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ABSTRACT: Twenty years of Argo profiles have provided unprecedented insight into the global

space and time variability patterns of ocean temperature and salinity, significantly reducing asso-

ciated uncertainties. However, such assessments during the pre-Argo period remain a challenge

due to the scarcity of observations in many regions. From the Argo period, a set of dominant

three-dimensional patterns can be estimated using EOF analysis and used to fill in observational

gaps. From the associated principal components, temporal fluctuations can be observed, aiming

to build a catalog of possible trajectories of the ocean state. To map pre-Argo observations,

EOFs are used in a data assimilation framework using a catalog to feed an analog prediction and

provide reanalysis. In this study, this new data-driven interpolation method is called RedAnDA

(Reduced-space Analog Data Assimilation) andwas tested in the tropical Pacific Ocean. RedAnDA

was first validated through an Observing System Simulation Experiment (OSSE) approach, using

synthetic observations extracted from a model simulation. It was then applied to a real historical

dataset and compared to other available reanalysis products. Overall the reconstructed temperature

field showed variability consistent with the OSSE application and other reanalysis products in the

real data application. Further improvements are needed to optimally estimate uncertainty, but

RedAnDA already combines valuable information about state predictability, observation sampling,

and unresolved scale issues.
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1. Introduction27

In the ocean, temperature, by setting the density in most of tropical to subpolar regions, plays28

a fundamental role in influencing dynamical processes such as three-dimensional geostrophic29

circulation and the mixing of water masses. Temperature has a first order impact on ecosystems30

(?). The globally averaged Ocean Temperature temporal changes reflect long-term global warming31

through heat uptake (??), but also climate and atmospheric variability by air-sea interaction (?).32

Moreover, the ocean exhibits significant variability spanning regional to basin scales and ranging33

from seconds to decades, which can superimpose and interact, increasing uncertainties in estimating34

long-term anthropogenic trends or underlying natural variability (???). Notably, phenomena such35

as the air-sea coupled El Niño-Southern Oscillation (ENSO) have a pronounced impact on surface36

temperature primarily in the Pacific Ocean, with global impacts on long-term temperature trends37

(??). Consequently, evaluating the influence of natural oceanic temperature variability represents38

a crucial challenge. Therefore, precise estimates of global and regional oceanic variability derived39

from in situ measurements remain timely.40

From the late 1930s to the 1990s, successive advances in in situ measurement technology41

facilitated the expansion of observational sampling of the ocean, particularly along repeated hy-42

drographic transects in the major ocean basins and sub-basins. However, a notable bias persisted43

in the distribution of observations, in favor of a better sampling the Northern Hemisphere and44

coastal regions (?). Furthermore, the majority of research expeditions were conducted during45

summer months, primarily due to favorable weather conditions for navigation. This lack of in46

situ observations has impeded our ability to consistently describe regional patterns and understand47

underlying oceanic mechanisms (?), thereby contributing to uncertainties in quantifying the rate48

of ocean heat content change (?????).49

Since the late 1990s, the Argo global observing system has been deployed, achieving in 2007,50

its targeted quasi-global coverage of 3x3° T and S profiles over the upper 2000 m of the ocean51

(??). Over the last two decades, it has become the backbone of the Global Ocean Observing52

System (GOOS) and is now the primary source of observation for numerous ocean and climate53

studies (see ?, ?, for a recent review). The Argo system effectively addresses the major sampling54

biases inherent in ocean observing systems, reducing uncertainties in global oceanic records and55

3



enhancing the confidence in assessments of ocean heat content, thermal expansion, and changes in56

freshwater content (Hansen et al. 2011; ?; ?; ?).57

One of the principal challenges in oceanography lies in filling the gaps in sparsely distributed58

observations, especially during the pre-Argo period, i.e., before 2000. Monitoring of the global59

ocean state is significantly enhanced when observational variables are remapped on a regular grid60

utilizing statistical methodologies or assimilated into a numerical model. Among the procedures61

for mapping oceanic data, several methods can be categorized.62

Firstly, widely usedmapping approaches are methods that rely solely on observations and a priori63

statistics, such as Optimal Interpolation (OI, Bretherton et al. 1976). Nevertheless, they exhibit64

limited skill in accurately estimating error. Among the notable Optimal Interpolation applications,65

Good et al. (2013) reconstructed past temperature and salinity variability, from 1900 onwards, with66

a focus on evaluating observational quality. Kaplan et al. (1997) combined data reduction using67

Empirical Orthogonal Functions and least squares mapping techniques (e.g., optimal smoother,68

Kalman filter, and OI) to analyze Sea Surface Temperature (SST) anomalies in the Atlantic Ocean69

for the period 1856-1991. This approach was computationally efficient and yielded consistent70

results with robust error estimates. A last example is ?, who utilized an ensemble OI approach,71

incorporating a first guess and a priori covariance derived from the 5th phase of the CoupledModel72

Intercomparison Project (CMIP5), to reconstruct ocean subsurface temperature patterns and the73

trend from 1940 to 2014.74

Secondly, data assimilation procedures in numerical models allow for a physically consistent75

data interpolation (?). These analyses give robust estimates of upper Ocean Heat Content (OHC)76

and the depth of the tropical mixed layer (?). However, this approach requires significant numerical77

costs, as it requires the integration of the primitive equations into an Ocean General Circulation78

Model (OGCM) and are subject to inherent numerical imperfections (?).79

In recent years, a new class of methods has emerged, taking advantage of the ever-increasing80

amount of data available from both satellite and in situ measurements, and recent advances in81

applied mathematics. These data-driven methods have been specifically developed for data assimi-82

lation and climate prediction purposes (e.g., ?????). Leveraging Argo data, ? employed stationary83

Gaussian process regression to compute temperature fields, estimating covariance parameters84

through local moving-window maximum-likelihood estimation. They have enhanced uncertainty85
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estimates by recognizing the non-Gaussian and non-stationary nature of the temperature field. ?86

introduced PROCAST, an efficient system that probabilistically predicts global mean air and sea87

surface temperature variations, utilizing insights from CMIP5 simulations. Notably, data-driven88

methods offer the advantage of providing physically meaningful error estimates and satisfactory89

probabilistic forecasts. Additionally, they entail relatively lower numerical costs compared with90

OGCMs.91

In this current study, the Analog forecasting method (?) was combined with ensemble Data92

Assimilation techniques, forming the AnDA method, as previously introduced by ? and Lguensat93

et al. (2017). This method has already shown promising results in previous oceanic applications,94

such as the successful reconstruction of the sea surface height in the Gulf of Mexico (Zhen95

et al. 2020). What distinguishes this approach from traditional data assimilation schemes is its96

integration of analog forecasting. By statistically learning the dynamics of the system from a97

comprehensive catalog of analogs - encompassing a wide range of potential system states along98

with their subsequent states - the method is adept at forecasting any given state. Consequently, it99

can confidently estimate the evolution of a state at a given time toward the subsequent time step100

when the conditions allow predictability, or, alternatively, remain uncertain and stagnant when the101

state is less predictable.102

The aim of the study was to acquire knowledge by constructing a catalog of analogs from a103

gridded analysis over the well-sampled Argo period and to train AnDA to extrapolate temperature104

observations over a less well-sampled period (prior to Argo). This approach enabled the assessment105

of new information on temperature variability, both at the surface and at depth, during a periodwhen106

in situmeasurements were lacking. Tomeet the challenge of processing observations that are sparse107

in time and three-dimensional in space, such as a large set of hydrographic profiles, the method was108

combined with the Reduced-Space Interpolation introduced by Kaplan et al. (1997). Specifically,109

the parameters interpolated by AnDA are the temporal coefficients of the spatial-temporal signals110

projected into a reduced set of three-dimensional Empirical Orthogonal Functions (EOFs), which111

are built using the learning period. Utilizing EOFs offers the advantage of extracting dominant112

patterns of variability, smoothing the analyzed field, and reducing the dimensionality of the system.113

? have demonstrated the effectiveness of using EOFs for reconstruction purposes in the Pacific.114

The integration of space reduction and AnDA is termed RedAnDA.115
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The test region selected for implementing the ocean temperature reconstruction was the tropical116

Pacific. This basin exhibits subsurface OHC variability, predominantly driven by the interannual117

to decadal ENSO climate mode (e.g., ?). The ENSO phases redistribute heat throughout the basin,118

with El Niño events resulting in warming of the upper 100 meters and cooling of the subsequent119

400 meters, whereas La Niña events exhibit about the reverse pattern. This well-documented120

interannual variability has been extensively studied (e.g., ???). During the Argo period, i.e., the121

learning period for the catalog, 6 El Niño and 5 La Niña events were observed.122

The paper is organized as follows. Firstly, the various procedures of the RedAnDA method123

are detailed. The third section presents the different datasets used in this study. The fourth124

section presents the validation of the method using an Observing System Simulation Experiment125

(OSSE) approach. Finally, the application of RedAnDA to real observations and its comparison126

are analyzed.127

2. The RedAnDA Method128

The RedAnDA method is a combination of three established methodologies: i) Space Reduction129

utilizing Empirical Orthogonal Functions, ii) Analog Prediction, and iii) Data Assimilation.130

After removing the monthly seasonal cycle, the three-dimensional temperature anomaly field131

T(𝑡) from the learning period, in the tropical Pacific Ocean, is considered. Empirical Orthogonal132

Function (EOF) decomposition is then applied to reduce the dimension of the temperature field.133

This method concentrates the variance into a reduced number of functions and relegates insignif-134

icant portions to noise (Emery and Thomson 2001). This space reduction facilitates the Analog135

Prediction, as discussed later in this section. By retaining the 𝐿 dominant EOFs, the noise is136

efficiently filtered out at the expense of a relatively small truncation error ϵ𝑟 . The selection of 𝐿137

involves a trade-off between system reduction and variance representation. Before the decompo-138

sition, the prior weighting w×T(𝑡), where w represents the square root of the cosine of latitude,139

ensures a uniform impact in terms of variance across different regions, accounting for their surface140

area (Baldwin et al. 2009; Shea 2013).141

The respective temporal coefficients of the EOFs, denoted α(𝑡) set, are obtained by projecting146

the spatial-temporal signals onto the set of eigenvectors. Variations in α(𝑡) indicate changes in147

the covariance patterns over time. Thus, the field approximation can be expressed as follows:148
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Fig. 1. First (a,c), second (b,d), and third (e,f) EOF computed from ISAS20 temperature at 5-meter depth and

along an equatorial section. The explained variance for each of the three EOFs are given in the title of panels

(a), (b), and (e). (g) Cumulative explained variance for 252 modes, as the number of EOFs was increased, with

the x-axis presented on a log-scale. The values of the explained variance for 1, 10, and 100 modes are indicated.

142

143

144

145

149

w×T =α(𝑡) EOF+ϵ𝑟 (𝑡) (1)

The EOF decomposition was applied to the tropical Pacific using the learning period. As noted150

by Kaplan et al. (1997), the variance spectrum of the EOFs could decrease too steeply due to the151

initial coarsening of the field, leading to a strong constraint and low error estimates. To address152

this issue, energy redistribution was performed according to equation (19) in Kaplan et al. (1997).153

The patterns of variability are associated with the tongue in the equatorial band, extending from the154

east to the central Pacific and the warm pool in the western Pacific (Fig. 1 a and 1c). The transect155

7



(Fig. 1c) displayed a concentration of correlation in the subsurface layers, primarily within the156

first 200 m. Such patterns are typical of Eastern Pacific El Niño events (Kao and Yu 2009). The157

second mode captures the information on the variability of Central Pacific El Niños (Kao and Yu158

2009) (Fig. 1 b and d). However, owing to the orthogonality condition of the EOFs, the physical159

interpretation attributed to each mode was partially flawed, potentially leading to an overlap of160

phenomena. Thus, the combination of these two leading EOFs is required to express the diversity161

of El Niño events (Trenberth and Stepaniak 2001). The following modes held lesser physical162

significance. The third mode was not easily interpreted (Fig. 1 e and f). The following modes163

explained on average 0.23% of the initial variance, (Fig. 1 g). Nonetheless, they remained valuable164

for consistently conveying information from observations to unsampled locations, even at depth.165

A fundamental assumption of our study was that these correlation distributions, represented by the166

eigenvectors, were robust and remained applicable in the historical context.167

Second, RedAnDA differs from classical Data Assimilation schemes in that it replaces an explicit168

dynamical model with the Analog Backward Prediction, also known as Analog Backcast. It169

temporally propagates the interpolated information, offering informative a priori estimates of the170

ocean state, which are subsequently updated using available observations at corresponding times.171

The use of analog prediction as a dynamical model offers several advantages, including elim-172

inating the need to run Ocean General Circulation Models and reducing computational costs.173

However, it requires a dataset representative of the system’s dynamics, ideally extensive enough174

to encompass all potential system states. This dataset, termed a catalog, includes pairs of state175

vectors separated by the same time offset 𝑑𝑡, with the first element known as the analog and the176

second as its temporal predecessor. The catalog can be constructed from observational data or177

numerical simulation results. In this study, the analogs consisted of temporal coefficientsα(𝑡) and178

their predecessors α(𝑡 − 𝑑𝑡) over the learning period, i.e., the Argo period.179

A classical approach to seek analogs of a current state is by searching for its 𝑘 nearest neighbors186

in the state space defined by a Gaussian kernel:187

𝑔(𝑡, 𝑡′) = exp(−𝛿2 |𝛼(𝑡) −𝛼(𝑡′) |2), (2)

where 𝑡 represents the time when the backcast is performed and 𝑡′ is another time for which a188

record exists in the catalog. | . | denotes the Euclidean distance, and 𝛿 is set as the inverse of189
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Fig. 2. The process of analog backcast prediction. The black square 𝑥(𝑡) represents the current state for which

backward evolution is computed. The blue dots represent the analogs, and the red dots represent their temporal

predecessors. Here, the size of the analog sample is 𝑘 = 10. The size of each dot reflects the weighting according

to similarity, as determined by the function 𝑔(𝑡, 𝑡 ′) from equation 2, represented by the blue hatched line. The

red square represents the first prediction, which results from weighted linear regression. Finally, the black square

of 𝑥(𝑡 − 𝑑𝑡) represents the final result, drawn randomly around the first prediction.

180

181

182

183

184

185

the median of the Euclidean distances of the sample of the 𝑘 nearest neighbors. The value of 𝑘190

was set to 170. This value could not be significantly increased due to limitations imposed by the191

catalog size 𝑛, as the quotient 𝑘/𝑛 = 170/252. However, this choice was expected to ease strong192

convergence of the linear regression in the Analog Backcast, albeit at the expense of increased193

computation time.194

As the size of the state space, i.e., the number of EOFs, increases, the search for analogs195

rapidly becomes more difficult, a phenomenon known as the "Curse of Dimensionality" (?). This196

complexity makes the reduced space approach convenient in this case.197

At time 𝑡, when the analog backcast A is applied to obtain an estimate of α(𝑡 − 𝑑𝑡), the 𝑘198

analogs of the current state α(𝑡) and their predecessors are selected. Each pair of analog and199

predecessor is then weighted according to equation (2). Assuming that both selections belong200

to normal distributions, a linear fit is performed, following the weighted least squares method of201
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Cleveland (1979). The obtained linear regression is used to extend α(𝑡) at 𝑡 − 𝑑𝑡, providing a first202

estimate of the backcast (see Fig. 2). The final backcast is drawn from the normal distribution, with203

the mean being the first estimate and the spread being the weighted covariance of the differences204

between the linearly extended analogs and their respective predecessors. This randomness reflects205

the uncertainties in the prediction of the analog method, which are partially controlled by the206

chaotic dynamics of the system. When it is observed that the linear fit efficiently links the most207

important analogs and their associated predecessors, the prediction is kept around its first estimate.208

Otherwise, the final random draw would lead to a more dispersed prediction around the first209

estimate. These variations in the dynamics of the system are reflected by changes in the persistence210

of α samples. This adaptive approach is an advantage over sequential interpolation techniques211

that determine temporal persistence mostly on a priori statistics. The uncertainty of the analog212

prediction is given by a Monte Carlo procedure, to determine the spread of the different trajectories213

accessible from a set of given states, relatively close in the state space.214

EOFs and temperature climatology were calculated over the Argo period, represented by the215

ISAS20 (In Situ Analysis System) temperature field (Gaillard et al. 2016). Associated α(𝑡) values216

between 2002 and 2020 were used in the catalog of RedAnDA.217

The reduced set of α(𝑡) between 1950 and 2000 was then reconstructed for each month, by218

integrating the available in situ observations at time 𝑡 with the Analog Backward Prediction A,219

from time 𝑡 + 𝑑𝑡 of the analysis, where 𝑑𝑡 represents one month. The assimilated profiles came220

from EN4.2.2 dataset (Good et al. 2013).221

In this study, sequential RedAnDA was executed in a backward temporal fashion. By starting222

from the state α(𝑡 + 𝑑𝑡), α(𝑡) is determined through the application of the Analog Backcast A.223

A notable distinction from forward-time analysis was observed during the initialization phase,224

wherein the initial α values were assessed based on varying quantities of available observations.225

This approach allowed for the transmission of comprehensive information from recent years226

backward in time, contrasting with the conventional forward methodology which propagates227

sparser historical data into the present. The RedAnDA scheme is as follows:228

229

α(𝑡) =A{α(𝑡 + 𝑑𝑡),ϵ𝑚 (𝑡 + 𝑑𝑡)}, (3)

10



230

y(𝑡) =H (𝑡) 𝛼(𝑡) +ϵ𝑜 (𝑡). (4)

The Analog Backcast A uncertainty is denoted as ϵ𝑚. The observed data are represented by y,231

while H (𝑡) refers to the linear interpolation operator linking the EOF grid points to the closest232

observation points available at time 𝑡. The uncertainty associated with the observations is denoted233

as ϵ𝑜 (𝑡).234

Fig. 3. RedAnDA analysis in the middle column, initiated by an initial temperature product drawn from a

learning period and pre-processing of observation data shown in the left column. The post-analysis steps lead to

the final gridded temperature product, in the right column.

235

236

237

The Reduced Space Interpolation method proposed by Kaplan et al. (1997) is consequently238

employed to defineH (𝑡) and ϵ𝑜 (𝑡), with detailed elaboration provided later in the section.239

The analysis proceeds in accordance with the Ensemble Kalman Smoother, augmented with the240

Analog Backcast as depicted in Fig. 1 of ?. Within the Ensemble variant of the Kalman filter,241

α(𝑡) and y(𝑡) are treated as stochastic variables, following normal law distributions whose mean242

value and variance are determined via a Monte Carlo procedure. The variance serves to estimate243

the uncertainty associated with the variable.244

Once α(𝑡) has been reconstructed for all desired time steps, the spatio-temporal temperature245

anomaly field is subsequently derived through re-projection into real space, utilizing the EOF-246

patterns. The whole RedAnDA procedure is summarized in figure 3. The Ensemble Kalman247

filter process is schematized in figure 2. The ensemble size in the Kalman Smoother was set to248
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500 members to ensure a more reliable calculation of the mean and covariance at each time step of249

the analysis. Increasing the ensemble size primarily impacted the analysis time.250

Before applying RedAnDA to real observations, its efficiency is assessed through an OSSE (?).251

We apply it to the monthly output from the Oceanic Chaos – Impacts, Structure, Predictability252

(OCCIPUT) project (Penduff et al. 2014; Bessières et al. 2017). The simulation spans the period253

from 1961 to 2015. The 408 months between 1961 and 1994 are selected for reconstruction, with254

synthetic observations being the only source of information during this period. The 252months over255

1995-2015, for which full grid temperature maps are available, provide analogs and predecessors256

for the Analog prediction. The full grid maps of the reconstruction period are further used to257

qualify the target truth. The way these periods are split is designed to mimic the real situation258

where we have a recent and short Argo period with good sampling and a longer pre-Argo period,259

for which fewer observations are available.260

In the OSSE, for comparison with the RedAnDA method, a standard Optimal Interpolation261

method is also implemented, following Good et al. (2013). We call it OI. It reconstructs monthly262

temperature maps sequentially, from 1961 to 1994, using an a priori monthly climatology built263

during the learning period, to which ∼82% of the previous month’s analyzed anomaly is added.264

To lighten the calculations and focus on the large spatial scale, all gridded products, for the OSSE265

and for real reconstruction, are coarsened down to 3°x3° by horizontal averaging. Depth levels are266

restricted to 5, 100, 300, 500, 700, 1000, and 1500m. The tropical Pacific is delimited here between267

120°E and 70°W, 25°S and 25°N. EOFs are calculated from the resulting temperature field. For268

the space reduction, the number of retained EOFs was fixed at 𝐿= 10, ensuring that approximately269

65% of the total variance of the initial true temperature field was explained. However, the primary270

EOFs primarily accounted for the high variability of the surface. To capture variability at depth,271

additional modes were required. With 𝐿=10, temperature signals at depths of 5, 100, 300, 500,272

700, 1000, and 1500 meters were reconstructed by approximately 67%, 73%, 44%, 27%, 22%,273

23%, and 20%, respectively.274

In practice, ϵ𝑜 (𝑡) from equation (4) was computed by combining ϵ𝑟 , representing the uncertainty282

of the truncated EOFs, and an empirically derived representativeness standard deviation. This283

standard deviation reflected the square root of the variance of all EN4.2.2 profiles found in large284

horizontal boxes, at each depth. For the real observation uncertainty, ϵ𝑜 (𝑡) also encompasses285
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Fig. 4. Schematic diagram of the Kalman Filter process within the Data Assimilation method. Beginning with

the analyzed state 𝛼𝑎 resulting from the assimilation of observations (depicted in green), the analog backcast

was executed to provide an estimate of the state at the previous time step 𝛼𝑏 (represented in blue). Subsequently,

this estimated state is updated using the in situ observations 𝑦 (depicted in yellow), and this iterative process

continues until the entire period under consideration has been processed. Each variable is depicted with its

respective uncertainty, symbolized by the area of the colored shapes, which is correlated with the spread of the

ensemble member trajectories (illustrated by the gray lines).

275

276

277

278

279

280

281

instrumental error, as assessed following ?. This error ranged from 0.3°C for MBTs and moorings286

to 0.002°C for the most precise CTDs.287

While the sampling of observations was generally adequate to support monthly analysis, during288

the early period of the time series, the availability of profiles could be limited, leading to potentially289

significant spurious fluctuations at large scales. To address this issue, a procedure was implemented290

to automatically extend the temporal window for assimilating observations. The condition for291

this extension was to have a minimum of 5 000 observations before resuming the analysis. This292

threshold was chosen because its magnitude was similar to the average number of monthly available293

observations in the most recent years of the analysis. At each time step, care was taken to ensure294

that the temporal window did not exceed the most energetic time periods of the selected EOFs,295

thereby preventing damping of the interpolated result.296

13



3. Data297

The ISAS20 (In Situ Analysis System) gridded product was chosen to represent the Argo period298

(Gaillard et al. 2016). This product provides monthly 0.5°x0.5° gridded temperature and salinity299

fields, constructed using an Optimal Interpolation method. It encompasses 187 standard depth300

levels distributed between 0 and 5500 meters and covers the period from 2002 to 2023. It301

constitutes an analysis of in situ measurements, aiming to preserve the time and space sampling302

capabilities of the Argo network (Kolodziejczyk et al. 2021). Therefore, two correlations scale303

were used: 300 km and 4 times the deformation radius (Gaillard et al. 2016).304

The assimilated profiles for reconstructing past periods came from the EN4.2.2 dataset (Good305

et al. 2013). This dataset represents the latest version of the Met Office Hadley Centre’s ’EN’306

dataset series, offering quality-controlled potential temperature profiles from 1900 to the present307

day. Prior to the Argo period, most profiles were sourced from the World Ocean Database 2018308

(WOD18) (Boyer et al. 2006), and from the Global Temperature and Salinity Profile Program309

(GTSPP) (Sun et al. 2010). Notably, no Argo profiles were included in the latter dataset. In the310

synthetic profiles of the OSSE as well as in EN4.2.2, only depths where the temperature observation311

had a quality flag of 1 are retained. Additionally, since these depths varied from profile to profile,312

a vertical linear interpolation was conducted to obtain the profiles at the target reconstruction grid313

levels. No extrapolation was performed. To filter out high frequencies in observations from fixed314

tropical moorings (TAO/TRITON array in the Pacific), it was decided to average the time series315

over 15-day periods for each identified buoy. Super-profiles were then considered at the center of316

the time slice, reducing the number of initial profiles from 832 703 to 648 786. In figure 5, the317

number of available observations, between 1950 and 2000, appears to increase over time, with318

a substantial improvement in sampling in the nineties. Two minima are found in the fifties and319

eighties, suggesting that reconstruction during these periods may have been less constrained.320

In the OSSE framework, the Oceanic Chaos – Impacts, Structure, Predictability (OCCIPUT)325

project was utilized (Penduff et al. 2014; Bessières et al. 2017). The OCCIPUT project offers an326

ensemble of 50 realizations of a global 1/4° ocean/sea ice simulation, based on the NEMO 3.5327

model (Penduff et al. 2014; Bessières et al. 2017), alongside synthetic profiles extracted at specific328

times and locations corresponding to the historical database. For this study, only one member of329
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Fig. 5. Monthly histogram of available EN4.2.2 temperature observations in the tropical Pacific, depending

on the depth, between 1950 and 2000. In red, observations at 5 and 100 meters depth are counted. In blue,

observations at 300 and 500 meters depth are counted. The number of observations at 700, 1000 and 1500 meters

depth is represented in yellow.
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the model output and synthetic profiles were used. The simulation spans the period from 1961 to330

2015, employing the DFS atmospheric forcing over the same period (Dussin et al. 2016).331

To compare RedAnDA’s temperature reconstruction with state-of-the-art reanalysis products332

since the 1950s, five products were introduced. Three of these are optimal interpolation products,333

while the other two are derived from data assimilation with numerical models:334

• ISHII: Version 6.4.0 of a historical objective analysis of temperature data provided by the335

Japan Marine Science and Technology Center. ISHII utilizes in situ observations from the336

World Ocean Database 2005 (WOD05), the Global Temperature and Salinity Profile Program337

(GTSPP), Centennial in situ Observation Based Estimates (COBE), and ARGO buoys (?). It338

compiles monthly 1°x1° temperature fields on 24 depth levels.339

• EN4: A gridded product from the Hadley Centre of the UK Meteorological Office. EN4340

employs an optimal interpolation technique, with in situ profiles from the EN4.2.2 dataset341

analyzed using a smoothed 1971–2000 field from the EN2 version (Good et al. 2013). It342

provides monthly temperature fields from 1900 to the present day over 42 depth levels.343

• IAP product: Provided by Ensemble Optimal Interpolation of the CODC-GOSD dataset, it344

utilizes CMIP5 models to reconstruct global and gridded temperature at a monthly period345

from 1940 to the present day, at a spatial resolution of 1°x1° in the upper 2000 m, over 41346

levels (??) .347
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• ESTOC dataset: Developed by the Japan Agency for Marine-Earth Science and Technol-348

ogy (JAMSTEC) and Kyoto University, ESTOC utilizes a four-dimensional variational data349

assimilation method with the GFDL Modular Ocean Model (MOM3). It assimilates quality-350

controlled EN3 in situ profiles and sea-surface dynamic-height data from Aviso altimetry351

products (??). The 1°x1°monthly result covers the period from 1956 to 2009 over 46 vertical352

levels.353

• ORAS4: Provided by the Copernicus Climate Change Service, ORAS4 combines model354

data with observations using the NEMO model and the 3D-Var assimilation system called355

NEMOVAR (?). It assimilates in situ profiles from the EN3 dataset, sea-surface temperature356

from the OIv2 product, and altimeter sea level anomalies from the AVISO dataset. ORAS4357

covers the period from 1959 to the present day on 42 depth levels and with a horizontal spatial358

resolution of 1°x1°.359

4. Validation using numerical simulations and OSSE360

The tropical Pacific temperature fields were reconstructed within the OSSE framework, with361

the assimilation of synthetic observations available between 1961 and 1994. The 1995-2015362

OCCIPUT model (Penduff et al. 2014; Bessières et al. 2017) fields served as a learning period for363

the Analog backcast.364

Our validation initially focused on selected depths (around 100m, 500m, and 1000m), analyzing365

the temporal evolution of temperature anomalies averaged over specific sub-regions chosen to366

highlight the key features of both RedAnDA and OI products, as well as the model truth.367

We first present the reconstructions in the tropical Pacific at 100-m depth level (Fig. 6a, b, and c).368

During the 1973 El Niño, as identified in the Niño 3.4 time series (Fig. 6d), the temperature field369

appeared consistently reconstructedwith RedAnDA (Fig. 6a and c). However, theOI reconstruction370

lacked the necessary observations to successfully capture the spatial distribution of the warm and371

cold anomalous patterns of the El Niño event (Fig. 6b). Despite persistence from the initial guess,372

which allowed the emergence of a warm signal around 160°E, the region remained overall too373

cold in the absence of surface observations. In contrast, the cold anomaly in the North Equatorial374

Countercurrent around 5-10°N was satisfactorily reconstructed with RedAnDA (Fig. 6a and c).375
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Due to an insufficient number of observations and inaccurate a priori correlation scales, OI did not376

reproduce such fine structure (Fig. 6b and c).377

Fig. 6. (a, b, c) Temperature anomalies at around 100-m depth for RedAnDA, OI, and OSSE truth in September

1972. The black dots indicate synthetic observations available at the given depth and time. The black box in

panels a, b, and c shows the region where the temperature is calculated to obtain a pseudo-Niño 3.4 index.

(d) Temporal variations in this average for RedAnDA, OI, and OSSE truth. RedAnDA and EN4 provide 50%

confidence intervals. The blue vertical line indicates the selected month for the top snapshots.
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The time series of the averaged temperature anomaly in the Niño 3.4 box, a region where an SST383

anomaly index is typically calculated, indicated that both methods performed better in the recent384

past, from 1974 to 1994, when more observations were available (Fig.5 and 6d). In this selected385

region, the temperature anomaly was strongly positive during El Niño events, and most of them386

were successfully identified in the years: 1963, 1965, 1968, 1969, 1972, 1976, 1977, 1979, 1983,387

1987, 1990, 1992, 1993, and 1994. Interestingly, in the early period, the El Niño events of 1963,388

1965, 1972, and 1976 were systematically underestimated by about 1°C by the OI reconstruction.389

Similarly, most La Niña events were identified in both products (1962, 1964, 1971, 1973, 1974,390

1975, 1984, and 1988), but tended to be overestimated by 1-2°C, as in 1971, 1974, and 1988.391

Occasionally, such biases could have led to an overestimation of temperature, as in 1972 and 1983.392

At 500-m depth, the true signal exhibited low-frequency variability that was scarcely detected393

by both OI and RedAnDA (Fig. 7a, b and c). This was particularly evident outside the equatorial394

zone, where a region with strong cold anomalies of approximately −1.2°C extended along latitudes395

20°N and 20°S. From the Coral Sea around 18°S and 158°E to the eastern boundary of the Pacific,396

both reconstructions failed to capture the extent of the cold anomaly (Fig. 7a, b, and c). Although397
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RedAnDA and OI reconstructed the eastern warm and northwestern cold regions, they did so with398

an intensity underestimated by approximately 0.2°C. Additionally, in the eastern tropics, the La399

Niña pattern at 500-m depth in RedAnDA was more realistic compared to that in OI. For instance,400

RedAnDA was able to identify the equatorial colder temperatures near the South American coast.401

Fig. 7. (a, b, c) Temperature anomalies around 500 m depth for RedAnDA, OI, and OSSE truth in September

1972. Black dots indicate synthetic observations available at the given depth and time. The black box in panels

a, b, and c, now located between 5-20°N, 130°E-160°W, shows the region where the temperature is calculated to

estimate the signature of the westward North Equatorial Subsurface Current (NESC) (?). (d) Temporal variations

in this average for RedAnDA, OI, and OSSE truth. RedAnDA and OI provide 50% confidence intervals. The

blue vertical line indicates the selected month for the top snapshots.
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The temporal variations illustrated RedAnDA’s capability to reconstruct the averaged variability408

in the selected box in the northwest of the domain, between 5°-20°N and 130°E-160°W (Fig. 7c409

and d). The choice of the box was made to capture the highest regional variability at 500-m depth,410

which differed from the area at 5 m depth. This variability is associated with the North Equatorial411

Subsurface Current (NESC), which varies interannually along with ENSO. It flows stronger during412

La Niña events and weaker during El Niño (?). However, some variations appeared excessively413

pronounced in the RedAnDA product, such as in 1967 with a difference of 0.1°C, or in recent414

years, while others were underrepresented with similar magnitude, such as in 1971, around 1980,415

and between 1989 and 1992 (Fig. 7d). In contrast, OI adequately represented the period 1968416

to 1974 and exhibited variations that correlated with RedAnDA most of the time. However, it417

suffered from a drift that led to an overestimation of temperature by approximately 0.2°C in the418
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selected region over time. Moreover, the OI signal was notably noisy, due to the irregular sampling419

of observations.420

Fig. 8. (a, b, c) Temperature anomalies around 1000 m depth for RedAnDA, OI, and OSSE truth in May 1988.

Black dots indicate synthetic observations available at the given depth and time. The black box in panels a, b, and

c, between 5-20°N, 130°E-160°W, shows the region where the temperature is averaged to assess the variability

associated with the North equatorial deep jets (???). (d) Temporal variations in this average for RedAnDA,

OI, and OSSE truth. RedAnDA and OI provide 50% confidence intervals. The blue vertical line indicates the

selected month for the top snapshots.
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Around 1000 m depth, the number of observations diminished significantly (Fig. 5 and 8). It427

impacted the OI reconstruction, particularly east of 120°W (Fig. 8b). In the northwest tropical428

Pacific, the OI captured the warm zonal pattern along 15°N with an anomaly of 0.25°C (Fig. 8b429

and c). In contrast, RedAnDA extrapolated more signal from analogs, aided by three-dimensional430

EOFs connecting the surface to the depths (Fig. 8a). Although its reconstruction may have been431

insufficient to represent small-scale structures. From 120°E to 120°W in the northern tropics and432

between 150°E to 100°W in the south, RedAnDA successfully retrieved the warm extensions, along433

with cold regions of approximately −0.2°C east of 120°W along the coast. Along the equator, the434

most significant differences between RedAnDA and Truth were observed, with dissimilar warm435

and cold patterns (Fig. 8a and c).436

Considering the time series in the selected box, OI had difficulties capturing the most significant437

temperature variance (Fig. 8d), exhibiting high-frequency oscillations not coherent with the time438

series derived from the Truth. This is likely attributed to sparse and uneven distribution in data439

sampling. Initially, in 1961, OI closely aligned with RedAnDA temperature estimates, but then440
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diverged from model Truth and RedAnDA by up to 0.1°C, as persistence introduced a drift. Its441

correction was impeded by either an insufficient number of observations or an overemphasis on442

background signals.443

RedAnDA’s temperature time series correlated more closely with the truth, especially after 1983.444

Before 1983, the oscillations were recovered, but often too weakly and biased, as the true signal445

presented a drift. Before 1970, the difference due to the drift was greatest, and RedAnDA’s446

reconstructed oscillations correlated less closely with the truth, with a difference of 0.05°C in447

1961.448

To evaluate the quality of the uncertainty estimation, we computed the probability coverage. It is449

evaluated as the proportion of the true signalwithin a given confidence interval of the reconstruction.450

The confidence interval was determined by the normal quantile 𝑞, set to approximately 0.67 for a451

50% confidence interval. This metric assessed the reliability of uncertainty estimates in capturing452

differences between the true and reconstructed signals. A proportion close to 50% indicated453

proper uncertainty estimation, while deviations from 50% indicated potential underestimation or454

overestimation of uncertainty. For more details about this metric, see ?.455

Probability Coverage = 𝑃

[
T(𝑡) − 𝑞×σ ≥ Ttrue(𝑡) ≥ T(𝑡) + 𝑞×σ

]
, (5)

456

457

Generally, both methods captured less than the desired amount of truth within their confidence458

intervals (Fig. 9e, f, g and h). For OI, the uncertainty was basin-wide underestimated. Spatially,459

only 30% of the truth was captured within the confidence interval over most of the domain where460

a priori variances were the highest (Fig. 9c, d, g, and h). Below 300 m, estimates were the461

least reliable, which could be attributed to observed drifts (Figs. 7d and 8d). At depth, in the462

southern half of the basin, the reconstruction of anomalies was better, leading to higher inclusion463

percentages, between 30-40% (Fig. 9g).464

The RedAnDA uncertainty was linked to the space reduction, the sampling of observations, and470

the dispersion of members during the backcast prediction. The confidence interval was small,471

given the variability of the signal under consideration and the EN4 uncertainty (Figs. 6d and 7d).472

Before 1970, the confidence interval was wider, but still failed to capture the true signal when473
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Fig. 9. Meridional and zonal mean sections depicting the ratio of reconstructed variance to true variance (first

row) and the correlation of the two analysis products with the OSSE truth (second row). In the panels of the

second row, purple and blue contours indicate the 30% and 40% values in probability coverage. For the variance

ratio, note the logarithmic color scale. The two left columns represent the RedAnDA products, while the two

right columns represent the OI products.
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466
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469

the drift was significant (Fig. 8d). Overall, the results were overconfident at the surface, as the474

inclusion of the truth within the confidence interval was less than 30 %. The quantification of475

uncertainty was better at depth (Fig. 9e and f).476

Supplementary performance scores were calculated using several metrics. These metrics477

included the variance ratio and correlation defined as follows:478

479

Variance Ratio =
T(𝑡)2

Ttrue(𝑡)2
, (6)

480

The variance ratio compared the variance of the reconstructed signal T, to the variance of the true481

signal Ttrue. A variance ratio of 1 indicated that the reconstructed variability matched the true482

variability in energy.483
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484

Correlation =
(T(𝑡) −Ttrue(𝑡))2√︃
T(𝑡)2 × Ttrue(𝑡)2

, (7)

485

The correlation measured the coherence between the true and reconstructed signals. It ranged486

from −1 and 1, where −1 indicated opposite phase variations, 1 indicated similar variations, and 0487

indicated no consistency between the signals.488

489

Both analyses demonstrated the capability to inject a satisfactory level of variability into the490

upper 300 m, where they also exhibited satisfactory correlations with the model Truth (Fig. 9a-h).491

In the warm pool to the west along the equator and in the warm extensions of El Niño, between492

160°Wand the eastern basin, the effectiveness of the RedAnDA reconstruction was notably evident493

(Fig. 9a, b, e, and f). This outcome was anticipated, given that the principal modes of EOFs were494

linked to the variability of these regions. In contrast, OI exhibited satisfactory variance ratios and495

correlations for reconstruction, primarily concentrated in regions with better sampling (Fig. 9c, d,496

g, and h).497

At depths exceeding 300 meters, OI continued to inject information but displayed weak or498

negative correlations (ranging from 0 to −0.2) with the ground truth (Fig. 9c, d, g, and h). The499

signal reconstructed by RedAnDA exhibited more consistency with the truth, displaying positive500

correlation reaching up to 0.5 (Fig. 9a, b, e, and f). However, at the northern and southern501

boundaries, below 300 m, the reconstruction’s accuracy was less evident, owing to drifts in the502

model truth that neither RedAnDA nor OI identified (Figs. 7d and 8d).503

5. Results512

The regional reconstruction of temperature was conducted using real observations spanning from513

1950 to 2000 in the tropical Pacific. In this section, the performance of RedAnDA is compared514

with other temperature fields derived from various analyses.515

Firstly, Sea Surface Temperature (SST) reconstruction maps were examined for the intense 1982516

El Niño event (Fig. 10a-f), during which observation availability was not homogeneous. All517

reconstructions depicted the warm tongue extending 2°C to the east and the cold region to the518

west. Along 10°N, between 180°E and 150°W, the cold anomaly was detected by all methods.519
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Fig. 10. Temperature anomalies at 5-m depth in November 1982 for various datasets, including RedAnDA,

EN4, ISHII, IAP, ORAS, and ESTOC. The upper two rows display snapshots of temperature anomalies for each

dataset, with black dots indicating available observations at the given depth and time. The observation positions

represented here may not precisely match those assimilated by analyses other than RedAnDA. The black box

highlights the region where temperature was averaged to obtain a Niño 3.4 index. In the lower panel, the temporal

variations of this average temperature anomaly are depicted. Both RedAnDA and EN4 provided 50% confidence

intervals. The blue vertical line denotes the time selected for the upper snapshots. To enhance visibility, the

RedAnDA curve is depicted in black.
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However, around 120°W-15°N in the northern Tropical Pacific, there was disagreement among the520

reconstructions regarding the recovery of the cold anomalies (Fig. 10 a).521

The Niño 3.4 index exhibited good agreement among all time series (Fig. 10 g). ENSO events522

in RedAnDA appeared to be slightly stronger (up to 1°C) compared to other products, although523

previous validation results in section 4 demonstrated its ability to accurately recover El Niño524

events.525

In the 1950s, intense cooling was observed in RedAnDA, which was not observed in the other526

analyses. Error estimates for both EN4 and RedAnDA decreased over time as the number of527

observations increased. The error interval for RedAnDA was notably thinner compared to EN4,528

potentially indicating an underestimated error in the reconstruction.529
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At a depth of 300 meters, in February 1978, the various methods yielded less consistent results530

(Fig. 11a-f). In the southwest of the domain around 180°E, there was a consensus regarding531

the presence of a cold anomaly pattern, approximately −2°C, with, on its southern and northern532

flanks, warm anomalies ranging between 0.5 and 1°C. However, in the eastern Pacific, significant533

disparities emerged despite the presence of some observations near the coast. Around 120°W,534

between 15°S and 10°N, IAP, ESTOC, and RedAnDA appeared to agree on a warm anomaly535

pattern whereas ORAS tended toward a colder anomaly (Fig. 11a, d, e, and f). In this region,536

RedAnDA diverged fromEN4 and ISHII, but these reconstructions, lacking sufficient observational537

data, exhibited low energy (Fig. 11b and c).538

In the box (Fig. 11a-f), located in the southwest of the study area, between 150°E - 160°W and539

5 - 15 °S, temporal fluctuations relate in part to the Pacific South Equatorial Current (SEC). This540

current undergoes interannual fluctuations in its intensity related to ENSO, as it flows stronger a541

few months following an El Niño event and weaker after a La Niña event (?). Concerning the542

estimation of this variability, after the 1970s, the different time series are aligned (Fig. 11 g). In543

1979, RedAnDA reconstructed a significant cold event with a magnitude around 1°C, which was544

less pronounced in other methods, estimating its magnitude at−0.5°C. This discrepancy arose from545

the cold extension between 5°-15°S and 150°E to 120°W and the warm southern pattern centered546

at 15°S and 165°E, which were larger and narrower, respectively, compared to other methods (Fig547

11a-f).548

A similar discrepancy occurred in 1959. In the 50s, RedAnDA assimilated more observations549

over a wider time window (see section 2), resulting in a smoother analysis during this period than550

in other analyses. Except for the 1959 event, the variations correlated with the highest peaks in551

IAP. However, these were likely associated with spurious assimilation of sparse observations.552

The average correlation ofRedAnDAwith the other products indicated overall agreement (Tab. 1).564

ISHII and ORAS showed the closest similarity to RedAnDA, with both correlations at 0.61, while565

ESTOC showed the least similarity with a value of 0.47. These close scores demonstrated that566

RedAnDA aligned with the state-of-the-art reconstructions. However, the existence of dissimilarity567

suggested that RedAnDA still provided original results, not yet obtained with any of the alternative568

methods. Regarding the results from the OSSE, the original reconstruction of RedAnDA in the569
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Fig. 11. Temperature anomalies at 300m depth in February 1978, including RedAnDA, EN4, ISHII, IAP,

ORAS, and ESTOC. The upper two rows display snapshots of temperature anomalies for each dataset, with black

dots indicating available observations at the given depth and time. The observation positions represented here

may not precisely match those assimilated by analyses other than RedAnDA. The contours in (a) delimit the 0.35,

0.45 and 0.55°C temperature standard deviations to highlight the regions of high variability. The black box,

now between 150°E - 160°W and 5 - 15 °S, has changed to highlight the southwestern region where temperature

was averaged to visualize variability partly associated with the Pacific South Equatorial Current (SEC) (???).

In the lower panel, the temporal variations of this average temperature anomaly are depicted. Both RedAnDA

and EN4 provide their 50% confidence intervals. To enhance visibility, only these are shown. The blue vertical

line denotes the time selected for the upper snapshots. To enhance visibility, the RedAnDA curve is depicted in

black.
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upper 500 m depth may be worth consideration as it may have reconstructed components of the570

variability that were undetected from other datasets.571

6. Discussion & Conclusion575

In conclusion, the RedAndA method represents a pioneering approach by integrating Analog576

backward prediction Data Assimilation with reduced-space analysis. It demonstrated successful577

reconstruction of the monthly three-dimensional temperature field from sparse and randomly578

distributed in situ profiles in the Pacific Ocean. In the OSSE, RedAnDA outperformed Optimal579
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Correlation

ISHII 0.61

EN4 0.52

IAP 0.57

ORAS 0.61

ESTOC 0.47

Table 1. Comparative analysis of the RedAnDA reconstruction with reconstructions from ISHII, EN4, IAP,

ORAS, and ESTOC, listed in rows from first to fifth, respectively. The scores represent the Correlation. Each

comparison is conducted over the period common to both reconstructions.

572

573

574

Interpolation (OI) in terms of truth retrieval. Moreover, it exhibited agreement with alternative580

reconstructions such as ISHII, IAP, ORAS4, and ESTOC, while inferring variability where other581

methods lacked information and avoiding spurious results.582

RedAnDA’s advancements relied on its ability to extrapolate to regions with poor sampling, par-583

ticularly at depth, facilitated by 3D EOFs that correlated the different vertical levels. Additionally,584

the analog backcast provides statistical temporal predictions that enhance the estimation of the a585

priori statistics every time step in the analysis.586

However, evaluating the uncertainty associated with RedAnDA remained challenging, encom-587

passing various sources such as the quality and sampling of observations, the predictability of the588

dynamics, and the unrepresented scales. Further investigation into each of these sources of error589

will be studied in future works.590

It is worth noting that assumptions regarding the validity of climatology and EOFs during the591

reconstruction period, as they were calculated during the learning period may have had limitations.592

As demonstrated in theOSSE, these limitations could have induced some errors, notably concerning593

long-term changes in the climate system. Thus, estimating the associated uncertainty and under-594

standing the relationship between temporal distance from the learning period and obsolescence are595

crucial areas for future research.596

In the OSSE, the non-stationarity of the mean state was found to be significant, particularly597

at depth. Attempts to account for the changing climatology yielded unsatisfactory results. The598

observations were insufficient in reflecting the long-term evolution adequately, likely due to uneven599

sampling.600
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Space reduction constrained signal extrapolation at depth, where a greater number of EOFs were601

required to fully capture variability. As previously stated, the curse of dimensionality imposed602

limitations on the number of EOFs that could be utilized (?). Efforts were needed to enhance603

the EOFs to encompass more of the variability present in the initial signal. Focusing solely on a604

specific depth, it is feasible to adjust the relative significance of each level in the construction of605

EOFs through weighting, allowing for the incorporation of the most crucial modes of variability606

associated with the target depth.607

The length of the catalog was constrained by the availability of Argo data, which might have608

been insufficient to represent the full spectrum of ocean dynamics. Consequently, there was a risk609

of underestimating the uncertainty in the analysis due to the potential redundancy of the selected610

analogs and the inherent replication of associated trajectories. While using a catalog composed of611

simulated data could have expanded its size, the primary objective was to generate an analysis solely612

based on real observations. This approach aimed to avoid potential bias introduced by numerical613

models, which could impact data assimilation despite observational constraints, particularly in614

regions and periods with sparse sampling (??). Given that the influence of such factors was not615

assessed in our case, it was decided not to incorporate simulated data into our reconstruction of616

reality.617

Within the OSSE framework, it was envisaged exploring a broader catalog by incorporating618

additional members from the OCCIPUT ensemble (Penduff et al. 2014). However, since all 50619

members were simulated by the same forced model with the same atmospheric forcing. In the case620

of a forced OGCM, the variability associated with ENSO reduces to forced variability. Thus, it was621

determined that the tropical Pacific basin, with its predominant wind forcing, might not provide a622

significant enhancement in dynamics for the catalog (?). In regions where ocean internal variability623

holds greater sway (e.g., the North Atlantic or the Southern Ocean), using multiple members may624

be crucial for reliably assessing uncertainty.625

For a real observational application, the catalog, climatology, and EOFs were derived from ISAS,626

which already constituted an analysis of the Argo period. While the effectiveness of its optimal627

interpolation had been demonstrated, its limitations – such as the lack of signal in shallow coastal628

areas – undoubtedly constrained RedAnDA. In the OSSE, the learning period was optimal. One629
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method to evaluate the impact of the ISAS mapping technique would involve applying it to the630

simulation prior to reconstructing the past and observing the resulting modifications.631

The current analysis was intended for investigations into regional temperature interannual vari-632

ability and at large time scales as well. Oceanic structures that were insufficiently observed during633

the 20th century, notably at depth, may be characterized through the use of the new temperature634

product provided by RedAnDA.635

To reconstruct temperature and salinity with RedAnDA in a co-varying approach, could provide636

new datasets of the evolution of regional water masses over the second half of the 20th century. To637

consider their co-variability would be beneficial to salinity from the greater number of temperature638

observations.639

An illustrative application involves utilizing RedAnDA’s Pacific temperature time series within a640

new catalog to predict El Niño using analog forecasting. With the Precursors method (e.g., ????),641

the analogs could provide new means of identifying conditions conductive to ENSO events.642
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