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DA + ML + UQ: a quick overview?

Context:
o rapidly growing field of research

o still lot of developments to do

Noisy partial obs Correcting model error

A Latent assimilation
Error specification
: Section ITI-A
-.§‘° Section IV-C Section IV-B
= Section III-C
. d ROM
2 uQ
-]
ML uncertainty
4DvarNet
2 Parameter estimation
= Section IV-A ML(DL)
. Section III-D
Section III-B

small Dimension/data big i
!Cheng et al., Machine Learning with Data Assimilation and Uncertainty
Quantification for Dynamical Systems: a Review,
IEEE/CAA Journal of Automatica Sinica, 2023
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DA + ML + UQ: a quick overview

Data assimilation formulation:

x(t + dt) = M (x(t),n(t))
y(t) = # (x(t), (1))

Machine learning appears everywhere:

@ state x and observations y
@ operators M and H
@ errors 1 and €

@ inversion of the system p(x|y)
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DA + ML + UQ: a quick overview

x(t + dt) = M(x(t),n(t))
y(t) = # (x(t), €(t))
State of the system (x):

@ reduced-order modeling (principal components, VAE)
@ state augmentation (parameters, latent variables)

AutoEncoder

Blie
Vi
w ! proban

'AE

Source: Cheng et al. 2023, IEEE/CAA Journal of Automatica Sinica
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),n(t))
y(t) = H (x(1), (1))
Dynamical operator (M):

@ surrogate models (Al, RNN, analogs, AR1 processes)
@ hybrid models (GCM core + ML parameterization)

Learned physics

Repeat n times

Source: Kochkov et al. 2024 Nature
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DA + ML + UQ: a quick overview

x(t 4 dt) = M (x(t),n(t))
y(t) = H (x(t), (1))
Model and observation errors (1 and €):

@ innovation statistics, inflation methods, statistical approaches, NN
@ joint estimation of error covariances Q and R

Anderson 2009, Tellus A Miyoshi et al. 2013, Inverse Probl Sci En

‘Iknovation statistics in *he observation space (covariance inflation)

- 1%}
g£o8 , . *. ;
[] au)) E Desroziers et al. Lietal Harlim et al. El Gharamti
g < g 2005, QJRMS 2009, QIRMS 2014, J Comput Phys 2018, MWR
a
=T E *I'_ag-innovation statistics
Berry and Sauer Stroud et al.
2013, Tellus A 2018, MWR
L . . . " " N . .
g - 8 iayesian inference (innovation likelihood + prior distribution)
] g2 Stroud and Bengtsson Dreano et al.
T8T 2007, MWR 2017, QJIRMS
—5 £ of the totf#. ion likelihood (EM)
*Ueno etal. Ueno et al. Pulido et al.
2010, QJIRMS 2014, QIRMS 2018, Tellus A
-
2005 2019

Source: Tandeo et al. 2020, Monthly Weather Review
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),n(t))
y(t) = (x(¢), (1))
Observation operator (7):

e emulation of transfer functions using ML (e.g., radiative)
@ estimation of representativity error

Source: Janji¢ et al. 2018, QJRMS
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DA + ML + UQ: a quick overview

x(t + dt) = M (x(t),n(t))
y(t) = H (x(t), €(1))
Noisy and partial observations (y):

@ aggregation, fusion, and data exclusion
@ optimal sampling of the observations

Source: Marcille et al. 2023, Wind Energy Science
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DA + ML + UQ: a quick overview

x(t + dt)= M (x(
y(t)=H (x(t
Full system resolution p(x|y):

@ optimization problem (link between 4D-Var and NN)
@ probabilistic ML using Bayesian approaches

Time ! t+1 t+2 Iteration step

Observations y Observations y

A
| I A s Y
Unrolled [, A ot [ ] [ | v |
architecture
& i i R R
9

W P i ° () | G 1) ° (+2)
xs X, X, o Xor X D X
Reconstructed - ] Reconstructed L = =
states X o o pi - states Mpd il Yl
Sequential-DA-inspired scheme 4DVar-DA-inspired scheme

Source: Cheng et al. 2023, IEEE/CAA Journal of Automatica Sinica
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A simple combination of DA + ML + UQ!

General framework: Proposed framework:
x(t + dt) = M (x(t), n(t)) x(t + 1) = Mx(t) + Q"*n(t)
y(t) = H (x(t), €(1)) y(t) = Hx(t) + R"%¢(t)

Assumptions:
@ linear model and observation operators
@ Gaussian state, observations, and error terms

@ constant operators and error covariances

'Tandeo et al., Data-driven Reconstruction of Partially Observed Dynamical
Systems, Nonlinear Processes in Geophysics, 2023
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A simple combination of DA + ML + UQ!

General framework: Proposed framework:
x(t + dt) = M (x(t), n(t)) x(t + 1) = Mx(t) + Q"*n(t)
y(t) = H (x(t), €(1)) y(t) = Hx(t) + R"%¢(t)
Goal:

@ make probabilistic forecasts
@ purely data-driven approach

@ interpretation of the retrieved model

'Tandeo et al., Data-driven Reconstruction of Partially Observed Dynamical
Systems, Nonlinear Processes in Geophysics, 2023
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Classic approach: Kalman + EM

State variables

Values

Time

State-space model: Variables and matrices:
Estimate x(0),...,x(T) x = [x1, x2]
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Classic approach: Kalman + EM

Constant and linear dynamical model

— X1

Values

Time

State-space model: Variables and matrices:
x(t+1) = Mx(t) M — [ }
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Classic approach: Kalman + EM

Constant and Gaussian model error

— x
1 o

Values

Time

State-space model: Variables and matrices:

(e + 1) = Mx(e) + @n () no~N 1), Q=]
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Classic approach: Kalman + EM

Noisy observations of the state

1

Values

Time
Variables and matrices:
10

0 1

State-space model:
x(t+1) = Mx(t) + Q%n(2) _ H- |
y(t) = Hx(t) y = Iy, 2],
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Classic approach: Kalman + EM

Constant and Gaussian observation error

1

Values

Time
State-space model: Variables and matrices:
x(t + 1) = Mx() + Q”r(1) {0~ N O, R=|" |
y(t) = Hx(t) + RY?¢(t) .o
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Classic approach: Kalman + EM

Kalman smoother

X5 +1.96,/PS
X5 +1.96,/P3

g
S
Time
State-space model: Varlfbles and matrices:
x(t +1) = Mx(t) + Q"n(t) M, Q,R = argmax L (y)
_ 1 sy
y(t) = Hx(t) + R /2€(t) = EM algorithm

= Kalman smoother
17/36



The Expectation-Maximization algorithm?

Initialization: M, Q, R

'Shumway and Stoffer, An approach to time series smoothing and forecasting
using the EM algorithm, Journal of Time Series Analysis, 1982

18/36



The Expectation-Maximization algorithm?

Initialization: M, Q, R

Expectation (DA step):
o fix M, Q, R
@ estimation of x§.+ and Pg.

@ = Kalman smoother

'Shumway and Stoffer, An approach to time series smoothing and forecasting
using the EM algorithm, Journal of Time Series Analysis, 1982
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The Expectation-Maximization algorithm?

Initialization: M, Q, R

Expectation (DA step): Maximization (ML step):
o fix M, Q, R o fix x3.+ and P§.+
@ estimation of x§.+ and Pg. @ estimation of M, Q, R
o = Kalman smoother @ = analytic solution

'Shumway and Stoffer, An approach to time series smoothing and forecasting
using the EM algorithm, Journal of Time Series Analysis, 1982
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The Expectation-Maximization algorithm?

Initialization: M, Q, R

Expectation (DA step): Maximization (ML step):
o fix M, Q, R o fix x3.+ and P§.+
@ estimation of x§.+ and Pg. @ estimation of M, Q, R
o = Kalman smoother @ = analytic solution

Repeat E- and M-steps until convergence of L (y)

Log-likelihood Determinant of M 0 1

-31000 0.95

o
o
o

-32000

-33000

—34000 0.85

M estimate

I
o
0

-35000

o 20 40 60 80 100 0 20 40 60 80 100

EM iterations EM iterations

'Shumway and Stoffer, An approach to time series smoothing and forecasting
using the EM algorithm, Journal of Time Series Analysis, 1982
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The innovation likelihood L (y)

T

L) =~ (o;y(t) — Hxf(t), HPT()HT + R)

t=0
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The innovation likelihood L (y)

.
£y) =TI~ (o; y(t) — Hx (t), HP (t)HT + R)
t=0

Graphical representation of the innovation likelihood:

Not accurate
Not reliable

N

0

— Ny —Hx;HP'HT +R)
---- Innovation likelihood

Accurate
Not reliable

oY S |

Accurate
Reliable
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The innovation likelihood L (y)

-
Liy)=II~ (o; y(t) — Hx (t), HP (t)HT + R)
t=0
Graphical representation of the innovation likelihood:

— Ny —Hx;HP'HT +R)
-- Innovation likelihood

Not accurate Accurate Accurate
Not reliable Not reliable Reliable

N

L (y) depends on M, Q, R:

o x(t) = Mx?(t — 1) — forecast precision

o Pf(t) = MP?(t — 1)M' + Q — forecast reliability
@ R — observation error
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Proposed approach: Kalman + EM + augmented state

Introduction of a latent variable

— X1 o

g
g
Time
State-space model: Variables and matrices:
x(t +1) = Mx(t) + Q1/2n(t) Augmented state x = [x1, x2, z1]
y(t) = Hx(t) + R1/2€(t) Mand Qare3x3

1 00 Ris2x?2
=y 9 o]
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Proposed approach: Kalman + EM + augmented state

Estimation of the latent variable

— X1

Values

Time

State-space model: Variables and matrices:

x(t + 1) = Mx(t) + Q"2n(t) Estimate M, Q, R
y(t) = Hx(t) + RY?¢(t) Estimate z1(0),...,z1(T)

1 00
H=
[0 1 O] 21/36




Proposed approach: Kalman + EM + augmented state

Introduction of a new latent variable

— X1 o
— X3 *

g
g
Time
State-space model: Variables and matrices:
x(t +1) = Mx(t) + Q1/2n(t) New state x = [x1, x2, 1, Z2]
y(t) = Hx(t) + R1/2€(t) Mand Q are 4 x 4

L [ o0 Ris2x2
o100
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Proposed approach: Kalman + EM + augmented state

Estimation of the new latent variable

Values

Time

State-space model: Variables aAndAmaAtrices:
x(t + 1) = Mx(t) + Q721 (t) Estimate M, Q, R
y(t) = Hx(t) + R1/2€(t) Estimate z(0),...,2z(T)

1 000
H=
[0 1 0 0} 23/36




Main scientific questions

Latent variables: Quality of the forecasts:
@ how many are needed? @ are they precise?
@ what is there meaning? @ are they reliable?
@ why do we need them? @ how they compare?

—15112 100

“15114

~15116

~15118

Log-likelihood
Values

15120

-15122

0
7600 7700 7800 7900 8000 8100 8200

T 3 3 7
Number of latent variables Time
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Application to Lorenz-63: formulation and OSSE

_V;V \j \ | AWV \ﬁ ﬁMN\A P\lv AW\/\\\ ‘\/R\/\"

i
Time

Observations, state, and latent variables:

@ y = [y2, y3] — partial observations of the system
® x = [x2, x3,z] — augmented state with latent variables z

@ z=z,..., 2] — latent variables

OSSE:

0.001 — observation sampling

o dt =
e Var(e) = 1 — observation error variance
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Estimation of I\7| (A) R and zi,...,Zk using training data

& Train: Validation
- estimate M, Q, R matrices
-learn zy, ...,z for all times

Time series are divided in three parts:
- train, test, and validation datasets
- EM algorithm is applied to the training data
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Estimation of z; and z:
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Estimation of z; and z:

X1

15

Meaning of z:

arxp + asx3

zZ] =
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Estimation and meaning of the latent variables

Estimation of z; and z:

Meaning of z:

z1 = apXo + a3x3

Meaning of z:

7y = b1Z1 + boxXo + b3x3
= byxo + b3x3 + braxxx + b1azxa

= latent variables take into account time delays of x> and x3
27/36
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Number of latent variables to retain

Cross-validation on the test dataset

~29400

29600

29800

T
30000

Log-likelihood

-30200

-30400

0.0 25 5.0 10.0 125 15.0 17.5 200

NUmber of latent variables
Optimal model in terms of likelihood:

- with x = [x2,X3,21,. .., Z6]

- six latent variables are necessary
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Probabilistic forecasts using testing data

:

Validation:
- assimilate obs. y(0), ..., y(t)
- compute forecasts x’ and P’

Recursive predictions, starting from an initial time t:

E[Xt+1|YIa .. 7yt] - ME[Xt|YI, CIEa 7Yt]
Cov[x¢t1ly1,-- -, yt] = MCov[xt|ys, ... ,yt]MT +Q
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Performance metrics (data- VS model-driven)

RMSE

12

Component x;
— X =[x2,x3]
— X=[x2,X3,21, ..., Z6]
— X =[x1,X2,x3]
0.0 0.1 0.2 Lead tlme 0.3 0.4 0.5
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Performance metrics (data- VS model-driven)

Cov. Prob. (50%)

Component x;
— x=[x2,x3]
— X=[x2,X3,21, ..., Z]
— X =[x1,X2,x3]
0.0 0.1 0.2 0.3 0.4 0.5
Lead time
Underconfident
Reliable f====
Overconfident
0.0 0.1 0.2 03 0.4 0.5
Lead time
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Conclusions and perspectives

Context:
@ pure data-driven predictions (i.e., without physical equations)
@ missing components of the system (e.g., x; of Lorenz-63)

@ simple assumptions (linearity, Gaussianity, constant operators)
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Conclusions and perspectives

Key messages:
o fruitful combination of DA + ML
@ inference of latent variables (interesting physical meaning)
@ precise and reliable probabilistic forecasts

Initialization: W

DA step

obs

‘ Fix W, Estimation of x{., using y

1
E ML step < >

‘ Fix x¥. 5, Estimation of W ‘

Stop if converged

Source: Brajard et al. 2020, Journal of Computational Science
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Conclusions and perspectives

Perspectives:
@ application to climate indices (e.g., ENSO, AMO, NAO, etc.)
@ application to high-dimensional data

@ learn time-dependent M(t) and Q(t) operators

Prediction of the ENSO index

—— Mean forecast
Pred. Int. 50%
Pred. Int. 95%

Nino 3.4 [°C]

Training period: 1850-2022 Number of latent variables: 15

)
Time
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HNhrE ) T3\ X (arigatd gozaimasu)!

Interested in this topic? Collaborations are welcome!

Contact:
@ pierre.tandeo@imt-atlantique.fr

@ www.tandeo.wordpress.com

Figure: Nice places to visit near Brest, Bretagne, France

36/36


pierre.tandeo@imt-atlantique.fr
www.tandeo.wordpress.com

Meaning of z;:
@ revealed by symbolic regression
@ between z; and usual transformations of x, and x3

(2 [e]x[es |64 velvm] . [%]%]

— 7

—— ayxy +asx3

Lorenz components
'




Link between latent variables and x;

Expression of z;: Lorenz-63 system: Approximation of x:

XQ IX1(p7X3)7X2
% ot x ﬁX % Z1 + axxo + a3ﬁX3
— < % 3 = X1X2 — 3 1=
z) = axxp + as3xa arp — arxz + asxo

T
----- X1 (truth)
—— x; (approximation)

Lorenz components
,

100
Time

= xi is partially retrieved (division by zero in specific regions)



Non-unique solution

Meaning of z;:
71 = axXz + asx3

— -
= 010

28000 = —
o / . .
o 26000 % 005 ™
o . .
& 24000 .
O 22000 M 000 e %
~ (]
= 20000 'y
2 1000 R 1 ¢
! 16000 -

14000 r e &% "

1} 3 10 I3 2 3 015 010 -00s 0be 005 olo oIS
EM iterations az

= two clusters of solutions (a; ~ 0 and a3 ~ 0)

= x3 more important than x; in the Lorenz-63 system

29750

29500

29250

29000

28750

28500

28250

pooyia31|-601
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