

Data-driven identification and reconstruction of partially observed dynamical systems

Pierre Tandeo

▶ To cite this version:

Pierre Tandeo. Data-driven identification and reconstruction of partially observed dynamical systems. ISDA 2024 - 10th International Symposium on Data Assimilation, RIKEN, Oct 2024, Kobe, Japan. hal-04764759

HAL Id: hal-04764759 https://imt-atlantique.hal.science/hal-04764759v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Data-driven identification and reconstruction of partially observed dynamical systems

Dr. Pierre Tandeo, associate professor

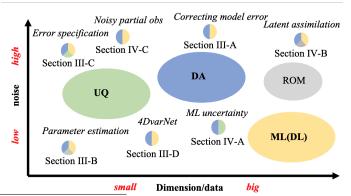
IMT Atlantique, Brest, France RIKEN Cluster for Pioneering Research, Kobe, Japan

The 10th International Symposium on Data Assimilation (ISDA)
October 21-25, 2024, Kobe, Japan

DA + ML + UQ: a quick overview¹

Context:

- rapidly growing field of research
- still lot of developments to do



¹Cheng et al., *Machine Learning with Data Assimilation and Uncertainty Quantification for Dynamical Systems: a Review*, IEEE/CAA Journal of Automatica Sinica, 2023

Data assimilation formulation:

$$\mathbf{x}(t+dt) = \mathcal{M}\left(\mathbf{x}(t), \boldsymbol{\eta}(t)\right)$$

 $\mathbf{y}(t) = \mathcal{H}\left(\mathbf{x}(t), \boldsymbol{\epsilon}(t)\right)$

Machine learning appears everywhere:

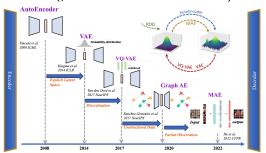
- state x and observations y
- ullet operators ${\mathcal M}$ and ${\mathcal H}$
- ullet errors η and ϵ
- inversion of the system $p(\mathbf{x}|\mathbf{y})$

$$\mathbf{x}(t+dt) = \mathcal{M}(\mathbf{x}(t), \boldsymbol{\eta}(t))$$

 $\mathbf{y}(t) = \mathcal{H}(\mathbf{x}(t), \boldsymbol{\epsilon}(t))$

State of the system (x):

- reduced-order modeling (principal components, VAE)
- state augmentation (parameters, latent variables)



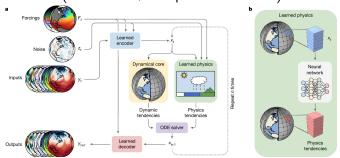
Source: Cheng et al. 2023, IEEE/CAA Journal of Automatica Sinica

$$\mathbf{x}(t+dt) = \mathcal{M}(\mathbf{x}(t), \boldsymbol{\eta}(t))$$

 $\mathbf{y}(t) = \mathcal{H}(\mathbf{x}(t), \boldsymbol{\epsilon}(t))$

Dynamical operator (\mathcal{M}) :

- surrogate models (AI, RNN, analogs, AR1 processes)
- hybrid models (GCM core + ML parameterization)



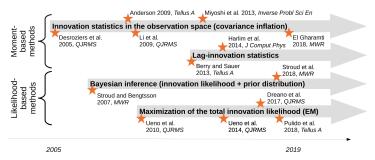
Source: Kochkov et al. 2024, Nature

$$\mathbf{x}(t+dt) = \mathcal{M}(\mathbf{x}(t), \boldsymbol{\eta(t)})$$

 $\mathbf{y}(t) = \mathcal{H}(\mathbf{x}(t), \boldsymbol{\epsilon(t)})$

Model and observation errors (η and ϵ):

- innovation statistics, inflation methods, statistical approaches, NN
- joint estimation of error covariances Q and R



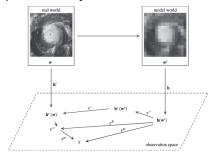
Source: Tandeo et al. 2020, Monthly Weather Review

$$\mathbf{x}(t+dt) = \mathcal{M}\left(\mathbf{x}(t), \boldsymbol{\eta}(t)\right)$$

 $\mathbf{y}(t) = \mathcal{H}\left(\mathbf{x}(t), \boldsymbol{\epsilon}(t)\right)$

Observation operator (\mathcal{H}) :

- emulation of transfer functions using ML (e.g., radiative)
- estimation of representativity error



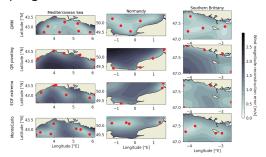
Source: Janjić et al. 2018, QJRMS

$$\mathbf{x}(t+dt) = \mathcal{M}(\mathbf{x}(t), \boldsymbol{\eta}(t))$$

 $\mathbf{y}(t) = \mathcal{H}(\mathbf{x}(t), \boldsymbol{\epsilon}(t))$

Noisy and partial observations (y):

- aggregation, fusion, and data exclusion
- optimal sampling of the observations



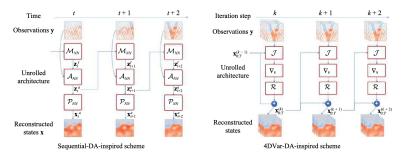
Source: Marcille et al. 2023, Wind Energy Science

$$\mathbf{x}(t+dt) = \mathcal{M}(\mathbf{x}(t), \boldsymbol{\eta}(t))$$

 $\mathbf{y}(t) = \mathcal{H}(\mathbf{x}(t), \boldsymbol{\epsilon}(t))$

Full system resolution $p(\mathbf{x}|\mathbf{y})$:

- optimization problem (link between 4D-Var and NN)
- probabilistic ML using Bayesian approaches



Source: Cheng et al. 2023, IEEE/CAA Journal of Automatica Sinica

A simple combination of DA + ML + UQ¹

General framework:

$$\mathbf{x}(t+dt) = \mathcal{M}\left(\mathbf{x}(t), oldsymbol{\eta}(t)
ight) \ \mathbf{y}(t) = \mathcal{H}\left(\mathbf{x}(t), oldsymbol{\epsilon}(t)
ight)$$

Proposed framework:

$$\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t) \ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\boldsymbol{\epsilon}(t)$$

Assumptions:

- linear model and observation operators
- Gaussian state, observations, and error terms
- constant operators and error covariances

¹Tandeo et al., *Data-driven Reconstruction of Partially Observed Dynamical Systems*, Nonlinear Processes in Geophysics, 2023

A simple combination of DA + ML + UQ¹

General framework:

$$\mathbf{x}(t+dt) = \mathcal{M}\left(\mathbf{x}(t), oldsymbol{\eta}(t)
ight) \ \mathbf{y}(t) = \mathcal{H}\left(\mathbf{x}(t), oldsymbol{\epsilon}(t)
ight)$$

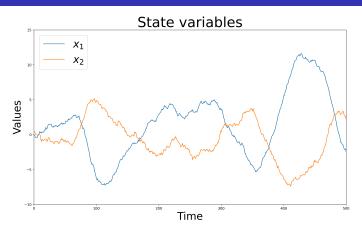
Proposed framework:

$$\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t) \ \mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\epsilon(t)$$

<u>Goal:</u>

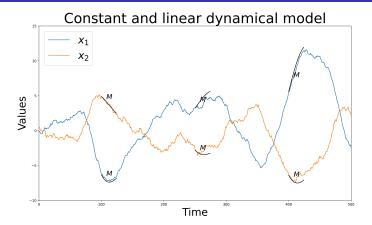
- make probabilistic forecasts
- purely data-driven approach
- interpretation of the retrieved model

¹Tandeo et al., *Data-driven Reconstruction of Partially Observed Dynamical Systems*, Nonlinear Processes in Geophysics, 2023



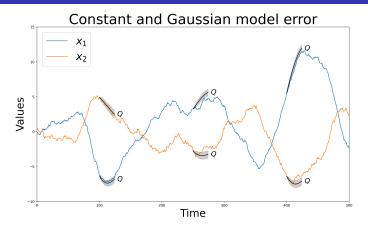
Estimate
$$\mathbf{x}(0), \dots, \mathbf{x}(T)$$

$$\mathbf{x} = [x_1, x_2]$$



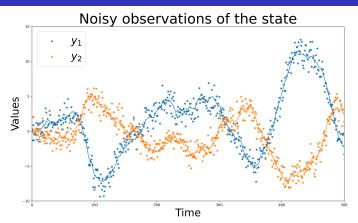
$$\frac{\text{State-space model:}}{\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t)}$$

$$M = \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$



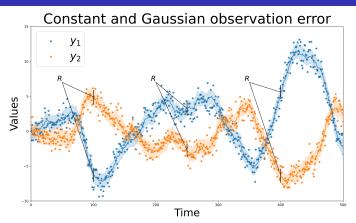
$$rac{\mathsf{State Space Model.}}{\mathsf{x}(t+1) = \mathsf{Mx}(t) + \mathsf{Q}^{1/2} \eta(t)}$$

$$oldsymbol{\eta}(t) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}
ight), \;\; \mathbf{Q} = egin{bmatrix} \cdot & \cdot \ \cdot & \cdot \end{bmatrix}$$



$$egin{aligned} rac{\dot{oldsymbol{\cdot}}}{oldsymbol{\mathsf{x}}(t+1) = oldsymbol{\mathsf{M}}oldsymbol{\mathsf{x}}(t)} + oldsymbol{\mathsf{Q}}^{1/2}oldsymbol{\eta}(t) \ oldsymbol{\mathsf{y}}(t) = oldsymbol{\mathsf{H}}oldsymbol{\mathsf{x}}(t) \end{aligned}$$

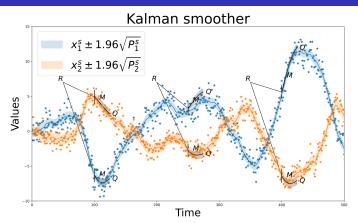
$$\mathbf{y} = [y_1, y_2], \quad \mathbf{H} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



State-space model:

$$egin{aligned} \overline{\mathbf{x}(t+1)} &= \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2} oldsymbol{\eta}(t) \ \mathbf{y}(t) &= \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2} oldsymbol{\epsilon}(t) \end{aligned}$$

$$oldsymbol{\epsilon}(t) \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}
ight), \;\; \mathbf{R} = \left[egin{matrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$



State-space model:

$$\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t)$$
 $\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\boldsymbol{\epsilon}(t)$
 $\Rightarrow \mathsf{Kalman\ smoother}$

$$\hat{\mathbf{M}}, \hat{\mathbf{Q}}, \hat{\mathbf{R}} = \operatorname*{argmax}_{\mathbf{M}, \mathbf{Q}, \mathbf{R}} \mathcal{L}(\mathbf{y})$$

 $\Rightarrow \mathsf{EM} \mathsf{ algorithm}$

Initialization: M, Q, R

¹Shumway and Stoffer, An approach to time series smoothing and forecasting using the EM algorithm, Journal of Time Series Analysis, 1982

Initialization: M, Q, R

Expectation (DA step):

- fix M, Q, R
- estimation of $\mathbf{x}_{0:T}^{s}$ and $\mathbf{P}_{0:T}^{s}$
- ⇒ Kalman smoother

¹Shumway and Stoffer, *An approach to time series smoothing and forecasting using the EM algorithm*, Journal of Time Series Analysis, 1982

Initialization: M, Q, R

Expectation (DA step):

- fix M, Q, R
- \bullet estimation of $\mathbf{x}_{0:T}^s$ and $\mathbf{P}_{0:T}^s$
- ullet \Rightarrow Kalman smoother

Maximization (ML step):

- \bullet fix $\mathbf{x}_{0:T}^s$ and $\mathbf{P}_{0:T}^s$
- estimation of M, Q, R
- ⇒ analytic solution

¹Shumway and Stoffer, *An approach to time series smoothing and forecasting using the EM algorithm*, Journal of Time Series Analysis, 1982

Initialization: M, Q, R

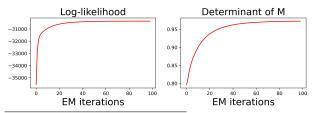
Expectation (DA step):

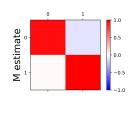
- fix M, Q, R
- estimation of $\mathbf{x}_{0:T}^s$ and $\mathbf{P}_{0:T}^s$
- ⇒ Kalman smoother

Maximization (ML step):

- ullet fix $\mathbf{x}_{0:T}^s$ and $\mathbf{P}_{0:T}^s$
- estimation of M, Q, R
- ⇒ analytic solution

Repeat E- and M-steps until convergence of $\mathcal{L}(\mathbf{y})$





¹Shumway and Stoffer, *An approach to time series smoothing and forecasting using the EM algorithm*, Journal of Time Series Analysis, 1982

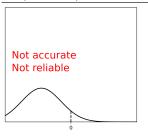
The innovation likelihood $\mathcal{L}(\mathbf{y})$

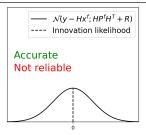
$$\mathcal{L}\left(\mathbf{y}
ight) = \prod_{t=0}^{\mathcal{T}} \mathcal{N}\left(0; \mathbf{y}(t) - \mathbf{H}\mathbf{x}^f(t), \mathbf{H}\mathbf{P}^f(t)\mathbf{H}^ op + \mathbf{R}
ight)$$

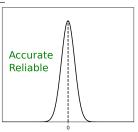
The innovation likelihood $\mathcal{L}(\mathbf{y})$

$$\mathcal{L}(\mathbf{y}) = \prod_{t=0}^{T} \mathcal{N}\left(0; \mathbf{y}(t) - \mathbf{H}\mathbf{x}^f(t), \mathbf{H}\mathbf{P}^f(t)\mathbf{H}^{\top} + \mathbf{R}\right)$$

Graphical representation of the innovation likelihood:



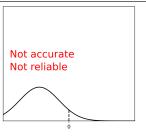


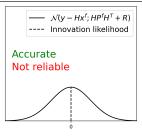


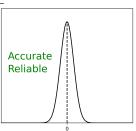
The innovation likelihood $\mathcal{L}(\mathbf{y})$

$$\mathcal{L}\left(\mathbf{y}
ight) = \prod_{t=0}^{\mathcal{T}} \mathcal{N}\left(0; \mathbf{y}(t) - \mathbf{H}\mathbf{x}^f(t), \mathbf{H}\mathbf{P}^f(t)\mathbf{H}^{ op} + \mathbf{R}
ight)$$

Graphical representation of the innovation likelihood:

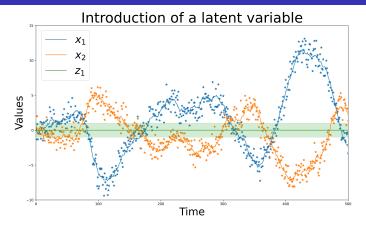






$\mathcal{L}(\mathbf{y})$ depends on $\mathbf{M}, \mathbf{Q}, \mathbf{R}$:

- $\mathbf{x}^f(t) = \mathbf{M}\mathbf{x}^a(t-1) o$ forecast precision
- $\mathbf{P}^f(t) = \mathbf{M}\mathbf{P}^a(t-1)\mathbf{M}^\top + \mathbf{Q} \to \text{forecast reliability}$
- ullet R o observation error



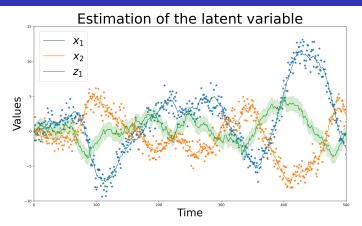
State-space model:
$$\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t)$$
 $\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\boldsymbol{\epsilon}(t)$ $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Variables and matrices:

Augmented state $\mathbf{x} = [x_1, x_2, z_1]$

M and **Q** are 3×3

R is 2×2

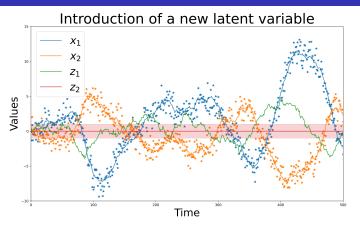


$$\begin{split} &\frac{\text{State-space model:}}{\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t)} \\ &\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\boldsymbol{\epsilon}(t) \\ &\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \end{split}$$

Variables and matrices:

Estimate $\hat{\mathbf{M}}, \hat{\mathbf{Q}}, \hat{\mathbf{R}}$

Estimate $z_1(0), \ldots, z_1(T)$



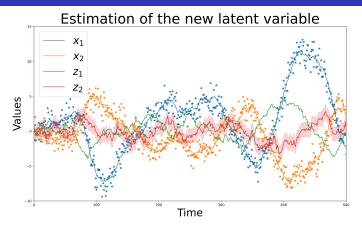
State-space model:
$$\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t)$$
$$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\boldsymbol{\epsilon}(t)$$
$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Variables and matrices:

New state $\mathbf{x} = [x_1, x_2, z_1, z_2]$

 ${\bf M}$ and ${\bf Q}$ are 4×4

R is 2×2



State-space model:

$$\mathbf{x}(t+1) = \mathbf{M}\mathbf{x}(t) + \mathbf{Q}^{1/2}\boldsymbol{\eta}(t)$$

$$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \mathbf{R}^{1/2}\boldsymbol{\epsilon}(t)$$

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Variables and matrices:

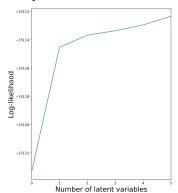
Estimate $\hat{\mathbf{M}}, \hat{\mathbf{Q}}, \hat{\mathbf{R}}$

Estimate $z_2(0), \ldots, z_2(T)$

Main scientific questions

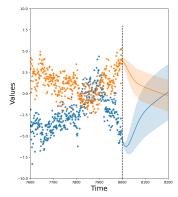
Latent variables:

- how many are needed?
- what is there meaning?
- why do we need them?

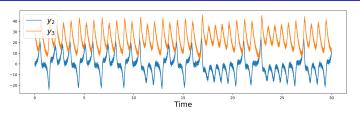


Quality of the forecasts:

- are they precise?
- are they reliable?
- how they compare?



Application to Lorenz-63: formulation and OSSE



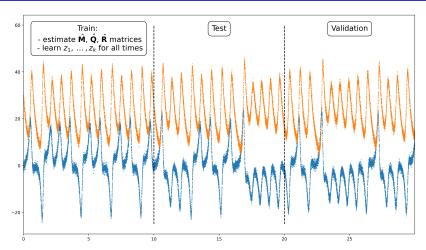
Observations, state, and latent variables:

- $\mathbf{y} = [y_2, y_3] \rightarrow \mathbf{partial \ observations}$ of the system
- $\mathbf{x} = [x_2, x_3, \mathbf{z}] \rightarrow \mathbf{augmented}$ state with latent variables \mathbf{z}
- $\mathbf{z} = [z_1, \dots, z_k] \rightarrow \text{latent variables}$

OSSE:

- ullet $dt=0.001
 ightarrow ext{observation sampling}$
- ullet $Var(\epsilon)=1
 ightarrow {
 m observation \ error \ variance}$

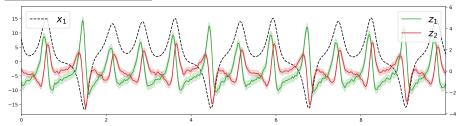
Estimation of $\hat{\mathbf{M}}$, $\hat{\mathbf{Q}}$, $\hat{\mathbf{R}}$ and z_1, \ldots, z_k using training data



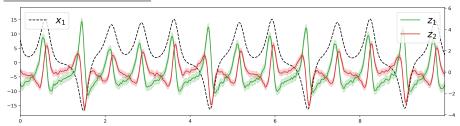
Time series are divided in three parts:

- train, test, and validation datasets
- EM algorithm is applied to the training data

Estimation of z_1 and z_2 :



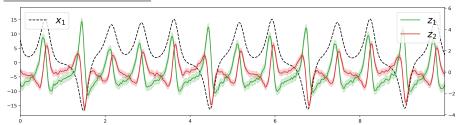
Estimation of z_1 and z_2 :



Meaning of z_1 :

$$z_1=a_2\dot{x_2}+a_3\dot{x_3}$$

Estimation of z_1 and z_2 :



Meaning of z_1 :

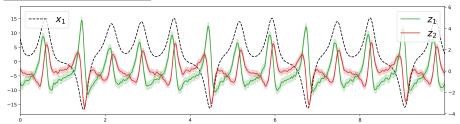
$$z_1=a_2\dot{x_2}+a_3\dot{x_3}$$

Meaning of z_2 :

$$z_2 = b_1 \dot{z_1} + b_2 \dot{x_2} + b_3 \dot{x_3}$$

= $b_2 \dot{x_2} + b_3 \dot{x_3} + b_1 a_2 \ddot{x_2} + b_1 a_3 \ddot{x_3}$

Estimation of z_1 and z_2 :



Meaning of z_1 :

$$z_1=a_2\dot{x_2}+a_3\dot{x_3}$$

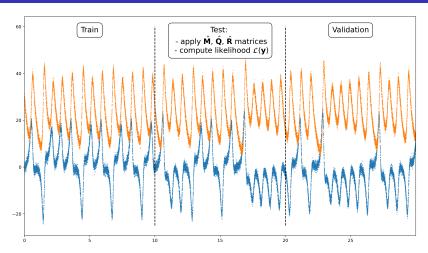
Meaning of z_2 :

$$z_2 = b_1 \dot{z_1} + b_2 \dot{x_2} + b_3 \dot{x_3}$$

= $b_2 \dot{x_2} + b_3 \dot{x_3} + b_1 a_2 \ddot{x_2} + b_1 a_3 \ddot{x_3}$

 \Rightarrow latent variables take into account **time delays** of x_2 and x_3

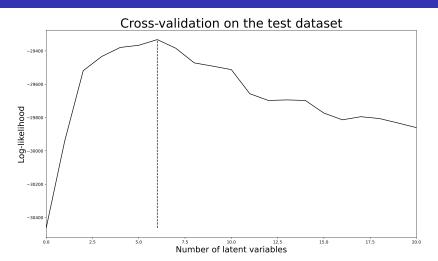
Number of latent variables to retain



Different models are tested:

- from $\mathbf{x} = [\mathbf{x}_2, \mathbf{x}_3, \mathbf{z}_1]$
- to $\textbf{x} = [\textbf{x}_2, \textbf{x}_3, \textbf{z}_1, \dots, \textbf{z}_{20}]$

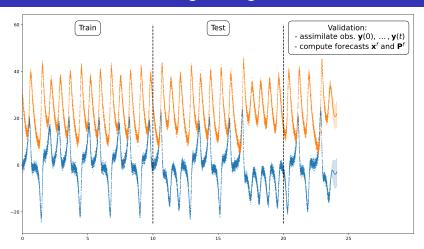
Number of latent variables to retain



Optimal model in terms of likelihood:

- with $\mathbf{x} = [\mathbf{x}_2, \mathbf{x}_3, \mathbf{z}_1, \dots, \mathbf{z}_6]$
- six latent variables are necessary

Probabilistic forecasts using testing data

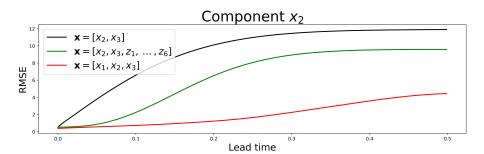


Recursive predictions, starting from an initial time t:

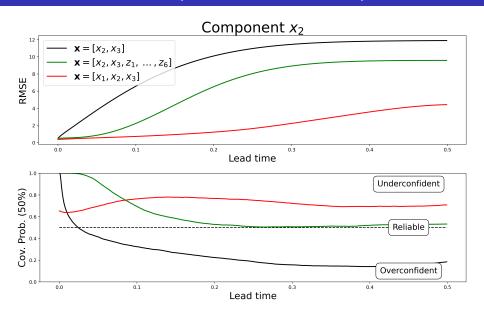
$$\begin{aligned} \mathsf{E}[\mathsf{x}_{t+1}|\mathsf{y}_1,\ldots,\mathsf{y}_t] &= \mathsf{M}\mathsf{E}[\mathsf{x}_t|\mathsf{y}_1,\ldots,\mathsf{y}_t] \\ \mathsf{Cov}[\mathsf{x}_{t+1}|\mathsf{y}_1,\ldots,\mathsf{y}_t] &= \mathsf{M}\mathsf{Cov}[\mathsf{x}_t|\mathsf{y}_1,\ldots,\mathsf{y}_t]\mathsf{M}^\top + \mathsf{Q} \end{aligned}$$

Example of probabilistic forecasts (data- VS model-driven)

Performance metrics (data- VS model-driven)



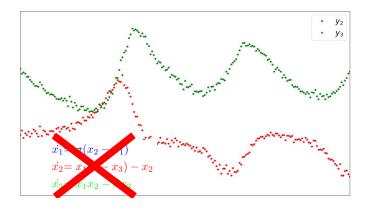
Performance metrics (data- VS model-driven)



Conclusions and perspectives

Context:

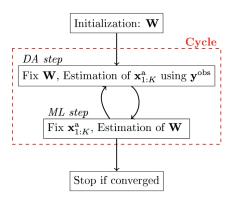
- pure data-driven predictions (i.e., without physical equations)
- missing components of the system (e.g., x_1 of Lorenz-63)
- simple assumptions (linearity, Gaussianity, constant operators)



Conclusions and perspectives

Key messages:

- fruitful combination of DA + ML
- inference of latent variables (interesting physical meaning)
- precise and reliable probabilistic forecasts

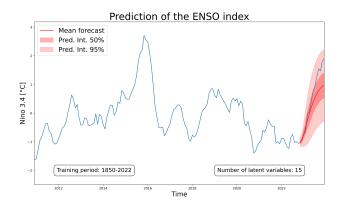


Source: Brajard et al. 2020, Journal of Computational Science

Conclusions and perspectives

Perspectives:

- application to climate indices (e.g., ENSO, AMO, NAO, etc.)
- application to high-dimensional data
- learn time-dependent $\mathbf{M}(t)$ and $\mathbf{Q}(t)$ operators



ありがとうございます (arigatō gozaimasu)!

Interested in this topic? Collaborations are welcome!

Contact:

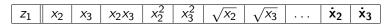
- pierre.tandeo@imt-atlantique.fr
- www.tandeo.wordpress.com

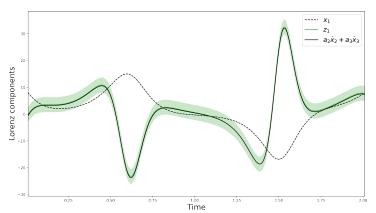
Figure: Nice places to visit near Brest, Bretagne, France

Meaning of z_1

Meaning of z_1 :

- revealed by symbolic regression
- between z_1 and usual transformations of x_2 and x_3





Link between latent variables and x_1

Expression of z_1 :

$$z_1=a_2\dot{x_2}+a_3\dot{x_3}$$

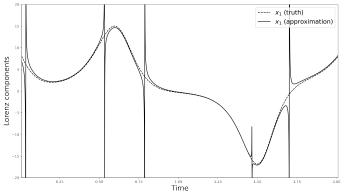
Lorenz-63 system:

$$\dot{x}_2 = x_1 (\rho - x_3) - x_2$$

 $\dot{x}_3 = x_1 x_2 - \beta x_3$

Approximation of x_1 :

$$\hat{x}_1 = \frac{z_1 + a_2 x_2 + a_3 \beta x_3}{a_2 \rho - a_2 x_3 + a_3 x_2}$$

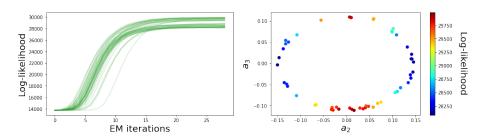


 \Rightarrow x_1 is partially retrieved (division by zero in specific regions)

Non-unique solution

Meaning of z_1 :

$$z_1=a_2\dot{x_2}+a_3\dot{x_3}$$



- \Rightarrow **two clusters** of solutions ($a_2 \approx 0$ and $a_3 \approx 0$)
- $\Rightarrow x_3$ more important than x_2 in the Lorenz-63 system