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DA + ML + UQ: a quick overview1

Context:

rapidly growing field of research

still lot of developments to do

1Cheng et al., Machine Learning with Data Assimilation and Uncertainty
Quantification for Dynamical Systems: a Review,
IEEE/CAA Journal of Automatica Sinica, 2023
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DA + ML + UQ: a quick overview

Data assimilation formulation:

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Machine learning appears everywhere:

state x and observations y

operators M and H
errors η and ϵ

inversion of the system p(x|y)
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

State of the system (x):

reduced-order modeling (principal components, VAE)
state augmentation (parameters, latent variables)

Source: Cheng et al. 2023, IEEE/CAA Journal of Automatica Sinica
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Dynamical operator (M):

surrogate models (AI, RNN, analogs, AR1 processes)

hybrid models (GCM core + ML parameterization)

Source: Kochkov et al. 2024, Nature
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Model and observation errors (η and ϵ):

innovation statistics, inflation methods, statistical approaches, NN

joint estimation of error covariances Q and R

Source: Tandeo et al. 2020, Monthly Weather Review
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Observation operator (H):

emulation of transfer functions using ML (e.g., radiative)

estimation of representativity error

Source: Janjić et al. 2018, QJRMS
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Noisy and partial observations (y):

aggregation, fusion, and data exclusion

optimal sampling of the observations

Source: Marcille et al. 2023, Wind Energy Science
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DA + ML + UQ: a quick overview

x(t + dt)= M (x(t),η(t))

y(t)= H (x(t), ϵ(t))

Full system resolution p(x|y):
optimization problem (link between 4D-Var and NN)

probabilistic ML using Bayesian approaches

Source: Cheng et al. 2023, IEEE/CAA Journal of Automatica Sinica
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A simple combination of DA + ML + UQ1

General framework:

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Proposed framework:

x(t + 1) = Mx(t) +Q
1/2η(t)

y(t) = Hx(t) + R
1/2ϵ(t)

Assumptions:

linear model and observation operators

Gaussian state, observations, and error terms

constant operators and error covariances

1Tandeo et al., Data-driven Reconstruction of Partially Observed Dynamical
Systems, Nonlinear Processes in Geophysics, 2023
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A simple combination of DA + ML + UQ1

General framework:

x(t + dt) = M (x(t),η(t))

y(t) = H (x(t), ϵ(t))

Proposed framework:

x(t + 1) = Mx(t) +Q
1/2η(t)

y(t) = Hx(t) + R
1/2ϵ(t)

Goal:

make probabilistic forecasts

purely data-driven approach

interpretation of the retrieved model

1Tandeo et al., Data-driven Reconstruction of Partially Observed Dynamical
Systems, Nonlinear Processes in Geophysics, 2023
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Classic approach: Kalman + EM

State-space model:
Estimate x(0), . . . , x(T )

Variables and matrices:
x = [x1, x2]
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Classic approach: Kalman + EM

State-space model:
x(t + 1) = Mx(t)

Variables and matrices:

M =

[
. .
. .

]
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Classic approach: Kalman + EM

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)

Variables and matrices:

η(t) ∼ N (0, I), Q =

[
. .
. .

]
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Classic approach: Kalman + EM

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t)

Variables and matrices:

y = [y1, y2], H =

[
1 0
0 1

]
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Classic approach: Kalman + EM

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t) + R1/2ϵ(t)

Variables and matrices:

ϵ(t) ∼ N (0, I), R =

[
. .
. .

]
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Classic approach: Kalman + EM

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t) + R1/2ϵ(t)
⇒ Kalman smoother

Variables and matrices:
M̂, Q̂, R̂ = argmax

M,Q,R
L (y)

⇒ EM algorithm
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The Expectation-Maximization algorithm1

Initialization: M, Q, R

Expectation (DA step):

fix M, Q, R

estimation of xs0:T and Ps
0:T

⇒ Kalman smoother

Maximization (ML step):

fix xs0:T and Ps
0:T

estimation of M, Q, R

⇒ analytic solution

Repeat E- and M-steps until convergence of L (y)

1Shumway and Stoffer, An approach to time series smoothing and forecasting
using the EM algorithm, Journal of Time Series Analysis, 1982
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The innovation likelihood L (y)

L (y) =
T∏
t=0

N
(
0; y(t)−Hxf (t),HPf (t)H⊤ + R

)

Graphical representation of the innovation likelihood:

L (y) depends on M,Q,R:

xf (t) = Mxa(t − 1) → forecast precision

Pf (t) = MPa(t − 1)M⊤ +Q → forecast reliability

R → observation error
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Proposed approach: Kalman + EM + augmented state

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t) + R1/2ϵ(t)

H =

[
1 0 0
0 1 0

]
Variables and matrices:
Augmented state x = [x1, x2, z1]
M and Q are 3× 3
R is 2× 2
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Proposed approach: Kalman + EM + augmented state

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t) + R1/2ϵ(t)

H =

[
1 0 0
0 1 0

]
Variables and matrices:
Estimate M̂, Q̂, R̂
Estimate z1(0), . . . , z1(T )
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Proposed approach: Kalman + EM + augmented state

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t) + R1/2ϵ(t)

H =

[
1 0 0 0
0 1 0 0

]
Variables and matrices:
New state x = [x1, x2, z1, z2]
M and Q are 4× 4
R is 2× 2
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Proposed approach: Kalman + EM + augmented state

State-space model:

x(t + 1) = Mx(t) +Q1/2η(t)
y(t) = Hx(t) + R1/2ϵ(t)

H =

[
1 0 0 0
0 1 0 0

]
Variables and matrices:
Estimate M̂, Q̂, R̂
Estimate z2(0), . . . , z2(T )
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Main scientific questions

Latent variables:

how many are needed?

what is there meaning?

why do we need them?

Quality of the forecasts:

are they precise?

are they reliable?

how they compare?
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Application to Lorenz-63: formulation and OSSE

Observations, state, and latent variables:

y = [y2, y3] → partial observations of the system

x = [x2, x3, z] → augmented state with latent variables z

z = [z1, . . . , zk ] → latent variables

OSSE:

dt = 0.001 → observation sampling

Var(ϵ) = 1 → observation error variance
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Estimation of M̂, Q̂, R̂ and z1, . . . , zk using training data

Time series are divided in three parts:
- train, test, and validation datasets
- EM algorithm is applied to the training data
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Estimation and meaning of the latent variables

Estimation of z1 and z2:

Meaning of z1:
z1 = a2ẋ2 + a3ẋ3

Meaning of z2:

z2 = b1ż1 + b2ẋ2 + b3ẋ3

= b2ẋ2 + b3ẋ3 + b1a2ẍ2 + b1a3ẍ3

⇒ latent variables take into account time delays of x2 and x3
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Number of latent variables to retain

Different models are tested:
- from x = [x2, x3, z1]
- to x = [x2, x3, z1, . . . , z20]

28 / 36



Number of latent variables to retain

Optimal model in terms of likelihood:
- with x = [x2, x3, z1, . . . , z6]
- six latent variables are necessary
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Probabilistic forecasts using testing data

Recursive predictions, starting from an initial time t:

E[xt+1|y1, . . . , yt ] = ME[xt |y1, . . . , yt ]
Cov[xt+1|y1, . . . , yt ] = MCov[xt |y1, . . . , yt ]M⊤ +Q
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Example of probabilistic forecasts (data- VS model-driven)
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Performance metrics (data- VS model-driven)
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Performance metrics (data- VS model-driven)
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Conclusions and perspectives

Context:

pure data-driven predictions (i.e., without physical equations)

missing components of the system (e.g., x1 of Lorenz-63)

simple assumptions (linearity, Gaussianity, constant operators)
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Conclusions and perspectives

Key messages:

fruitful combination of DA + ML
inference of latent variables (interesting physical meaning)
precise and reliable probabilistic forecasts

Source: Brajard et al. 2020, Journal of Computational Science
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Conclusions and perspectives

Perspectives:

application to climate indices (e.g., ENSO, AMO, NAO, etc.)

application to high-dimensional data

learn time-dependent M(t) and Q(t) operators
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ありがとうございます (arigatō gozaimasu)!

Interested in this topic? Collaborations are welcome!

Contact:

pierre.tandeo@imt-atlantique.fr

www.tandeo.wordpress.com

Figure: Nice places to visit near Brest, Bretagne, France
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Meaning of z1

Meaning of z1:

revealed by symbolic regression

between z1 and usual transformations of x2 and x3

z1 x2 x3 x2x3 x22 x23
√
x2

√
x3 . . . ẋ2 ẋ3



Link between latent variables and x1

Expression of z1:

z1 = a2ẋ2 + a3ẋ3

Lorenz-63 system:

ẋ2 = x1 (ρ− x3)− x2

ẋ3 = x1x2 − βx3

Approximation of x1:

x̂1 =
z1 + a2x2 + a3βx3
a2ρ− a2x3 + a3x2

⇒ x1 is partially retrieved (division by zero in specific regions)



Non-unique solution

Meaning of z1:
z1 = a2ẋ2 + a3ẋ3

⇒ two clusters of solutions (a2 ≈ 0 and a3 ≈ 0)
⇒ x3 more important than x2 in the Lorenz-63 system
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