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Leveraging Event Streams with Deep Reinforcement Learning for
End-to-End UAV Tracking

Ala Souissi1,2, Hajer Fradi1, Panagiotis Papadakis1

Abstract— In this paper, we present our proposed approach
for active tracking to increase the autonomy of Unmanned
Aerial Vehicles (UAVs) using event cameras, low-energy imaging
sensors that offer significant advantages in speed and dynamic
range. The proposed tracking controller is designed to respond
to visual feedback from the mounted event sensor, adjusting
the drone movements to follow the target. To leverage the full
motion capabilities of a quadrotor and the unique properties
of event sensors, we propose an end-to-end deep-reinforcement
learning (DRL) framework that maps raw sensor data from
event streams directly to control actions for the UAV. To
learn an optimal policy under highly variable and challenging
conditions, we opt for a simulation environment with domain
randomization for effective transfer to real-world environments.
We demonstrate the effectiveness of our approach through
experiments in challenging scenarios, including fast-moving tar-
gets and changing lighting conditions, which result in improved
generalization capabilities.

I. INTRODUCTION

The technology of UAVs, known as drones, has been
increasingly used in humanitarian missions for search and
rescue, surveillance for safety control and emergency contin-
gency plan, or for guiding tasks [1], [2], [3], [4]. This rising
interest emphasizes the need for autonomous navigation
rather than manual control. Active tracking is one of the
most crucial tasks for UAVs, requiring the tracker to keep
the target centered in its field-of-view (FOV), relying mostly
on visual observations to follow the moving target [5].
These tracking capabilities are useful in many applications
including search and rescue missions, where a piloted drone
can lead exploration while a fleet of autonomous drones
navigates autonomously in GPS-denied environments by
following the leader [6], [7].

Active tracking with drones presents significant challenges
due to the complexity of the tracking process and the
nonlinearity of the system. Drone dynamics are affected
by uncertain environmental conditions and nonlinear effects
from aerodynamic forces, torques, payload variations, and
control signal noise. In dynamic environments, where target
motion and conditions change rapidly, maintaining accurate
tracking becomes even more difficult. These challenges make
it difficult to design a system controller that can reliably
maintain stable tracking.

Earlier works have mostly employed Proportional-
Integral-Derivative (PID) control [8] or Linear Quadratic
Regulator (LQR) [9] approaches. However, designing such
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controllers requires defining a highly accurate model of drone
dynamics, which is often difficult to obtain. Recent advances
in the field involve using reinforcement learning; however,
like classic controllers, it mostly requires access to the target
state [10]. Accurately estimating that while both the tracker
and the target are in continuous motion is challenging and
requires integrating a high-performance module for precise
target localization.

To address the aforementioned challenges, we opt for
designing an end-to-end deep reinforcement learning-based
controller that can process raw sensor data instead of train-
ing detection-based policy. A DRL-based tracker adapts to
environmental changes by learning from past experiences,
enabling model refinement without altering system com-
ponents, unlike classic controllers. Additionally, a highly
accurate dynamic model is not required because the DRL
algorithm can learn through data, even when the model
does not perfectly capture all the complexities of the control
system.

Unlike previous studies that have shown the potential
of reinforcement learning in control tasks [11], [12], [13],
the proposed end-to-end framework not only bypasses the
detection task but also leverages the unique properties of
event sensors over conventional RGB cameras. The latter,
with their low frame rates and limited dynamic range, pose
significant challenges in control. Motivated by the recent
success of event cameras in vision applications [14], we
aim to instead investigate these newly emerging bio-inspired
sensors. Thanks to their distinctive properties, such as high
dynamic range, high temporal resolution, and low latency, a
large interest has been shown in exploiting these new sensors,
especially in autonomous vehicles where rapid responses,
adaptability to weather and lighting changes, and robust
visual information at high speeds are crucial [15]. An illus-
tration of the comparison between a classic controller and
our proposed end-to-end DRL-based controller processing
events is shown in Fig. 1.

Training a DRL model involves trial and error where the
drone learns an optimal strategy based on previous trials.
Since this requires massive training, which is not feasible
with a real drone, due to the risk of drone crashes, we opt
for simulated aerial data collection which allows numerous
simulated trajectories. This simulated environment serves
as a crucial resource for training our proposed DRL-based
controller and is complemented by domain randomization
for effective real-world transfer and parallel training to
manage complexity.



Fig. 1: DRL controller using event streams vs. classic con-
troller for UAV active tracking.

Our contributions in this paper are summarized as
follows:

• To enable autonomous active tracking, we propose a
DRL-based UAV controller designed for aerial-to-aerial
tracking. This controller maps visual information from
mounted sensors to control drone commands using an
end-to-end architecture.

• For accurate tracking under challenging situations, we
integrate event cameras with the DRL framework to
overcome RGB camera limitations, applying this com-
bination to aerial-to-aerial tracking for the first time, to
the best of our knowledge.

• To minimize drone damage and maximize exploration,
the training is conducted in a simulated environment.
For effective real-world transfer, the training is comple-
mented by domain randomization and parallel training
to manage complexity.

• Using environments from the DARPA Subterranean
Challenge [16], the proposed end-to-end architecture
achieves improved performance in scenarios involving
high-speed targets and changing lighting conditions.

II. RELATED WORK

A. Visual Tracking

In visual tracking, a key distinction is made between
passive and active tracking. In passive tracking, the object po-
sition is estimated in each frame based on its previous state.
Object detection algorithms, such as YOLO [17], SSD [18],
or Faster R-CNN [19], are used to locate the object. Once
identified, tracking involves maintaining the object position
in subsequent frames using methods like the Kalman filter,
Mean-Shift, CAMShift [20], or deep learning-based trackers
like Deep-SORT [21]. The camera is typically fixed, so the
tracking focuses on processing stationary frames. Unlike
passive tracking, active tracking does not require explicit
object localization [22], [23], [24]. Instead, feedback from
previous camera frames is used to adjust camera orientation
and position enabling to focus on the target in dynamic and
responsive way to the target movement. In the case of UAV
tracking, the drone receives visual information from mounted

cameras and adjusts its position and orientation to keep the
target centered in its FOV.

B. Active Drone Tracking

For active tracking, some related works rely on classical
controllers [25], [8], [12]. For instance, in [12], predictive
learning is combined with reactive control systems to per-
form self-supervised active action localization. The reactive
control, inspired by PID controllers, adjusts camera orienta-
tion to keep the target within the FOV. Recent advances in the
field have shown the potential of using DRL in control tasks,
but most approaches assume access to the target position and
are designed for either ground-to-ground or air-to-ground
tracking [13], [11]. In [13], a DRL-based visual active
tracking system that provides continuous action policies is
proposed, however, experiments are conducted on ground
mobile robots which are controlled via discrete actions. The
method in [11] performs aerial-to-ground tracking using a
policy learned from training to fly toward a fixed target.

We note that most DRL-based controllers have been im-
plemented for ground robots or for tracking moving objects
on the ground, while aerial-to-aerial tracking remains less
explored. Furthermore, the proposed approaches are con-
strained by the limitations of conventional RGB cameras,
which, with their low frame rates and limited dynamic range,
present significant challenges for dynamic and accurate con-
trol. While event cameras have been investigated for UAV
applications, primarily for obstacle avoidance [26], [22], to
the best of our knowledge, our work is the first to explore
their use for UAV active tracking.

III. PRELIMINARY DEFINITIONS

A. Dynamic Quadrocopter Model

The quadrotor model, inspired by the study of Mark et al.
in [27], represents the drone as a rigid body with six degrees
of freedom, namely, three translational and three rotational
along the 3D body axes. This model is controlled by a scalar
thrust f representing the total thrust value along the Z axis,
and angular velocity expressed in the fixed body frame as
Ω = (Ω1,Ω2,Ω3).

The quadrotor state consists of the position, velocity, and
orientation. The differential equations are as follows:

p̈(t) = R3(t)
f (t)
m

+g, (1)

Ṙ3(t) = R(t)[Ω(t)]X , (2)

Ω× =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 , (3)

where p(t), R(t), and Ω(t) are the absolute position, orien-
tation, and angular velocity of the tracker drone at time t,
respectively. The term R j(t) refers to the j-th column of the
orientation matrix R(t). The total thrust is denoted by f (t),
with m representing the drone mass. The gravity vector is
given by g= [0 0 −9.8]⊤ m/s2, and [Ω(t)]X denotes the skew-
symmetric matrix associated with Ω(t). The thrust value f (t)



and the angular rates are constrained within the following
ranges:

0 ≤ fmin ≤ f ≤ fmax, (4)

−Ωmax < Ωi < Ωmax for i ∈ {1,2,3}, (5)

where the limit values fmin, fmax, and Ωmax can be set to
match certain drone specifications.

B. Reinforcement Learning-based Tracking

For UAVs, the active tracking problem involves using
visual sensory data to generate actions that keep the target
centered and maintain a certain distance. We formulate the
UAV active tracking by reinforcement learning as a Partially
Observable Markov Decision Process (POMDP) [28], an
extension of Markov Decision Process (MDP). POMDP is
defined by the tuple (S,A,O,T,R,Z,γ), where O, S, and
A are the observation, the state, and the action spaces,
respectively. The discount factor γ balances immediate and
future rewards. T is the transition probability to a new state.
Z defines the probability of obtaining the current observation
given the current state and R is the reward function.

At each time step, the agent (UAV) interacts with its
environment as follows: (i) the agent receives a visual
observation ot ∈O; (ii) based on this observation and using
a stochastic policy at ∼ π(at | ot), the agent selects actions;
(iii) the agent gets an immediate reward rt+1 = R(st+1) as a
function of the new state and receives a visual observation
ot+1 correlated with the new state ot+1 ∼ Z(ot+1 | st+1).
This formulation is used to find the optimal policy π∗ that
maximizes the expected cumulative reward over interactions
with the environment. In the following, we instantiate the
observation, state, and action spaces for the problem under
consideration.
Observation Space: The observation derived from visual
sensors is defined as a sequence of the N latest images:
O(t) = (I(t − N + 1), ..., I(t)), where I(t) is the current
image. The observation space is therefore defined as: O =
(H,W,C)N , with W ×H is the spatial resolution and C is the
number of channels.
Action Space: The actions are the control decisions
for tracking, defined as at = ( f (t),Ω(t)). The ac-
tion space is continuous and is defined as: A =
[0, fmax]︸ ︷︷ ︸

thrust

× [−Ωmax,Ωmax]
3︸ ︷︷ ︸

angular rates

⊂ R4.

State Space: The state space of the system at time t is de-
fined as st = (Pt ,Vt ,At)∈R9, with Pt = (x(t),y(t),z(t)) is the
relative position of the target along three axes with respect
to the tracker, Vt = (vx(t),vy(t),vz(t)) is the relative velocity,
and At = (ax(t),ay(t),az(t)) is the relative acceleration.

IV. METHOD

A. Asymmetric Soft Actor-Critic Framework

The learning framework represents an asymmetric modi-
fication of the Soft Actor-Critic algorithm as shown in Fig.
2.

Fig. 2: The flowchart of Asymmetric Soft Actor-Critic
(ASAC) learning framework: the actor and critic networks
work together to optimize the policy.

1) Asymmetric Actor-Critic: The actor uses a stochastic
policy to generate actions from the current observation, while
the critic evaluates these actions with a Q-function based on
the selected action and the current state. Both are modeled
with neural networks and trained together to optimize the
policy. In soft actor-critic, the optimal policy maximizes
both expected rewards and entropy, encouraging the agent
to explore new strategies while balancing exploration and
exploitation.

The characteristic of asymmetry leads in using different
inputs for the actor and critic. In robotics, the policy often
relies on partial observations from sensors, which provide
a noisy and incomplete view of the environment. However,
the critic has access to the full system state in the controlled
training environment, optimizing the learning process despite
the robot restricted sensory input. This modified Actor-
Critic algorithm with asymmetric inputs shows promise,
as the critic has access to task-relevant information and a
full system view during training speeds up convergence,
improving overall learning efficiency.

2) Reward shaping: The main control objective is to
maintain the target in a defined relative position Pt =
(x(t),y(t),z(t)) with respect to the tracker. Specifically, we
aim that the target position along the x-axis of the tracker
body frame to be equal to an optimal distance d∗, and along
the y and z axes equal to 0 in order to keep the target centered
in the FOV of the tracker, as shown in Figure 1, which
illustrates the drone’s body frame and axis.

To achieve this, we shape the reward function based on
the relative position Pt . The reward function re(t) is defined
as the cubic root of the product of three reward components
at each axis:

re(t) = 3
√

rx(t) · ry(t) · rz(t) (6)

where:
rx = max(0,1−|x(t)−d∗|)

ry = max
(

0,1− 2
π
· arctan

(
y(t)
x(t)

))
rz = max

(
0,1− 2

π
· arctan

(
z(t)
x(t)

))



Fig. 3: Overview of the proposed end-to-end architecture processing events for UAV active tracking.

The product of the three reward functions promotes main-
taining visual contact at the optimal distance. If any of these
conditions is not met, the total reward is set to zero.

An additional penalty term is included to optimize the
UAV linear velocity, discouraging excessive speeds that
could lead to instability or inefficient tracking behavior,
defined as follows:

rv(t) =
v(t)

1+ v(t)
(7)

To avoid collisions, we introduce a penalty term: when the
relative distance falls below the limit ∥P(t)∥< dmin, it incurs
a large negative value. These reward terms are combined in
an overall reward function r(t) defined as:

r(t) =

{
re(t)−αrv(t), if ∥P(t)∥> dmin

−kc otherwise
(8)

where kc is a large positive constant, and α is a positive
weighting parameter.

B. End-to-End Event-based Tracking Architecture

Within the presented ASAC framework, we train a single
end-to-end model to generate actions directly from the raw
event data. The overall architecture is shown in Fig. 3.

1) Event Data Processing: Compared to conventional
cameras capturing images at a fixed frame rate, event cam-
eras respond to brightness changes for every pixel asyn-
chronously and independently. This results in a stream of
events that are spatially sparse and asynchronous. Each event
is a tuple e = (t,x,y, p), where t is the timestamp at which
the event is triggered, (x,y) are the spatial coordinates, and
p is the polarity indicating the sign of the change. To align
with conventional image-based vision, event streams need
to be transformed into a 2D spatial grid representation. A
common way to represent events is the stacking on time
which involves incorporating a sequence of events E = {ei |
t ≤ i < t + ∆t} within a time interval ∆t, resulting in an
event frame. To train our policy, the observation is defined
as a sequence of the N latest event frames (N = 3 in our
case): O(t)= (I(t−2), I(t−1), I(t)). To process event frames
and capture task-relevant features, the policy architecture is
designed as follows.

2) Neural Networks of Actor and Critic : Actor and Critic
are modeled with the following networks.
Actor-NN: The deep neural network defining the actor
consists of two blocks. The first block is a feature extractor
that maps observations to a feature vector, capturing the
spatial and temporal information. The feature embedding
space has a higher correlation with the state space, giving
a much more informative representation of the current state.
The event frames, which serve as observations, are processed
using ResNet18 [29] as feature extractor due to its balance
of complexity and performance. The feature extractor has as
input a sequence of 3 event frames and maps each frame to
a single feature vector of dimension 512. The three vectors
are then concatenated along the first axis to obtain a single
latent vector. We then use a fully connected layer to reduce
the vector dimension from 3×512 to 512. The second block
consists of two linear layers with 512 neurons each followed
by a tanh activation. It processes the features of dimension
512 and produces the mean and log standard deviation for the
Gaussian probability distribution over the possible actions.
Critic-NN: The critic network receives the full state of
the environment, represented by a nine-dimensional vector
st = (Pt ,Vt ,At) ∈R9 and the chosen action a(t). The critic is
designed using a straightforward architecture based on fully
connected neural network layers. First, we use a flatten layer
to transform the input into a one-dimensional vector. The
main part of the architecture consists of three dense layers.
The first layer maps the input to 512 neurons, followed by a
second hidden layer with 512 neurons. The final output layer
produces a single scalar value, representing the estimated
action value Qπ(s(t),a(t)). A tanh activation function is
applied at the output to constrain the value range.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

Since training a policy via deep reinforcement learning
would require a massive number of trial and error attempts,
which is impractical with a real drone, we opt for a simu-
lated environment that provides realistic and infinite training
data. In particular, we build a simulated environment using
AirSim simulator [30] that supports aerial vehicles and
Unreal Engine (UE) [31] as graphics engine offering high-
fidelity physics and realistic rendering with highly detailed



visualizations. AirSim provides flexibility in drone dynamics
modeling by supporting both internal and external dynamic
models. This enables to leverage the previously defined drone
dynamic model while using the simulator for accurate sensor
feedback based on the drone position and orientation.

B. Training and Evaluation Environments

We generate a training environment called the box envi-
ronment, where the drone learns optimal tracking strategies
under highly variable conditions. To favor smooth transfer to
real-world environments, we employ domain randomization
[32], introducing enough variability. This approach helps
the model handle changes and maintain policy effectiveness
across different scenarios. More precisely, the training envi-
ronment includes random variations in wall textures, ranging
from simple to highly patterned designs, as well as changes
in color, light intensity, and orientation.

To evaluate the trained model, we use environments [33]
inspired by the DARPA Subterranean Challenge1 [16], fo-
cusing on robot navigation in complex backgrounds such as
caves, urban scenes, tunnels, and mountains, all of which
are entirely new to the policy. These environments are
challenging due to low lighting and high-texture scenes,
making them ideal for evaluating our policy. We further
test the model in various box environments to assess its
generalization capabilities. For both cases, we test our policy
under changing lighting conditions and scenarios involving
tracking very fast targets. Additionally, trajectories are ran-
domly generated so as to ensure that the target moves in all
directions and periodically pauses at random intervals. Some
examples of the box and DARPA environments are shown in
Fig. 4.

Fig. 4: Examples of training box environments with varying
textures (first row) and DARPA environments used for eval-
uation (second row).

C. Comparisons and Implementation Parameters

The training was conducted using an NVIDIA RTX A4500
GPU, an i7 12-core CPU, and 32 GB of RAM. To accelerate
the training process, we utilize parallel training with 7
agents. The proposed end-to-end event-based UAV tracking
is compared with two settings. The first is a baseline method
that trains the policy based on object detection, where the
observation space consists of target positions and distances.
The policy architecture is defined as a simple MLP, with the

1https://github.com/osrf/subt/tree/master/subt ign/worlds

flattened detection information as input, followed by three
fully connected layers with ReLU activation. The second
setting is an RGB-based approach, where the perception
input is replaced by the latest RGB images instead of event
data, while the other architectural details remain unchanged.

In all settings, we defined a total number of epochs equal
to 70 epochs, each one involving 50,000 time steps, with
evaluation episodes set to 6. The buffer size is maintained at
10,000, and the batch size is set to 64. Training occurs every
8 timesteps, with a learning rate of 0.0003 and a discount
factor of 0.99. In the reinforcement learning environment,
each episode lasts 40 seconds, with the optimal tracking
distance d∗ being 0.2 meters. The action space includes
angular rates between [−3.5,3.5] rad/s and thrust between
[−18,18] N. Reward parameters are the penalty weight α

equal to 0.4 and the reward penalty constant kc equal to 10.
Events are stacked at a time interval ∆t=0.005 seconds.

D. Training Process

To ensure that each training episode has a unique trajectory
and expose the tracker to new scenarios, the target motion is
generated using random movements and velocities, ranging
from slow to fast, with sinusoidal trajectories. We use random
amplitudes, phases, and frequencies sampled from a defined
interval. We introduce short random periods where the target
stops moving, allowing the model to encounter and adapt to
static scenarios.

During training, the drone follows the target for up to
40 seconds per episode. The episode ends if the drone
collides with the target, loses sight of it, or reaches the time
limit. This strategy ensures that the target stays within the
field of view and at a convenient distance to optimize the
policy. After each training epoch, the policy is evaluated
across 6 different episodes using the mean and the standard
deviation of the cumulative reward per episode. This process
is repeated 70 times until the final trained policy is obtained.
The mean cumulative reward per episode curves of the
training phase are shown in Fig.5.

Fig. 5: Learning plots of the detection-based (baseline), end-
to-end RGB-based (E2E RGB), and end-to-end event-based
(E2E event) approaches.

For the object detection-based approach, the agent learns
faster due to the low-dimensional vector input and the
simplicity of the policy architecture. The learning curve
stabilizes around 0.35, achieving a maximum mean reward



value of 0.4050±0.09. It is important to note that the object
detector-based policy is based on the ground truth detections.
However, it shown at the end of the training plots, that the
rewards of both end-to-end approaches (RGB and event), are
very close to it with event-based method performing better.

E. Limitations of Object Detection-based Policy

To validate the effectiveness of the end-to-end approach,
we evaluate the performance of object detector-based policy
trained on ground truth detections. Using an object detector
can simplify the learning process, allowing the agent to learn
faster, as discussed in the previous section. However, a drop
in detection accuracy can significantly reduce the overall
system performance. In Fig. 6, we illustrate the impact of
adding noise to the detections by comparing the trajectories
of the target and the tracker.

Fig. 6: Example of the tracker and the target trajectories us-
ing object detector-based policy with different noise values:
η = 0, η = 0.06, and η = 0.12.

In this example, the target trajectory is fixed, and only
the noise weight value is changed. As expected, the figure
shows a drop in overall tracking performance as the noise in-
creases. At η = 0.06, the tracker struggles slightly, indicating
medium noise. At η = 0.12, the tracker fails due to the high
noise. This demonstrates how even a slight change in object
detector performance can significantly impact the overall
tracking system, emphasizing the advantage of an end-to-
end architecture that learns directly relevant features from
raw inputs within the DRL framework. During training, the
reward system encourages the agent to encounter scenarios
relevant to the tracking task, enabling the feature extractor
to focus on task-specific data during optimization. Jointly
optimizing the feature extractor and the network head can
enhance overall performance.

F. Results and Analysis

After discussing the limitations of the detection-based
policy, we compare, at this stage, our proposed approach to
the RGB-based approach, where event inputs are substituted
with RGB images. For this comparison, we use ASAC as
the baseline reinforcement learning algorithm with two types
of perception inputs: RGB images and event frames. Both
methods use the same convolutional neural network archi-
tecture, ResNet-18, with identical parameter initialization for
fair comparison. Additionally, the task predictive head of the
network remains unchanged. Both policies are trained under

Scenarios E2E Event E2E RGB

Box environment (Low-light) 0.45 ± 0.20 0.35 ± 0.22
Box environment (Fast target) 0.47 ± 0.19 0.34 ± 0.21
Box environment (Normal) 0.50 ± 0.10 0.52 ± 0.09
DARPA environment (Low-Light) 0.28 ± 0.17 0.19 ± 0.16
DARPA environment (Fast target) 0.26 ± 0.12 0.22 ± 0.08
DARPA environment (Normal) 0.28 ± 0.11 0.48 ± 0.09

TABLE I: Performance comparison of event and RGB
policies across different scenarios using cumulative reward
metrics. The best-performing policies in each scenario are
highlighted with a gray background.

the same conditions in the box environment. Table I presents
the evaluation results of both approaches.

As depicted in the table, under low-light conditions,
event cameras achieve the highest performance due to their
high dynamic range, compared to the poor performance of
underexposed RGB images in such scenarios. In contrast,
light reflections on surfaces can cause significant pixel-level
brightness changes in highly textured environments, leading
to excessive noise from event cameras. In these cases, RGB
cameras perform better. Two visual examples illustrating
such situations are shown in Fig. 7.

Fig. 7: Illustration of tracking scenarios under normal and
low light conditions, comparing RGB and event-based inputs.

Additionally, in fast-target scenarios, RGB cameras with
low frame rate can cause the target to move out of the frame
quickly, leading to poor tracking performance. In contrast,
event cameras capture high-frequency changes, enabling the
drone to react to rapid movements with microsecond-level
response times, resulting in superior performance for fast-
moving targets as shown in the table. In summary, event
cameras consistently outperform RGB cameras, highlighting
their advantages, except in high-textured environments where
their performance is limited.

VI. CONCLUSION

In this paper, we addressed the problem of active drone
tracking problem using visual information from event cam-
eras and ASAC-based, deep reinforcement learning, high-
lighting the benefits of event cameras in terms of reactivity
and robustness under varying conditions. We demonstrated
the advantages of jointly optimizing the feature extractor and
tracking process in an end-to-end fashion rather than training
an object detector-based policy. The tracking policies were
obtained via appropriate reward shaping within domain ran-
domized environments in simplistic box-like environments to



larger-scale, adverse conditions reminiscent of subterranean
scenes. A multi-modal solution that leverages the advantages
of both RGB and event modalities could be a subject of
further investigation, for example via hierarchical RL. Such
extension, however, could require additional attention so as
to not compromise real-time tracking performance.
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[32] D. Horváth, G. Erdős, Z. Istenes, T. Horváth, and S. Földi, “Object

detection using sim2real domain randomization for robotic applica-
tions,” IEEE Transactions on Robotics, vol. 39, no. 2, pp. 1225–1243,
2022.

[33] A. Nguyen, N. Nguyen, K. Tran, E. Tjiputra, and Q. D.
Tran, “Autonomous navigation in complex environments with
deep multimodal fusion network,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.15945


