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Abstract—This paper investigates practical coding schemes for
Distributed Hypothesis Testing (DHT). While the literature
has extensively analyzed the information-theoretic performance
of DHT and established bounds on Type-II error exponents
through quantize and quantize-binning achievability schemes,
the practical implementation of DHT coding schemes has not
yet been investigated. Therefore, this paper introduces practical
implementations of quantizers and quantize-binning schemes
for DHT, leveraging short-length binary linear block codes.
Furthermore, it provides exact analytical expressions for Type-I
and Type-II error probabilities associated with each proposed
coding scheme. Numerical results show the accuracy of the
proposed analytical error probability expressions, and enable to
compare the performance of the proposed schemes.

I. INTRODUCTION

In modern communication systems, the communication ob-
jective has evolved beyond the mere reconstruction of original
information to encompass the application of Machine Learning
tasks such as decision making or classification upon received
data. This paper focuses on the specific case of Distributed
Hypothesis Testing (DHT) [1]. In the DHT setup, the decoder
aims to make a decision between two hypothesis H0 and H1,
based on a coded version of the source X , and on some
observed side information Y . The performance of a DHT
scheme is typically evaluated from two error probabilities.
Type-I error refers to deciding H1 while H0 was true, and
Type-II error conversely involves selecting H0 when H1 is
true. To fully address DHT, it is essential to investigate both
information-theoretic performance limits and practical coding
schemes for this setup.

From an information-theoretic perspective, DHT was initially
introduced by Berger in [2]. Subsequently, Ahlswede and
Csiszar established a lower bound on Type-II error-exponent
through an achievability scheme based on a quantizer [3].
Notably, this scheme was found to be optimal for testing
against independence [4]. Next, Shimokawa et al. improved
the lower bound presented in [3], extending its applicability
to general hypotheses, not restricted to testing against inde-
pendence [5]. This enhancement was achieved by employing
a quantize-binning achievability scheme. The optimality of
the quantize-binning scheme was then investigated on several
DHT problems. It was shown in [6] that this scheme is optimal
for a certain class of testing against conditional independence
problems, given that the tradeoff between quantization and bin-
ning is adressed properly. This analysis was further extended

to encompass more generalized hypotheses, including those
involving independent and identically distributed (i.i.d.) binary
sources [7], non-binary sources [8], and non-i.i.d. sources [9].
The impact of discrete memoryless channels [10], Multiple-
Access channels [11], or two-hop relay networks [12] on the
DHT performance was also analyzed. Multi-terminal source
coding for DHT was also considered in [13].

While the DHT information-theoretic performance is now well
known across a wide range of source models and hypotheses,
the problem of designing practical coding schemes for this
setup has been by far less investigated. This paper takes a
step towards bridging this gap, by focusing on the scenario
where the sources X and Y are binary.

Previous achievability proofs suggest to consider either
quantizer-alone or quantize-binning coding schemes for DHT.
Some existing works have already introduced practical binary
quantizers [14], binning schemes [15], and quantize-binning
schemes [16], all constructed with linear block codes. But the
constructions of [14]–[16] primarily focus on source recon-
struction and typically involve very long source sequences,
often exceeding 105 bits. However, DHT inherently deals
with short-length sequences, where just a few dozen bits may
suffice for making the correct decision. And the construction
of efficient short-length linear block codes is often known
to be a challenging problem [17]. Consequently, an impor-
tant question arises regarding whether binary quantizers and
quantize-binning schemes are efficient structures for practical
short-length DHT.

This paper addresses practical coding schemes for DHT by
providing two main contributions. Firstly, it introduces and
compares three practical coding schemes. The first scheme,
named the truncation scheme, involves transmitting only the
first ℓ bits of the source sequence xn and serves as a
performance baseline. The second and third schemes are
practical quantizer-alone and quantize-binning schemes, both
constructed with short-length binary linear block codes. Sec-
ondly, the paper provides exact analytical expressions for
Type-I and Type-II error probabilities of the three considered
coding schemes. These new analytical tools should enable
the optimization and comparison of the proposed practical
schemes across a wide range of source and code parameters.
Numerical results validate the accuracy of the analytical error



Fig. 1. Distributed hypothesis testing scheme

probabilities by demonstrating their consistency with Monte-
Carlo simulations. Additionally, the paper compares the per-
formance of the three schemes for sources of length n = 31
bits.

The outline of the paper is as follows. Section II describes
the binary DHT problem. Section III presents the truncation
scheme. Section IV introduces the quantizer scheme. Sec-
tion V describes the quantize-binning scheme. Section VI
shows and discusses numerical results.

II. PROBLEM STATEMENT

In what follows, J1,MK is the set of integers between 1 and M .
Random variables are represented by capital letters, such as X ,
while their realizations are denoted by lower-case letters, like
x. Vectors of length n, such as Xn, are in bold. In addition,
we use w(xn) to denote the Hamming weight of the vector
xn, and d(xn,yn) to denote the Hamming distance between
xn and yn. The binomial coefficient of the pair of integers
(n, k) with k ≤ n is expressed as

(
n
k

)
.

A. DHT for binary sources

We consider binary source vectors Xn and Yn both of length
n. The encoder observes Xn, whereas the decoder observes
Yn, as illustrated in Fig. 1. The encoder sends a coded version
of Xn, while the decoder aims to make a decision between two
hypothesis H0 and H1, based on both Yn and the received
coded data.

We assume that the n symbols of the sequences Xn and Yn

are i.i.d. and drawn according to random variables X and
Y , respectively. Furthermore, X and Y are jointly distributed
according to the model Y = X ⊕ E, where E is a binary
random variable independent of X , and P (X = 1) = 1/2.
Additionally, we denote p = P(E = 1) with 0 < p ≤ 1/2.
The two hypotheses are expressed as:{

H0 : p = p0,
H1 : p = p1.

(1)

We assume, without loss of generality, that p0 < p1. It is
worth noting that the probability distributions of both X and
Y are independent of the chosen hypothesis, given P (X =
1) = 1/2. This model was investigated from an information-
theoretic perspective for instance in [5], [7], [8]. Furthermore,
when p = 1/2, the problem (1) reduces to testing against
independence [3].

B. Error-exponent for binary DHT

We will now restate an existing lower bound on the error
exponent for the problem defined in Equation (1), from the
literature of information theory. Following the approach in [5],
[6], we consider an encoding function:

fn : {0, 1}n → J1, 2vK, (2)

and a decision function gn : J1, 2vK × {0, 1}n → {0, 1}. We
consider a rate-limited setup in which v/n ≤ R.

For given functions (fn, gn), we define Type-I error probabil-
ity αn and Type-II error probability βn as in [7] as

αn = P(gn(fn(X
n),Yn) = 1|H0), (3)

βn = P(gn(fn(X
n),Yn) = 0|H1). (4)

For a given value ϵ ∈ (0, 1) such that αn < ϵ, Type-II error
exponent θ is defined as [7]

lim
n→∞

sup
1

n
log2

1

βn
≥ θ. (5)

A generic lower bound on the error exponent θ is provided
in [8]. Specifying this bound for the hypothesis testing prob-
lem defined in (1) leads to

θ ≤ sup
δ∈[0,1]

min

{
R− [H2(p0 ∗ δ)−H2(δ)], (6)

(p0 ∗ δ) log
p0 ∗ δ
p1 ∗ δ

+ (1− (p0 ∗ δ)) log
1− (p0 ∗ δ)
1− (p1 ∗ δ)

}
.

Here, H2 is the binary entropy function, and ∗ is the binary
convolution operator defined as x ∗ y = (1− x)y + (1− y)x,
with 0 ≤ x, y ≤ 1.

C. Short-length nature of DHT

While the lower bound on the error exponent θ in (6) provides
a scaling law for Type-II error probability, it remains an
asymptotic result due to the limit as n tends to infinity in
definition (5). Nevertheless, it confirms the intuition that the
problem inherently involves short sequences. For instance,
consider parameters p0 = 0.05, p1 = 0.5, δ = 0.1, R = 0.4.
When evaluating the quantity e−nθ for these parameters with
n = 100, the result is approximately 10−12, and for n = 50,
it yields approximately 10−6. This strongly suggests that
practical schemes should focus on values of n less than
50. Hence, we now introduce three practical coding schemes
tailored for such short sequence lengths.

III. TRUNCATION SCHEME

A. Code construction

When considering DHT, there is no need to reconstruct all the
exact values of the source bits xn. So a first straightforward
solution consists of sending the first ℓ symbols of the source
vector xn at coding rate R = ℓ/n. The decoder can then
perform a standard Neyman-Pearson (NP) test [18] on the pair
(xℓ,yℓ).



Under a certain constraint αn < ϵ on Type-I error probability,
the NP lemma [18] states that the following test:

P1(x
ℓ,yℓ) < µP0(x

ℓ,yℓ), (7)

minimizes Type-II error probability βn, where µ is a threshold
value chosen to satisfy the Type-I error constraint. In (7), P0

and P1 are the joint probability distributions of (xℓ,yℓ) under
hypothesis H0 and under hypothesis H1, respectively. Given
that p0 < p1, it is shown in [18] that the test described by (7)
is equivalent to the condition:

ℓ∑
i=1

(xi ⊕ yi) < λt, (8)

where λt ∈ N is an integer threshold value chosen so as to
satisfy the constraint αn < ϵ. Interestingly, this test depends
on the value of the parameter p0 solely through the choice of
the value of λt.

B. Theoretical analysis

For this scheme, analytical expressions of Type-I and Type-II
error probabilities are given by [18]

α(t)
n = 1−

λt∑
j=0

(
ℓ

j

)
pj0(1− p0)

ℓ−j , (9)

β(t)
n =

λt∑
j=0

(
ℓ

j

)
pj1(1− p1)

ℓ−j . (10)

The truncation scheme can be seen as a “no-coding”
setup [19]. In our numerical results, it will serve as a baseline
when evaluating the performance of the proposed coding
schemes.

IV. QUANTIZATION SCHEME

In the literature of information theory, the seminal work of [3]
proposed to build a DHT coding scheme from a quantizer
alone. We now introduce a practical short-length implementa-
tion of this scheme by using linear block codes.

A. Code construction

In order to perform binary quantization, we consider the
generator matrix Gq of size n×m of a linear block code [20].
Then, for a given source vector xn of length n, the encoder
produces a vector zmq as [21]

zmq = argmin
zm

d(Gqz
m,xn). (11)

The codeword zmq is transmitted to the decoder at a code rate
R = m/n.

In [14], [16], it is proposed to build efficient binary quantizers
using low density generator matrices (LDGM). LDGM codes
were considered so as to develop a low complexity message-
passing algorithm called Bias-Propagation to solve (11). How-
ever, the schemes introduced in [14], [16] consider very long
codes (more than 105 bits). Here, due to the short-length nature
of the problem, we choose to discard the Bias-Propagation

algorithm since it may lead to an important loss in performance
on the considered codes. Instead, we will solve (11) exactly by
exhaustive search. Therefore, we consider any generator matrix
Gq , not necessarily obtained from an LDGM code.

The decoder first computes the quantized vector xn
q = Gqz

m
q .

Then, since P(zmq ,yn) = P(xn
q ,y

n), the NP test (7) reduces
to

n∑
i=1

(xq,i ⊕ yi) < λq, (12)

where λq is an integer threshold. Here, compared to the
truncation scheme, the decision is taken from longer vectors
xn
q and yn of dimensions n > m. On the other hand, the vector

xn
q contains quantization errors compared to xn.

B. Theoretical analysis

We now provide exact analytical expressions of Type-I and
Type-II error probabilities for the quantization scheme. Con-
sider the set of integers {E(q)

γ }
γ∈J0,d(q)

maxK, where E
(q)
γ is the

number of words xn of Hamming weight γ that belong to the
decision region C(q)

0 of xn
q = 0n. In other words, xn ∈ C(q)

0

means that the solution of (11) for xn is 0m. We further denote
N

(q)
0 =

∑d
(q)
max

γ=0 E
(q)
γ .

Proposition 1. For the quantization scheme and for a thresh-
old value λq , Type-I and Type-II error probabilities are given
by

α(q)
n = 1− 1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ Γλ,j,γp

j
0(1− p0)

n−j ,

(13)

β(q)
n =

1

N
(q)
0

λq∑
λ=0

d
(q)
max∑

γ=0

n∑
j=0

E(q)
γ Γλ,j,γp

j
1(1− p1)

n−j , (14)

where for j = γ + λ− 2u and 0 ≤ u ≤ min(γ, λ) ≤ n,

Γλ,j,γ =

(
γ

u

)(
n− γ

λ− u

)
. (15)

Proof. Since by symmetry the quantizer error probability is
independent of the transmitted codeword [20], we consider
the all-zero codeword xn

q = 0. We develop

α(q)
n = 1−

λq∑
λ=0

P0(w(Y
n) = λ) (16)

= 1−
λq∑
λ=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

P0(w(Y
n) = λ|w(Xn) = γ)

= 1−
λq∑
λ=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

P0(d(X
n,Yn) = j)

Γλ,j,γ(
n
j

)
= 1−

λq∑
λ=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

(
n

j

)
pj0(1− p0)

n−j Γλ,j,γ(
n
j

) .



This gives (13). To obtain (14), we remark that β
(q)
n =∑λq

λ=0 P1(w(Y
n) = λ) and follow the same steps as in (16),

by replacing p0 by p1.

V. QUANTIZE-BINNING SCHEME

We now propose a practical solution for the quantize-binning
scheme which has been widely investigated in the literature of
information theory for DHT [5], [6], [8].

A. Code construction

In the quantize-binning scheme, we consider as before a
generator matrix Gq of size n × m. We also resort to the
parity check matrix Hb of size k×m of another linear block
code. After using Gq for binary quantization as described in
Section IV, the encoder uses the matrix Hb to compute

uk = Hbz
m
q . (17)

The syndrom uk is then transmitted to the decoder. In this
case, the coding rate is given by R = k/n. At the decoder, in
order to apply the NP test (7), we first identify by exhaustive
search a vector ẑmq as

ẑmq = argmin
zm

d(Gqz
m,yn) s.t. Hbz

m = uk. (18)

We then apply the following test:
n∑

i=1

(x̂q,i ⊕ yi) < λqb, (19)

where x̂n
q = Gqẑ

m
q , and λqb is an integer threshold.

Next, according to [8], the binning allows us to leverage the
side information vector yn so as to further reduce the coding
rate. However, it also introduces a binning error probability
which can impact Type-I and Type-II error probabilities.
While this problem was well investigated in the asymptotic
regime [8], we next discuss it for the considered short length
code construction.

B. Theoretical analysis

We now consider the decision region C(qb)
0 for the all-zero

codeword of the quantize-binning scheme. Especially, a side
information vector yn belongs to C(qb)

0 if the solution of (18)
for this vector is ẑmq = 0m. We then define the set of integers
{E(qb)

ν }
ν∈J0,d(qb)

max K, where E
(qb)
ν is the number of words yn of

Hamming weight ν that belong to the decision region C(qb)
0 .

We also define the set of integers {A(qb)
t }t∈J0,nK, where A

(qb)
t

is the number of codewords xn
q of Hamming weight t such that

there exists zmq that satisfies xn
q = Gqz

n
q , and Hbz

m
q = 0k. As

a result, the set {A(qb)
t }t∈J0,nK is the code weight distribution

of the concatenated code.

Proposition 2. For the quantize-binning scheme and for a
threshold value λqb, Type-I and Type-II error probabilities are
given by

α(qb)
n = 1− PB(p0)− PB̄(p0), (20)

β(qb)
n = PB(p1) + PB̄(p1), (21)

where

PB(δ) =

min(d(qb)
max,λqb)∑
ν=0

E
(qb)
ν(
n
ν

) d(q)
max∑
γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γδ
j(1− δ)n−j ,

(22)

PB̄(δ) =

n∑
i=0

d
(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γi,j,wδ
j(1− δ)n−j

 (23)

×

 n∑
t=1

λqb∑
ν=0

E
(qb)
ν(
n
ν

) A
(qb)
t Γi,ν,t(

n
i

)
 .

Proof. We consider the all-zero codeword xn
q = 0. Under the

hypothesis H0, we express

α(qb)
n = 1− P0(Ĥ0, B)− P0(Ĥ0, B̄). (24)

In this expression, B is the event that the correct sequence
x̂q = xq was retrieved at the decoder, while B̄ is the event
that an incorrect sequence x̂q ̸= xq was output by the decoder.
In addition, Ĥ0 is the event that hypothesis H0 was decided
at the decoder. We further denote PB(p0) = P0(Ĥ0, B) and
PB̄(p0) = P0(Ĥ0, B̄). We then express

PB(p0) =

n∑
ν=0

P0(w(Y
n) = ν)P0(Ĥ0, B|w(Yn) = ν) (25)

=

min(d(qb)
max,λqb)∑
ν=0

P0(w(Y
n) = ν)

E
(qb)
ν(
n
ν

) . (26)

Next, by following the same steps as in the proof of Proposi-
tion 1, we show that

P0(w(Y
n) = ν) =

d(q)
max∑
γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γp
j
0(1− p0)

n−j , (27)

which provides (22). We then write

PB̄(p0) =

n∑
i=0

P0(w(Y
n) = i)P0(Ĥ0, B̄|w(Yn) = i), (28)

where P0(w(Y
n) = i) is given by (27). Next, we develop

P0(Ĥ0, B̄|w(Yn) = i)

=

n∑
t=1

λqb∑
ν=0

P0(w(X̂
n
q ) = t, d(X̂n

q ,Y
n) = ν|w(Yn) = i)

(29)

=

n∑
t=1

λqb∑
ν=0

E
(qb)
ν(
n
ν

) A
(qb)
t Γi,ν,t(

n
i

) . (30)

This provides the expression of PB̄(p0) in (23).

We obtain the expression of β(qb)
n from the previous equations

by noticing that β(qb)
n = PB(p1) + PB̄(p1).



Fig. 2. ROC curve for the BCH code (31, 16, 7) user as a quantizer, compared
to the truncation scheme.

VI. NUMERICAL RESULTS

This section provides Monte-Carlo simulation results for the
proposed code constructions, and compares them with the
theoretical Type-I and Type-II error probabilities.

A. Truncation versus quantization

First of all, we evaluate the performance of the quantization
scheme introduced in Section IV and compare it against the
truncation scheme described in Section III. We set parameters
p1 = 0.5 (testing against independence), and p0 = 0.1
or p0 = 0.07. For the quantization, we consider the BCH
(31, 16)-code with minimum distance dmin = 7. As a result,
after applying the quantizer, m = 16 bits are sent to the
decoder. Therefore, we consider for comparison the truncation
scheme with ℓ = 16. For these two schemes, Fig. 2 shows the
receiver operating characteristic (ROC) curves which provide
the Type-II error with respect to the Type-I error, obtained for
different threshold values λt, λq ∈ J1,mK. Note that the ROC
curves are usually considered for the evaluation of hypothesis
tests. In Fig. 2, the plain curves come from Monte-Carlo
simulations averaged other 10000 trials, while the dashed
curves come from the error probability expressions provided
in Sections III-B and IV-B.

For the considered two values of p0, we observe that the
quantizer scheme performs better than the truncation scheme.
This is due to the fact that with the quantizer, the decision
is made on n = 31 bits instead of m = 16 bits, although
the quantized vector xn

q contains errors compared to the
original xn. In addition, we observe that the theoretical Type-
I and Type-II error probabilities are closely consistent with
the Monte Carlo results. This is because the error probability
expressions take into account the considered code through the
terms E

(q)
γ . As a result, the theoretical expressions are found

to be relevant tools for the DHT code design.

B. Truncation versus quantize-binning

We now evaluate the performance of the quantize-binning
scheme proposed in Section V compared to the truncation
scheme. For the quantize-binning scheme, we consider the
BCH (31, 16) code for the quantizer, and the Reed-Muller

Fig. 3. ROC curve for the quantize-binning scheme built from the BCH code
(31, 16, 7) for quantization combined with the Reed-Muller code (16, 5, 8)
for binning

(16, 5) code with dmin = 8 for the binning part. As a result,
only k = 11 coded bits are sent to the decoder. Therefore, for
comparison, we consider the truncation scheme with ℓ = 11.
Fig. 3 shows the ROC curves for the considered two schemes,
both for p1 = 0.35 and p0 = 0.01 or p0 = 0.03. In this case
again, plain curves come from Monte-Carlo simulations aver-
aged over 10000 trials, and dashed curves come from the error
probability expressions obtained in Sections III-B and V-B.
We observe that the quantize-binning scheme performs much
better than the truncation scheme, since it makes decision on
n = 31 bits instead of ℓ = 11 bits for the truncation scheme,
despite the fact that both quantizer and binning can introduce
errors. We also observe that the theoretical Type-I and Type-
II error probabilities are closely consistent with the practical
performance.

Finally, it is worth noting that the performance of the quantize-
binning scheme strongly depends on the considered pair of
codes used for quantization and binning. In this regard, the
derived theoretical error probability expressions can serve as
a useful tool for the design of efficient pairs of codes. Also
we did not include the entropy-check condition of [8] in our
quantize-and-binning scheme, since this did not bring any
further improvement in terms of practical Type-I and Type-II
error probabilities compared to the truncated scheme.

VII. CONCLUSION

In this paper, we have introduced two practical coding schemes
for binary DHT, one built with a binary quantizer, and the other
built with a quantize-binning scheme. Both schemes were
designed from short linear block codes. For each considered
scheme, we also derived theoretical expressions of Type-I and
Type-II error probabilities. Simulation results demonstrated
the superiority of the proposed schemes compared to the
baseline truncation scheme, and also showed the accuracy of
the proposed theoretical expressions. From a practical point
of view, future works will include an interleaver design to
improve the performance of the concatenated construction, as
well as complexity reduction of the decoders so as to allow
for larger code length to be considered.
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