed_y)

/* The loss is computed using the projection of
representations, positives and negatives of
each sample, as in Eq. 5 */

𝑙𝑜𝑠𝑠 ← L𝑠𝑢𝑝𝑐𝑜𝑛(g(H), g(positives), g(negatives))

/* VNE is computed as in Eq. 2 added to the loss,

as in Eq. 6 */

L𝑆𝐸𝐶𝐿 ← 𝑙𝑜𝑠𝑠 − 𝛼 L𝑉𝑁𝐸(g(H))

/* Update F and g */

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (L𝑆𝐸𝐶𝐿)
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L𝑠𝑢𝑝𝑐𝑜𝑛 =
∑︁
𝑖∈𝐼

−1
|𝑃 (𝑖) |

∑︁
𝑝∈𝑃 (𝑖 )

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑧𝑖 · 𝑧𝑝/𝜏)∑︁

𝑎∈𝐴(𝑖 )
𝑒𝑥𝑝 (𝑧𝑖 · 𝑧𝑎/𝜏)

(1)

While this loss presents some desirable properties, e.g., gener-
alization to an arbitrary number of positives, higher gradients for
hard positives and negatives, it also gains some of the undesirable
properties of supervised methods, such as the tendency to overfit.

As any contrastive loss, this loss relies on the definition of pos-
itives and negatives. Anchors will be selected from the training
batch while the sets of positives and negatives will be selected from
the samples created through Sepmix (Sepmix will be detailed in
Section 3.2). In this way, the positives will generally be further away
from the anchor, while negatives will often be closer to the anchor.
This allows to further reduce intra-class difference and increase
inter-class difference, which is necessary to properly differentiate
new attacks from normal traffic.

To train DL methods, data goes through NNs as batches of mul-
tiple samples. CL approaches are very dependent on the size of
batches, this influences the number of positives and negatives that
can be used for computation. Batches are generally very big to
increase diversity of samples for each class within a single batch.
Unfortunately, the proportion of attack traffic is relatively low in
Intrusion Detection datasets, which leads to batches often having a
single sample or none at all of a specific attack. In these cases, the
attack does not contribute to the loss and is much more difficult
to learn because there are no positives within the same batch. In-
creasing the size of batches can quickly become impossible because
of resources constraints. Therefore, a solution is to use a memory
bank of samples that retains part of the samples of each class, as in
[12, 24]. However, using memory in this way is not trivial, because
the memory saves representations (outputs of the CE). Therefore,
memory needs to be updated frequently to reflect the changes in
the CE brought by the learning process. Unfortunately, updating
memory also cannot be too frequent, because this, along with other
regularization methods, can make training more unstable. While ad-
vanced methods such as described in [12] are possible, this requires
training of an additional encoder and is both slower and much
more complex to train. Such an approach would possibly interfere
with other regularization methods and make training much more
unstable. Therefore, it has been chosen to use a simpler method for
a more stable training process: update the memory with probability
0.1 for each class, once memory is full. Memory is filled until a
sufficient number 𝑁 of samples of each class is in the memory bank.
Experiments performed led to 𝑁 = 20 to ensure stability of the
training process.

During training, a projection head (a simple linear layer) is used
to project the representations into a layer that has a neuron per
known class, similarly to common DL algorithms. It is conjectured
in [6] that using a contrastive loss induces a loss of information. As
such, using a projection head allows for the information to be lost
mainly in the projection head, thus creating richer representations
before projection.

During testing, this projection head is removed and replaced by a
combination of a K-Means and a K-Nearest Neighbors algorithm to
detect and classify an unknown number of classes. While a K-Means

algorithm alone is able to detect and classify by assigning labels
with the computed clusters, the addition of K-Nearest Neighbors
allows to assign labels by determining the labels of samples closest
to cluster centers. K-Means will cluster similar representations
together, and K-Nearest Neighbors will be used to assign a label to
each cluster via a majority vote.

3.2 Regularization methods
While the proposed approach without regularization reaches perfor-
mance similar to supervised methods on known classes, it remains
largely unable to detect and possibly classify unknown attacks,
hence the need for regularization. One of the main reasons is that
normal traffic being much more prevalent and its distribution of-
ten overlapping with the distribution of other classes, any ML ap-
proach tends to overfit on known attacks and defaults to identifying
anything unknown as normal traffic. This will be mitigated using
Sepmix, as described later in this section. Furthermore, learned
representations tend to be of insufficient quality to properly dif-
ferentiate unknown classes from known classes. Both dropout and
VNE will be used to increase the quality of learned representation
by making the use of neurons inside the NN more balanced.

A commonly used regularization method to train NNs is the
mechanism of dropout [29]. This randomly zeroes-out different
neurons in NNs at each step of the training process which reduces
co-adaptation of neurons, i.e., the fact that neurons are activated by
the same information. For CL, this essentially reduces the risk of
representation collapse as well as improves the quality of all inter-
mediate representations. In the proposed approach, as is often used
in the literature, a dropout of 0.2 has shown the best performance.

VNE has been used in [18] and shows a high effectiveness in
enforcing the use of all neurons in a NN, especially in the last layer,
thus improving generalization. This effectively forces the CE to
learn representations of higher quality that will be able to better
differentiate unknown from known classes. Otherwise, unknown
classes sometimes collapse into a single known class: normal traffic.
In order to compute VNE, there are two steps involved. First, the au-
tocorrelation C𝑎𝑢𝑡𝑜 of the representation matrix𝑍 = {𝑧1, 𝑧2, ..., 𝑧𝑁 },
with 𝑧𝑖 being the representation of 𝑥𝑖 through CE and the projec-
tion head, is computed. Then, with 𝜆𝑖 being the 𝑖-th eigenvalue of
C𝑎𝑢𝑡𝑜 , the VNE loss is computed as in Eq. 2.

C𝑎𝑢𝑡𝑜 = 𝑍𝑇𝑍/𝑁

L𝑉𝑁𝐸 = −
∑︁
𝑗

𝜆 𝑗 𝑙𝑜𝑔 𝜆 𝑗
(2)

To reduce overfitting of CL approaches, Sepmix, that is inspired
from mixup is used. Mixup [35] is a method that helps in having a
more linear behaviour in the space between different classes. Origi-
nally, mixup creates new representations, as well as new targets,
as shown in Eq. 3, by selecting randomly two indices 𝑖 and 𝑗 , with
𝜆 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛼) being sampled for each pair of indices, with 𝐵𝑒𝑡𝑎

being the Beta distribution and 𝛼 ∈ [0,∞] being a hyperparameter.

𝑥 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥 𝑗
𝑦 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦 𝑗

(3)
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While mixup encourages the NN model to behave linearly be-
tween samples and can improve generalization, this is not the rea-
son it is used here. The goal here is to better separate different
classes, and especially normal traffic from different attack classes.
As such, mixup is repurposed into Sepmix as shown in Eq. 4, where
𝑖 is the index of a randomly selected sample, and 𝑐 is the closest
sample that is of a different class. 𝜆 ∈ [0, 1] is also fixed instead
of being sampled from a 𝐵𝑒𝑡𝑎 distribution and becomes a hyper-
parameter. The goal is thus to bring closer to 𝑥 any sample 𝑥 𝑗 if
𝑦 𝑗 = 𝑦𝑖 and push further away any sample 𝑥𝑘 if 𝑦𝑘 ≠ 𝑦𝑖 .

𝑥 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑐
𝑦 = 𝑦𝑖

(4)

Sepmix essentially creates virtual samples between classes that
will be used in the supervised contrastive loss to make representa-
tions more compact. As a consequence, this also allows to artificially
increase the distance between samples of different classes, espe-
cially in the case of normal traffic that often overlaps with all other
classes. In the case of scenario 2 where unidentified attacks exist
in the training data but are unlabeled, they can be used as the
closest sample with Sepmix to improve performance and gener-
alization. Therefore, Sepmix allows to leverage unlabeled data to
both make known classes more compact, and better separate them
from unknown classes.

The supervised contrastive loss then uses the newmixed samples
to represent positives and negatives. This new loss is shown in Eq. 5,
where 𝑖 ∈ 𝐼 ≡ {1...𝑁 } is the index of a sample in a batch of size 𝑁
and represents the chosen anchor,𝑚𝐼 represents the batch of newly
created mixed samples, 𝑚𝑃 (𝑖) ≡ {𝑝 ∈ 𝑚𝐼 : 𝑦𝑝 = 𝑦𝑖 } represents
the set of mixed positives. 𝑧𝑖 is defined analogously to Eq. 1, while
𝑧𝑝 are all mixed positives with regard to 𝑧𝑖 and 𝑧𝑎 are all mixed
samples excluding 𝑧𝑖 .

L𝑚𝑠𝑢𝑝𝑐𝑜𝑛 =
∑︁
𝑖∈𝐼

−1
|𝑚𝑃 (𝑖) |

∑︁
𝑝∈𝑚𝑃 (𝑖 )

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑧𝑖 · 𝑧𝑝/𝜏)∑︁

𝑎∈𝑚𝐼

𝑒𝑥𝑝 (𝑧𝑖 · 𝑧𝑎/𝜏)
(5)

Finally, adding VNE to the loss shown in Eq. 5, the complete
loss formulation is shown in Eq. 6, with 𝛼 influencing the impact
of L𝑉𝑁𝐸 . If 𝛼 > 0, this forces the method to increase the rank of
𝑍 (this increases independence of the different 𝑧𝑖 ). Practically, this
reduces the number of neurons in CE that will be equal to 0, which
leads to representations of higher quality.

L𝑆𝐸𝐶𝐿 = L𝑚𝑠𝑢𝑝𝑐𝑜𝑛 − 𝛼L𝑉𝑁𝐸 (6)

4 EXPERIMENTAL SETUP
4.1 Working Environment
All experiments were performed on a Linux machine with 64Gb
RAM, an 8 core AMD Ryzen 9 5900HX CPU and a NVIDIA 3080
GPU.

All models were run using Python 3.11, PyTorch2 2.2.0, PyTorch
Lightning3 2.1.4 and PyTorch Metric Learning4 2.4.1. All implemen-
tations and instructions to reproduce experiments will be available
on GitLab5 before publication.

4.2 Dataset Pre-processing
All datasets were split using a stratified scheme into 70% train (60%
train and 10% validation) and 30% test sets.

For the WADI dataset, features such as Row number, date and
timestampswere removed. Four features (2_LS_001_AL, 2_LS_002_
AL, 2_P_001_STATUS, 2_P_002_STATUS) were removed because they
do not have any values. Attack labels were attributed using the
recorded beginning and end times of the attacks. Finally, features
having a small number of unique values (including most features
regarding motor valves, generally named X_MV_XXX_STATUS, with
X being a number) were one-hot encoded. The resulting dataset has
124 features.

For the UNSW-NB15 dataset, features such as IP addresses, times-
tamps, attack_cat were removed, while categorical features or
features having a small number of unique values, were one-hot
encoded. The resulting dataset has 229 features.

For the CIC-IDS2017 dataset, two features and 5792 instances
were removed because of problematic or missing values. A further
eight features were removed because they only had one value. The
resulting dataset has 70 features.

4.3 Unknown classes setup
In order to simulate new unknown classes and still retain the ability
to easily evaluate the performance of the tested approaches, the
easiest method is to simulate unknown classes by removing them
from the train sets. For the scenario 1, the unknown classes were
completely removed from the train sets. For the scenario 2, un-
known classes data was kept but labels were removed by assigning
the label −1. During training, all samples with a label of −1 can
only be mixed with other samples that possess a correct label by
using Sepmix.

4.4 Evaluation methodology
To evaluate the performance of the proposed approach in both
scenarios, results were averaged on two runs with different initial-
izations of the three datasets, i.e., different classes were randomly
selected to be removed. In order to keep a sufficient number of
classes for training, only up to a third of the attack classes were
removed: 5 for WADI and CIC-IDS2017, and 3 for UNSW-NB15.
This is a big difference compared to OSL approaches that limit
themselves to leaving out a single class from the dataset, which
makes it unclear if their approach would be able to detect multiple
ZDAs, even without distinguishing them.

In both scenarios, the proposed approach was compared to a
supervised baseline. This is a NN using a cross-entropy loss with
the same architecture as CE in the proposed approach (without the
projection head) trained knowing all classes (even those unknown

2https://pytorch.org/
3https://www.pytorchlightning.ai/
4https://github.com/KevinMusgrave/pytorch-metric-learning
5https://gitlab.com/RobinKD/secl

https://pytorch.org/
https://www.pytorchlightning.ai/
https://github.com/KevinMusgrave/pytorch-metric-learning
https://gitlab.com/RobinKD/secl
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for SECL). The comparison to this supervised baseline gives an upper
bound to the performance that the approach has to get close to.

Metrics used to evaluate performance are the same as what is
generally used in multi-class supervised learning. Accuracy will
be used to give a general idea of the performance. F1-score is also
chosen because it relays information about two metrics important
in Intrusion Detection: the Detection Rate (or Recall) and the False
Alarm Rate (the opposite of Precision). Therefore, the higher the
F1-score, the higher the Detection Rate and the lower the False
Alarm Rate. Results given for F1-scores will be micro-averaged, i.e.,
averaged while taking into account class proportions.

4.5 Hyperparameter tuning
Multiple hyperparameters are used in SECL and need to be adjusted
for optimal performance. In this case, there are six hyperparame-
ters that have the biggest impact on performance and need to be
carefully selected:
• The contrastive loss temperature. Varying this hyperparam-
eter will have an impact on the loss, artificially increasing
or decreasing it, thus also impacting computed gradients in
the same way. The lower the temperature, the higher the
loss, and the more representations will be pushed together
in the case of positives and pushed apart in the case of neg-
atives. Experiments showed that a temperature around 0.1
was optimal.
• The architecture of the CE. It needs to be complex enough to
learn rich representations, while not being too complex that
training becomes too unstable. The problem of instability is
further amplified by regularization mechanisms and thus the
architecture has to be chosen carefully. Experiments showed
that a five-layered network (512, 1024, 2048, 4096, 2048), with
dropout layers and ReLU non-linearities between each layer
produced rich enough representations with enough stability
to train successfully.
• The 𝜆 used for Sepmix. The selected 𝜆 influences how close
the mixed sample is to the original sample: the higher the
𝜆, the closer it is. Experiments showed that 𝜆 lower than 0.5
tends to impede learning because mixed samples are too far
from the original sample and the training process becomes
too complex. Values ranging between 0.6 and 0.9 have a
similar impact, depending on the chosen 𝛼 for VNE.
• The 𝛼 used for VNE. Both positive and negatives values are
possible, but only positive values force the CE to learn richer
representations. Values ranging between 0.1 and 0.3 tend to
have a similar impact, depending on the chosen 𝜆.
• Both K for K-Means and K-Nearest Neighbors. Experiments
showed that fixing K-Nearest Neighbors’ K to a small number,
e.g., 5 allowed to reduce the impact of normal traffic’s high
prevalence. For K-Means, the K value can be obtained using
the elbow method.

When using a lower value for Sepmix 𝜆, e.g., 0.6, this will increase
the effect of regularization and VNE’s 𝛼 is best chosen smaller, e.g.,
0.1. The opposite is also true.

The hyperparameter values used for experiments shown in Sec-
tion 5 are: 0.1 for temperature, (512, 1024, 2048, 4096, 2048) for
the CE architecture, 0.75 for 𝜆, 0.3 for 𝛼 , 5 for the K of K-Nearest

Table 2: Accuracy of baselines on all datasets

Dataset
Baseline

Dummy Supervised

WADI 0.9895 0.9994

UNSW-NB15 0.8735 0.9882

CIC-IDS2017 0.8030 0.9955

Values were rounded to the fourth decimal

Neighbors and the K for K-Means has been obtained with the elbow
method.

5 RESULTS
First, in order to properly evaluate the performance of the proposed
approaches, the supervised baseline trained knowing all classes need
to be evaluated. Additionally, a Dummy baseline (only predicting as
normal traffic) has been added to show prevalence of normal traffic.
Any method should at least be able to improve over this Dummy
baseline. Results obtained are shown in Table 2.

It can be seen from the Dummy baseline that normal traffic
is highly prevalent, especially for the WADI dataset. Although
detrimental to performance and evaluation, this high imbalance is
a fundamental characteristic of Intrusion Detection problems and
should be expected from IDS datasets to properly represent realistic
traffic.

For the proposed approach, SECL, the performance depends on
the scenario, as well as the number of classes that were removed
or unlabeled for training. Table 3 shows the performance of SECL
on all combinations of datasets and scenarios with regard to the
number of classes that were removed or unlabeled for training. The
first observation is that performance of SECL is better in scenario 2
compared to scenario 1 for all datasets. This means that SECL is able
to leverage the unlabeled data through Sepmix to better differentiate
known attacks and normal traffic from unknown attacks.

A second result is that SECL’s accuracy remains mostly stable
and tends to only slightly degrade as the number of unknown
attacks increases across all datasets, although this decrease appears
to generally be lower in scenario 2. Nevertheless, this reduction is
somewhat unsurprising because the fewer the classes, the lower
the quality of the learned representations will be.

In order to better compare the proposed approach with both
baselines, more detailed results are presented in Section 5.1 and
Section 5.2 using F1-score that takes into account both Precision
and Recall.

5.1 Scenario 1
As a reminder, the scenario 1 is the scenario in which new attacks
are completely unknown, and thus are not in the training dataset.
Therefore, results in this Section show the ability of SECL to detect
multiple ZDAs after an initial training using a supervised dataset.
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Figure 2: F1-score of SECL against the supervised baseline in scenario 1 on WADI, UNSW-NB15 and CIC-IDS2017, depending on
the number of unknown classes

In order to get a better picture of the actual performance and
ability to generalize of SECL, F1-score of SECL and the supervised
baseline on the attacks unknown to SECL are shown in Figure 2.

From Figure 2a and Figure 2c, it is shown that while SECL is
able to detect part of the new attacks consistently, although not
at the level of a fully supervised model. In Figure 2b, SECL almost
completely missed unknown attacks when 1 attack was removed.
This might partly be a bias induced by the fact that particularly
hard to detect classes were removed, as exemplified by the lower
F1-score of the supervised baseline.

From Table 4, it is visible that considering both known classes
and unknown attacks, SECL is consistently close to the supervised
baseline, and sometimes even better for WADI.

SECL is consistently able to detect ZDAs, except in cases where
the supervised baseline also struggles in detecting attacks it learned.
Furthermore, it can even be better at detecting known attacks than
a supervised model that is trained knowing all classes. Although
most important to detect ZDAs, regularization can also impact and

improve detection of known classes, especially when these classes
have outliers.

Finally, it seems that the performance might decrease as the
number of unknown attacks increases, although this is less apparent
on UNSW-NB15 and CIC-IDS2017. While SECL might indeed be
less effective in detecting new attacks when their number increases,
another possibility is that removing new attacks completely from
the datasets makes the training datasets less diverse, and thus SECL
learns lower quality representations. Using realistic data with a
much higher number of classes might not lead to this decrease in
performance.

5.2 Scenario 2
As a reminder, the scenario 2 is the scenario in which new attacks
are present in the training dataset, but are unlabeled. This scenario
shows how an IDS initially trained with a supervised dataset would
be able to incrementally learn using unlabeled data, collected while
in operation, to better detect both known classes and ZDAs. While

Table 3: Accuracy of SECL for both scenarios on all datasets, depending on the number of unknown classes

Dataset Scenario
Number of unknown classes

1 2 3 4 5

WADI
Scenario 1 0.9988 0.9990 0.9978 0.9964 0.9955

Scenario 2 0.9995 0.9993 0.9994 0.9991 0.9987

UNSW-NB15
Scenario 1 0.9855 0.9843 0.9803 X X

Scenario 2 0.9866 0.9855 0.9859 X X

CIC-IDS2017
Scenario 1 0.9949 0.9769 0.9877 0.9805 0.9835

Scenario 2 0.9955 0.9949 0.9910 0.9938 0.9935

Values were rounded to the fourth decimal. Experiments stopped at three classes for UNSW-NB15.
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Figure 3: F1-score of SECL against the supervised baseline in scenario 2 on WADI, UNSW-NB15 and CIC-IDS2017, depending on
the number of unknown classes

this is harder to learn on these attacks than by relying on labels, it
allows to leverage their data through Sepmix to potentially learn
to differentiate them without the need to identify them. If a sample
from a known class and a sample from a ZDA are used by Sepmix
to create a virtual sample, all other than this known class will try
to move away from the virtual sample, thus improving detection of
ZDAs without actually needing to identify them. Detection of ZDAs
depending on the number of unknown classes during training are
shown in Figure 3.

From Figure 3a, it is shown that SECL is almost always better at
detecting unknown attacks that the supervised baseline that was
trained knowing the labels. In Figure 3c, SECL also seems quite
effective at detecting unknown attacks, although results are below
or close to the supervised baseline.

Table 5 shows that SECL is consistently better than the super-
vised baseline for WADI, and quite close for the other two datasets.
This means that being able to leverage unknown attacks during
training, even without labels, allows to learn representations of

much higher quality and increases the ability of the approach to
generalize and detect ZDAs.

A conjecture about why SECL is able to better detect both known
and unknown attacks on WADI than a supervised method is that
SECL overfits less and is thus more robust to outliers. Because the
WADI dataset resembles time-series, traffic at the beginning of an
attack is much closer to normal traffic than when the attack has
completely impacted the system. As such, if a supervised method
is unable to learn from the beginning of the attack, it will generally
miss it because of overfitting. SECL, however, will still be able to
distinguish the beginning of attacks because they are simulated
through Sepmix which can mix normal traffic and attack traffic.
Dropout and VNE further help in reducing overfitting.

Finally, results obtained by SECL on all classes show that the
performance seems even more stable as the number of unlabeled
attacks increases than it was in scenario 1. This is a very promising
result, because this means that SECL might be able to leverage a

Table 4: F1-score of SECL and the supervised baseline for scenario 1 on all datasets, depending on the number of unknown classes

Dataset Model
Number of unknown classes

1 2 3 4 5

WADI
Baseline 0.9974 0.9974 0.9974 0.9974 0.9974

SECL 0.9985 0.9987 0.9971 0.9950 0.9941

UNSW-NB15
Baseline 0.9874 0.9874 0.9874 X X

SECL 0.9840 0.9824 0.9784 X X

CIC-IDS2017
Baseline 0.9950 0.9950 0.9950 0.9950 0.9950

SECL 0.9943 0.9749 0.9869 0.9800 0.9825

Values were rounded to the fourth decimal. Experiments stopped at three classes for UNSW-NB15.
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very high number of unlabeled classes to further enrich the learned
representations and better detect both known classes and ZDAs.

5.3 Ablation study of the regularization method
To determine the influence of each component of the new regular-
ization method combining dropout, VNE and Sepmix, experiments
were run removing either one of the three components.

Table 6: F1-score of SECL, removing different components of
the regularization method.

Ablation
Attacks

Unknown All

No VNE 0.7877 0.7793

No Sepmix 0.8968 0.7867

No dropout 0.9452 0.8227

SECL 0.9906 0.9083

Values were rounded to the fourth decimal

Table 6 shows results on detection of ZDAs on WADI with three
classes unlabeled in the training set (scenario 2). It can clearly
be seen that removing any component of the new regularization
method greatly decreases performance, be it for detection of ZDAs
or for all attacks.

All three components seem to have a very big impact on the
F1-score for detecting both unknown attacks and all classes. Of the
three components, dropout seems to have the lowest impact. This
is expected because it is known to help regularizing in-distribution
samples. While it also seems to help in detecting ZDAs, its effect
is more limited than both Sepmix and VNE. Although Sepmix and
VNE seem to have a similar impact on all classes, Sepmix seems to
have less impact on detecting ZDAs than VNE. An hypothesis is
that increasing the quality of the learned representations have more

effect than actually making classes more compact and further apart.
While Sepmix allows to both make known classes more compact
and separate them from ZDAs, this does not actually increase the
quality of the representations. On the opposite, VNE that explicity
forces SECL to learn richer representations has a much higher
impact on detecting ZDAs.

6 CONCLUSION AND FUTUREWORK
Contrary to state-of-the-art Intrusion Detection Systems based on
Open-Set Learning that are able to only deject a single unknown
class, this paper introduced SECL, a method designed to detect and
classify Zero-Day attacks using Contrastive Learning and a new
regularization method that combines dropout, Sepmix, and VNE.
All three components are differently but conjointly helping SECL
to better detect ZDAs while retaining a performance on known
classes similar to supervised methods.

Two scenarios were considered: unknown attacks are completely
absent during training, and unknown attacks are present in the
training data, but were never identified, and thus are unlabeled.
Results on scenario 1 show that the proposed approach is quite
consistently able to detect unknown attacks, even as their number
increases. For scenario 2, the proposed approach is able to leverage
unlabeled attacks during training and is consistently close to, if not
even better, in performance, than a fully supervised method trained
knowing all classes.

Furthermore, results obtained by SECL on scenario 2 suggest that
SECL might be able to incrementally learn using a high number of
unlabeled classes to further increase performance in detecting both
known attacks and ZDAs. Therefore, SECL provides a first step
towards building next-generation IDSs, able to detect both known
and Zero-Day attacks by relying on the ever-increasing volume of
traffic to incrementally train.

As future work, three main improvements are considered. First,
the proposed setup leverages a combination of K-Means and K-
Nearest Neighbors algorithms during testing, which is computa-
tionally slower than inference in Deep Learningmethods. A possible
extension would be to perform clustering through the Contrastive
Encoder, as shown in [22]. Secondly, the proposed approach would

Table 5: F1-score of SECL and the supervised baseline for scenario 2 on all datasets, depending on the number of unknown classes

Dataset Model
Number of unknown classes

1 2 3 4 5

WADI
Baseline 0.9974 0.9974 0.9974 0.9974 0.9974

SECL 0.9994 0.9992 0.9992 0.9989 0.9984

UNSW-NB15
Baseline 0.9874 0.9874 0.9874 X X

SECL 0.9852 0.9838 0.9845 X X

CIC-IDS2017
Baseline 0.9950 0.9950 0.9950 0.9950 0.9950

SECL 0.9947 0.9944 0.9905 0.9930 0.9927

Values were rounded to the fourth decimal. Experiments stopped at three classes for UNSW-NB15.
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be closer to real-world adoption once Incremental Learning is added,
in order to more easily integrate newly identified attacks. Finally, it
would be interesting to see if integrating additional cybersecurity
knowledge into the training process, for example, with CVSS scores,
would help in better detecting and recognizing known attacks and
ZDAs that are more severe for the monitored environment.
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