
HAL Id: hal-04681934
https://imt-atlantique.hal.science/hal-04681934v1

Submitted on 30 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Turning to Information Theory to Bring In-Memory
Computing Into Practice

Elsa Dupraz, François Leduc-Primeau, Kui Cai, Lara Dolecek

To cite this version:
Elsa Dupraz, François Leduc-Primeau, Kui Cai, Lara Dolecek. Turning to Information Theory to
Bring In-Memory Computing Into Practice. IEEE BITS, the information Theory Magazine, 2023, 3
(3), pp.64-77. �10.1109/MBITS.2023.3333798�. �hal-04681934�

https://imt-atlantique.hal.science/hal-04681934v1
https://hal.archives-ouvertes.fr

Turning to Information Theory to Bring In-Memory
Computing Into Practice

Elsa Dupraz, François Leduc-Primeau, Kui Cai, and Lara Dolecek

Abstract—This paper explores the emerging field of in-
memory computing, which has the potential to signifi-
cantly improve energy efficiency in many signal processing
and machine learning applications. In-memory computing
systems are impacted by various sources of noise and
perturbations that can affect their computation accuracy.
Therefore, this paper aims to identify the key challenges
to be addressed from an information-theoretic point of
view in this area. It first identifies relevant computa-
tion structures and noise models from the literature
of hardware implementation, and then reviews existing
works in information theory and error-correction for in-
memory computing. Finally, it identifies key open avenues
for establishing information-theoretic foundations of in-
memory computing systems, and for providing insightful
design rules leading to highly energy-efficient computing
systems.

I. INTRODUCTION

In the past, the performance and energy efficiency
of electronic computing systems were mainly improved
through advancements in CMOS integrated circuit tech-
nology, with the number of transistors per chip increas-
ing from around a thousand in 1970 to more than 50
billion in 2022 [1]. However, as it is unlikely that
CMOS technology will continue to make significant
improvements in the future, computer designers are ex-
ploring other methods to achieve further enhancements,
such as specialized architectures and new styles of
computing circuits. In particular, the conventional von
Neumann architecture involves significant data transfers
between memories and processing units, which is costly
in terms of latency and energy consumption. In-memory

Elsa Dupraz is with IMT Atlantique, Lab-STICC, UMR CNRS
6285, 29238 Brest, France (email: elsa.dupraz@imt-atlantique.fr).

François Leduc-Primeau is with the Department of Electrical Engi-
neering, Polytechnique Montreal, QC, Canada (email: francois.leduc-
primeau@polymtl.ca).

Kui Cai is with the Science, Mathematics and Technology Cluster,
Singaproe Unversity of Technology and Design (SUTD), Singapore
487372 (email: cai kui@sutd.edu.sg).

Lara Dolecek is with the Electrical and Computer Engineering
Department, University of California Los Angeles (UCLA), Los
Angeles, CA, 90095, USA (email: dolecek@ee.ucla.edu).

Kui Cai’s work was supported by the Singapore Ministry of
Education Academic Research Fund Tier 2 T2EP50221-0036

computing (IMC) architectures are seen as particularly
promising alternatives since they simultaneously solve
the von Neumann bottleneck while offering good storage
densities. Among other applications, in-memory com-
puting is seen as having great potential in the field of
artificial intelligence (AI), as it could significantly reduce
the energy consumption of AI circuits [2].

Emerging non-volatile memories (eNVMs), such as
spin-transfer torque magnetic random access memory
(STT-MRAM), phase change memory (PCM), resistive
random access memory (ReRAM), and ferroelectric
field-effect transistors (FeFETs) are currently being in-
tensively explored as the key building block for in-
memory computing. Their memory cells can be pro-
grammed into different resistance/conductance states,
through which both storage and analog multiply-and-
accumulate (MAC) operations can be done [3]. In-
memory computing architectures have been developed
for a variety of applications in the fields of signal
processing, optimization [4], computer science [5], and
AI [2], [6]. Although in-memory computing can also
be achieved with conventional memory circuits such as
SRAMs [7], in this paper we choose to focus on eNVMs
since their non-volatile property enables an additional
source of energy efficiency from the ability to quickly
power on or off the device.

Memristive devices, also referred to as memristors, are
typically used to build memory cells in eNVMs. Memris-
tors are characterized by their distinctive physical prop-
erty, namely, the alteration of their internal conductance
in response to the current passing through them. This
characteristic not only facilitates data storage but also,
when harnessed in conjunction with a two-dimensional
(2D) crossbar configuration of memristors, enables the
construction of various computational structures, from
dot-product engines [8] to logic circuits [9] or shortest
path computation [5]. The prevalent methodology for
building such computational structures typically entails
an initial step wherein an idealized electrical circuit is de-
signed, employing memristors in conjunction with other
electronic components such as resistors and amplifiers,
to execute the desired computational task. Subsequently,
this abstracted circuit is mapped onto the aforementioned

2

Implementation Models Information Theory

III. Comp. structures

IV. Noise models

V. Theoretical analysis

VI. Error-correction

II.A. eNVM devices

II.B. Memristor crossbars

Challenges and opportunities
in Information Theory

Figure 1. Outline of the paper. Extracting computation structures
and error models from the physics and implementation of eNVM
devices will hopefully lead to insightful information theory analysis
of in-memory computing and to more efficient implementations.

crossbar architecture.
These IMC circuits are impacted by various sources

of perturbations that can be modeled as a combination
of noise and errors introduced into the values stored
and during the computations performed on those values.
Careful management of this noise can bring significant
opportunities into the design by addressing the inherent
tradeoff between the amount of noise and the computa-
tion energy. It is thus beneficial to study these systems
from an information-theoretic perspective in order to es-
tablish a theoretical foundation for their efficient design.
The joint investigation of architecture design and infor-
mation theory gives rise to fresh challenges and questions
for information theory, while also contributing valuable
insights and analytical tools to the design process.

The primary objectives of this paper are to extract
computation structures and noise models from the exist-
ing body of literature on IMC hardware implementation,
and to identify information-theoretic problems of interest
for in-memory computing. When discussing such prob-
lems, the following three aspects will be crucial: (i) the
need for the development of accurate yet simple noise
models to capture memory device non-idealities while
making the analysis tractable, (ii) the importance of
analyzing and designing in-memory computing systems
from the perspective of the final application (such as
matrix-vector multiplication, deep neural networks, etc.),
given that each application has its own performance met-
rics and constraints, and (iii) the crucial role of hardware
efficiency in terms of power and latency for developing
energy-efficient in-memory computing solutions, as this
is a key benefit of this technology.

The paper outline, summarized in Figure 1, is as
follows. Section II describes the physical background
of in-memory computing devices. Section III presents
computation structures for key applications. Section IV
extracts relevant noise models from the literature. Sec-
tion V introduces existing information-theoretic analyses

for in-memory computing. Section VI describes existing
error-correction solutions.

II. PHYSICAL BACKGROUND

In this part, after discussing key memory technologies
that allow for in-memory computing, we present a high-
level physical model of memristors that captures the
relationship between the memristor conductance value
and the current that flows accross it. We next describe
the 2D memristor crossbar arrangement which will then
allow for implementing various IMC structures.

A. Existing Memory Devices for In-Memory Computing

Currently, a variety of nanoscale memory devices
are being considered for in-memory computing [3], [7].
Conventional charge-based memories such as static ran-
dom access memory (SRAM), dynamic random access
memory (DRAM), and Flash memory, store information
based on the presence or absence of charge in the
memory components. SRAM and DRAM, being con-
ventional volatile memories, feature excellent read/write
speed with mature fabrication process. Both SRAM and
DRAM can implement Boolean functions and other
discrete arithmetic operations in memory [7]. On the
other hand, NAND Flash memory dominates the cur-
rent non-volatile memory (NVM) market and supports
sequential data accesses. Both NAND and NOR Flash
memories can implement analog arithmetic operations
in memory [10].

eNVMs refer to resistance-based memories that uti-
lize specific resistive components with variable internal
resistance states to store information. The internal re-
sistance level of each elementary memory component
can change based on the voltage drop applied across
it. Among eNVMs, STT-MRAM, PCM, and ReRAM
possess appealing features such as excellent scalability
and near-zero leakage power [3]. STT-MRAM [11] can
achieve the shortest access latency and the lowest energy
consumption while having a relatively larger cell size.
STT-MRAM components can only store binary values,
due to their limited resistance range. Both PCM [12]
and ReRAM [13] have demonstrated multilevel resis-
tance states, which allows them to store multiple bits
per cell for storage and computation purposes. Another
promising eNVM device is FeFET [14], which exhibits
low read latency, but a limited number of levels.

B. Memristor Physical Model

In eNVMs, resistive memory components are also
referred to as memristive devices or memristors. The

3

N bit lines (BL)

L
 w

o
rd

 lin
es (W

L
)

Read voltage pulse

Read current path
sneak current path

Figure 2. Example of a memristor crossbar array composed of L
row WLs and N column BLs, with SLC. Each intersection between a
WL and a BL contains a memory cell. The blue cells contain logical
value 1 (low resistance value rON) and the gray cells contain logical
value 0 (high resistance value rOFF). To read one cell value, a read
voltage pulse is applied at the input WL, and the current is read at the
output BL. A sneak-path is a concurrent current flow which affects
more the reading of cells in high resistance states, while cells in the
concurrent path are in low resistance states.

first physical model of the memristors voltage-current
characteristic was expressed in [15] as

v(t) = r(t)i(t) (1)

r(t) = rONαq(t) + rOFF (1− βq(t)) , (2)

where v(t), q(t), i(t) = dq
dt , and r(t), are the voltage,

charge, current, and resistance of the memristor at time
instant t, respectively, and α, β are parameters that
depend on internal characteristics of the memristors. The
first equation is the conventional Ohm’s law, while the
second one is specific to memristors, where the internal
resistance value varies with its charge. Although the
model in (2) is a rough approximation of the physics
of the memristor, it allows us to understand its behavior
from a high level perspective. Some more recent physical
models were also proposed, which capture more accu-
rately the device non-linearity [16].

C. Memristor Crossbars for In-Memory Computing

In eNVMs, memristors are typically arranged in 2D
crossbar arrays [7], see Figure 2 for an example. Cross-
bar arrays are formed by the intersections of row word
lines (WL) and column bit lines (BL), and each inter-
section contains a memory cell. There exists different
memory cell constructions. The 1M crossbar configura-
tion (one memristor per cell) is subject to a sneak-path
phenomenon, which corresponds to undesired paths for
the current flow in the crossbar. The 1T1M configuration

u2

..
.

...

...

..
.

u1

uL

g11 g12 g1N

g21 g22 g2N

..
.

...

gLNgL1 gL2

-+
r

c1

-+
r

c2

-+
r

cN

..
.

in
p

u
t

v
o
lt

a
g

e
s

output voltages

i1 i2 iN

Figure 3. Electrical circuit of the DPE built from a L×N memristor
crossbar, where memory cell (j, k) is built from a memristor of
conductance gj,k. By applying Ohm’s law (1) and Kirchhoff’s current
law on each BL, we show that the current ik has expression
ik =

∑L
j=1 gj,kuj . The output TIA with feedback resistance r

transforms the current ik into a voltage ck as ck = rik, which permits
to read the DPE output.

(one transistor and one memristor per cell) can alleviate
this issue but requires a larger area [17]. Since the
1M configuration is also harder to program, it is less
considered in practice. Therefore, in the remaining of
the paper, we always consider 1T1M configurations.
However, in the figures, for simplicity and clarity, we
represent each memory cell as a memristor only, omitting
the transistor.

Another important aspect resides in the number of
resistance/conductance levels that can be programmed
within memristors. Widely used single-level cells (SLC)
only support two possible values: one low-resistance
state (LRS) with resistance value rON and conductance
value gON (logical value 1), and one high-resistance state
(HRS) with resistance value rOFF and conductance value
gOFF (logical value 0) [15]. Alternatively, multi-level
cells (MLC) and analog cells (AC) are very appealing in
many applications. A MLC takes its value in a discrete
alphabet, while an AC represents one real value.

D. Memory Reads and Writes

As described in Figure 2, one can read a specific
conductance value at position (j, k) by applying a read
voltage pulse on WL j and reading the current on BL k,
according to (1). In addition, to write a specific value
to the memristor at position (j, k), one can apply a
write voltage pulse of higher amplitude at WL j, relying
on (2). For instance, in SLC, each memristor can be set
to either rON or rOFF by applying a voltage pulse VSET

for HRS or VRESET for LRS. In the 1T1M configuration,

4

the transistors permit to select the cell to be updated in
the WL.

Note that the terms WL and BL originate from the
SLC random access memories, and by convention re-
main in use when discussing crossbar arrays. However,
crossbar arrays allow activating all rows (WLs) simulta-
neously, while cells may store more than one bit, with
the result that BLs indeed may carry much more than
one bit of information. Unfortunately, the terminology is
not uniform in the literature. For instance some authors
use “bit lines” to refer to the input lines and “source
lines” to refer to the output lines.

III. COMPUTATION STRUCTURES

The objective of this section is to describe in-memory
computation structures that can be implemented within
a memristor crossbar. These architectures have been
developed by leveraging inherent physical characteristics
of memristors captured by equations (1) and (2). In what
follows, we focus on three fundamental operations: dot-
product computation, Boolean logic computation, and
Hamming distance computation, which will then allow
to address a large variety of applications in the area
of optimization, signal processing, AI, and computer
sciences.

A. Dot-Product Computation

Memristor crossbars allow for the implementation
of in-memory analog dot-product engines (DPE) repre-
sented by the equation c = uA, where the matrix A is
of size L×N , and the vectors c and u are of length N
and L, respectively. The DPE is realized with AC using
an idealized circuit shown in Figure 3. In this crossbar,
each coefficient aj,k of the matrix A is mapped as a
conductance value gj,k/r at the intersection of WL j
and BL k [8], where r is the feedback resistance of the
transimpedance amplifier (TIA) at the end of each BL.
Each element of the input vector u is fed into a digital-
to-analog converter (DAC) to produce a voltage level.
The product output Au is then reflected in the voltages
c after the TIAs at the end of each column. Finally, these
voltages are fed into analog-to-digital converters (ADCs)
to generate the digital outputs. Since conductance values
must be positive, the dot-product operation is often
performed by using two memristors for each matrix
element, one for positive values and one for negative
values [4]. In this case, the final output can be obtained
by performing current subtraction in the analog domain,
or performing the subtraction in the digital domain.

The DPE shown in Figure 3 is considered in many
applications. First, it can be used to implement the linear

parts of deep neural network (DNN) layers, with each
conductance storing a neuron weight [2], [6], [18]. The
non-linear parts of each DNN layer are then implemented
either in CMOS [2], [18], or with a dedicated analog
circuit [6]. In addition, the DPE can be used to compute
the fixed-points of the matrix A by re-injecting output
voltages ck as inputs uj through several iterations. This
observation comes from the fact that the fixed-points
of a given function f : RN → RN can be calculated
iteratively as x(ℓ+1) = f(x(k)). This iterative procedure
converges locally (e.g, when initialized close to the
fixed-point) to a fixed point x⋆ satisfying x⋆ = f(x⋆),
given that the Jacobian of the function f satisfies certain
conditions [19].

Note that some other DPE architectures consider the
circuit of Figure 3 but replace the TIA by a simple
resistance with internal conductance level gs [4]. In this
case, the relation between the matrix component aj,k
and the conductance levels gj,k is given by aj,k =

gj,k
gs+

∑L
j=1 gj,k

[4]. When considering N = L, this archi-
tecture also enables to implement the inverse operation
u = cA−1, by first applying specific output voltages ck
and then reading the input voltages uj [4]. This property
permits us to solve a variety of optimization and signal
processing problems, by recasting them, either exactly or
approximately, as combinations of dot-product compu-
tation, inverse dot-product computation, and fixed-point
computation [4].

B. Logic-in-Memory

In-memory computing can also implement logic cir-
cuits by considering SLC with two conductance lev-
els gON and gOFF. As one of the first proposed so-
lutions, the memristor-based material implication (IM-
PLY) logic [9] implements in-memory NOR operations
over K inputs; see Figure 4 (a). The NOR-gate output
z = x1 + x2 + · · ·xN is equal to 1 only if all binary
values xk are set to 0. To evaluate z, conductance
values g1 to gK are set to logic input gate values xk
either 0 or 1 (through gON and gOFF) and the NOR
gate output is then read in the internal conductance
state h of the rightmost memristor. However, the IMPLY
architecture requires each memristor to be connected to
one resistor RS , making it challenging to integrate many
logic gates into the same crossbar. Alternatively, the
memristor-aided logic (MAGIC) architecture [20] shown
in Figure 4 (b) can also implement a K-input NOR
gate but without using resistors RS . It is worth noting
that the NOR gate operation has the functional com-
pleteness property, which means that any logic function
can be implemented from NOR gates only. However,

5

Vs

g1

Vs

g2 ...

Vs

gN

VO

h

Rs Rs Rs Rs

i

(a)

Vs

g1

Vs

g2 ...

Vs

gN h

i

(b)

A

Qn

B

(c)

Figure 4. Logic gates implemented in memory. (a) NOR gate from IMPLY architecture [9]. Conductance levels g1 to gK store the K
gate inputs, while conductance value h provides the gate output. The architecture also uses K + 1 resistors Rs. The conductance h is first
initialized at HRS gOFF. Next, if all gk are set to HRS gOFF, h will switch to LRS gON according to (2) (under proper choice of parameters Vs,
V0, gON, gOFF, Rs). (b) NOR gate from MAGIC architecture [20]. Conductance levels g1 to gK store the K gate inputs, while conductance
value h provides the gate output. Given that the conductance h is initialized at LRS gON, h will switch to HRS gOFF only if all gk are set to
gON, according to (2) (under proper choice of parameters Vs, gON, gOFF). (c) Generic logic gate from PLiM [21] and MOL architectures [21].

this solution often results in large circuit sizes needed
to implement the logic function. Additionally, one of
the major challenges of IMPLY and MAGIC resides in
mapping a large number of logic gates into a single
memristor crossbar for performing massively parallel
operations, as discussed in [9], [20].

PLiM [21] and MOL [22] architectures also imple-
ment logic gates, but using only one memristor, as shown
in Figure 4 (c). Both approaches utilize the Boolean
formula Qn+1 = Qn · A + Qn · B̄ + A · B̄, which
enables the implementation of any logic function by
adjusting the logic values of A, B, and Qn [21], [22].
This equation is computed in memory by converting Qn

into the memristor conductance value, where Qn = 1,
Qn = 0, are mapped to conductance levels gON, gOFF,
respectively, while A and B are assigned as voltage
levels 0V (for logic value 0) or uV (for logic value 1).
According to (2), the voltage drop accross the memristor
may update its internal conductance value, which is then
read as Qn+1 in accordance with the previous Boolean
equation. These architectures allow for the implementa-
tion of a large number of gates in one crossbar, where
memristors in each WL share the same value A, and
memristors in each BL share the same value B [22].
However, difficulties in this architecture reside in the
dynamic aspect of evaluating output gate values Qn+1

from previous values Qn, and the need for a secondary
memristor crossbar to store useful input values that are
erased in the computation process.

C. Hamming Distance Computation

Hamming distance computation is a fundamental op-
eration on a pair of binary vectors, and has found broad
use in large-scale data processing. Being able to execute
this calculation and similar ones directly in memory
could have substantial positive impact on the practical
realization of in-memory computing. It was first shown

g1,1 g1,2 ...
g1,N

g2,1 g2,2 ...
g2,N

U1

U2

(word x)

(word y)

i

Figure 5. Hamming distance computation between two binary words
x and y of length N . The bit values xk and yk are mapped into the
conductance values g1,k and g2,k, respectively, with xk = 1, yk = 1
correspond to gOFF and xk = 0, yk = 0 correspond to gON. The
Hamming distance dH(x,y) is found from measuring the equivalent
conductance G1,2 of this circuit using the current-voltage relation
i = G1,2(U1 − U2).

in [23] that the Hamming distance dH(x,y) between
two binary words x and y can be computed within an
SLC crossbar, using e.g., an idealized circuit shown in
Figure 5. This circuit corresponds to two WLs of the
crossbar, the first WL storing the bit values of x, and
the second one the bit values of y. The caveat is that in
memristors, one cannot directly compare the values of
two bit cells in two different vectors. Rather, the access
is permitted only at the vector level. It was recognized by
Cassuto and Crammer in [23] that the Hamming distance
between two binary vectors can be computed using a
single measurement (or a small number of measure-
ments) of the equivalent conductance G1,2 of this circuit,
provided that the conductance parameter (dictated by the
memristor circuitry and design) is within a certain range.
This measurement is then mathematically manipulated to
yield the Hamming distance – the key is to keep track
of how many positions the two vectors have pair-wise
bit values ab, for a, b ∈ {0, 1}.

6

IV. ERROR MODELS

While the previous section introduced in-memory
computation structures for several applications, the ob-
jective of this section is to present error models that
can be utilized in the information-theoretic analysis of
each computation structure, as well as to develop error-
correction solutions relevant to each model.

A. Sources of Impairments

Despite the recent progress of in-memory computing,
significant challenges remain in implementing large-
scale IMC units with high accuracy, primarily due to
the non-ideal properties of memory devices and circuits.
First, fabrication process imperfection causes device-to-
device variations within a single chip or across dif-
ferent chips in terms of the conductance ranges, de-
vice programmability, endurance, as well as data re-
tention. Meanwhile, achieving a high level of precision
in writing conductance values proves to be a challeng-
ing endeavor. This challenge stems from the dynamic
nature of resistance variations, as described by equa-
tion (2). This issue becomes even more pronounced when
considering in-memory computing with AC, as in the
DPE computation discussed in Section III-A. In such
scenarios, the difficulty to write each conductance at
arbitrary real values introduces inherent noise into the
computation. Even in the case of SLC implementations,
such as those employed in logic-in-memory computing
detailed in Section III-B, there exists a non-negligible
risk of conductance failing to transition from one state
to another, thereby introducing computational errors. In
addition, there are also important variations in the time
for switching from one state to another. Furthermore, the
resistance drift over time and temperature, the read errors
caused by random telegraph noise (RTN) [24], and the
sneak path effect illustrated in Figure 2 can also affect
computing accuracy. Finally, stuck-at-faults correspond
to errors in which conductance values are permanently
stuck in a certain state.

In addition to the noise affecting each memory cell, the
inputs and outputs of the computation can also be subject
to perturbations. Typically, in-memory computing will be
required to have a digital interface. As such, the input
will be driven by a DAC converter that is affected by
mismatch, and the output will be obtained through an
ADC converter that introduces quantization and clipping
errors [25].

While most previous works have experimentally eval-
uated the impact of noise through noise injection on
software models, hardware models, and on-board im-
plementations, they have often utilized specific noise

models that could also be incorporated in theoretical
analyses. In this section, we present and discuss two
sets of models that have been widely considered in the
literature. The first set of models characterizes the noise
introduced in the conductance values, which can capture
transient effects that come from several factors such
as device-to-device variations, inaccurate write or read
operations, or resistance drift over time. Interestingly,
these models are applicable to all SLC, MLC, and AC.
The second set of models is specific to SLC and aims
to capture switching errors that can occur in this type of
device. Finally, we present error models for the interface
of a DPE that is integrated in a digital system.

B. Continuous Noise Models

In what follows, we use Gj,k to denote the stochastic
version of the conductance value gj,k. In [11], [26],
empirical probability densities of current-voltage char-
acteristics indicate that an additive Gaussian model is an
appropriate representation of the noise affecting actual
conductance values. The model is centered around the
target conductance value, but the variance is shown to
vary with the target conductance value as well. This addi-
tive Gaussian noise model is considered in [2] for analog
DPE described in Section III-A, and in [27] for Ham-
ming distance computation presented in Section III-C,
where in both works each possible conductance state has
its own variance value. For instance, in the SLC case
considered in [27], the conductance values for GON and
GOFF are modeled as N (gON, σ

2
ON) and N (gOFF, σ

2
OFF),

respectively. On the other hand, a simplified Gaussian
model with only one variance value for any possible
conductance level is considered in [28], [29] for analog
DPE with MLC described in Section III-A. This model
represents the conductance values Gj,k as N (gj,k, σ

2).
Furthermore, [30] simulates conductance values with

a more complex model that takes into account program-
ming noise, conductance drift over time, and read noise.
The three sources of noise are combined as follows.
First, the programming noise produces a random variable
G

(p)
j,k = gj,k + Uj,k, where Uj,k is a Gaussian random

variable with mean 0 and variance σ2
p . The conductance

drift over time is modeled as G
(d)
j,k(t) = G

(p)
j,k

(
t0
t

)ν ,
where ν is a Gaussian random variable with mean µν

and variance σ2
ν . Finally, the actual conductance value is

computed as Gj,k(t) = G
(d)
j,k(t) + Vj,k, where the read

noise Vj,k is modeled as a Gaussian random variable with
mean zero and variance σ2

r . Although the three noise
sources are considered to be statistically independent
from one another, they are all taken into account in the
resulting Gj,k(t). Note that if the conductance drift over

7

time is instead modeled as a deterministic scaling by
α(t), this model reduces to representing the conductance
values Gj,k as N (α(t)gj,k, α

2(t)σ2
p + σ2

r).

C. SLC Error Models

The previous Gaussian models assume that the ac-
tual conductance value varies around its target value.
However, sometimes memristors fail to switch to the
target value. When considering SLC, the switching time
is known to follow a log-normal distribution [31]. In ad-
dition, for Hamming distance computation [27] described
in Section III-C, unsuccessful write operations are mod-
eled at a higher level as a binary symmetric channel
(BSC), which assumes that errors are not only symmetric
but also independent and identically distributed from
one memristor to another. Nevertheless, [32] has shown
that errors are not identically distributed within the
crossbar, meaning that the position of a memristor in
the crossbar has an influence on the error distribution.
Moreover, [33] assumes a correlation between the error
realizations inside a crossbar. Of course, these gener-
alizations could also be introduced in the continuous
models. Finally, [34] demonstrates that it is more relevant
to consider asymmetric errors. Following these concepts,
[35] models read and write errors as binary asymmetric
channels (BAC) with non-uniform transition probabilities
across the crossbar. It is worth noting that [32], [34],
[35] discuss error models and assumptions for storage
applications, although these models are also relevant for
in-memory computing.

D. Noise Models for the DPE Interface

When considering specifically the DPE structure illus-
trated in Figure 3, the noise model can be extended to the
conversion circuits that are required to integrate the DPE
into a digital system. The most important aspect to be
modeled is the fact that the digital-to-analog conversion
at the WL inputs may be inaccurate, which can be
modeled as additive Gaussian noise with input-dependent
variance [25]. This input noise has a different impact
on the computation compared to conductance variations,
since it affects all the elements of the output vector.
However, it is interesting to note that DAC circuits are
not essential to implement a DPE. Instead, each bit of the
quantized input elements can be presented to the crossbar
one at a time, allowing to perform the dot-product over
repeated uses of the crossbar [14].

On the other hand, the analog-to-digital conversion
introduces the usual quantization and clipping errors.
A detailed error model should also consider that the

quantization range may be narrower or wider than in-
tended, potentially introducing additional clipping or
quantization errors.

V. INFORMATION-THEORETIC ANALYSIS

In information theory, the key notion of capacity pro-
vides the fundamental limit of reliable communication
over a noisy channel, where reliability is defined as
vanishing error probability under asymptotic code length.
This fundamental result has long motivated the search for
practical and efficient channel codes with performance
close to the capacity.

The information-theoretic analysis of the capacity can
be straightforwardly applied to noisy storage systems.
This is because the memory noise can be factored into
a standalone channel model, which functions indepen-
dently of both encoding and decoding processes. Yet,
when it comes to in-memory computing, this method
is less applicable. Take logic-in-memory as an example,
where each logic gate is subject to noise. To improve
reliability, one may expand the circuit, by incorporating
error-correction mechanisms. However, these compo-
nents might bring along their own inherent noise during
processing, resulting in a tradeoff between noise intro-
duction and noise correction. Given such strong interplay
between noise and computation, the notion of capacity
cannot be used as is. There is a need for alternative
concepts which we discuss in this section.

It is worth noting that for in-memory computing, each
computational structure outlined in Section III might ne-
cessitate its own unique analytical approach. Particularly,
the very different nature of these computation structures
may require different analysis tools. In addition, the
evaluation criterion may differ: while error probability
is appropriate for logic-in-memory or Hamming distance
computation, each specific application of dot-product
computation may need its own specific metrics. For in-
stance, [36] proposed a method to significantly improve
the error-correction performance of a noisy DNN, by
optimizing the final classification accuracy instead of
the usual bit error rate. Such results motivate us to also
discuss the evaluation of relevant reliability criteria for
the computation structures described in Section III.

A. An Equivalent of the Capacity for IMC

In this section, we present appropriate definitions of
the capacity in order to investigate the fundamental limits
of noisy IMC systems.

1) Redundancy of IMC Systems: The redundancy of
a noisy circuit is defined as the number of noisy gates
needed to perform the computation within the target

8

error probability, divided by the number of gates in the
noiseless circuit [37]. This definition was introduced for
noisy circuits in general, not necessarily those imple-
mented in memory, and it allows to account for an
error-correction mechanism which would increase the
size of the circuit. But one key difficulty is that the
circuit implementation has an influence both on the
number of gates in the circuit, and on the robustness to
noise [38]. This observation largely explains why there
only exist lower bounds on the redundancy of noisy logic
circuits [39], [40].

For noisy in-memory computing, redundancy can be
regarded as a first proxy in comparing different error-
correction solutions [36], but it fails to take into account
some specific mechanisms, like increasing the conduc-
tance values to improve the robustness to noise [29],
or including golden gates with a lower error probability
than standard ones in order to improve the overall
computation performance [38]. In addition, it does not
account for the cost of the accompanying CMOS op-
erations, including DACs and ADCs, which are often
used together with in-memory computing. Therefore, the
information theory analysis could go one step further in
providing insightful design rules, by considering more
practical concepts such as the power consumption of the
in-memory computing units.

2) Power Consumption of IMC Systems: Outside
of in-memory computing, some works have already
proposed to use information theory to investigate the
power consumption of computing systems. For instance,
while the capacity of an additive white Gaussian noise
(AWGN) channel depends on the transmit power, [41]
proposed to also investigate the decoder power supply,
which for short-distance communications becomes non-
negligible compared to the transmit power. For the
special case of LDPC codes, [41] provides a theoretical
evaluation of the decoder power supply, by considering
abstract models for the power requirements of wires and
processors. It then derives scaling laws relating the power
supply to the decoder error probability, and shows that
under certain conditions, the decoding power is so high
that uncoded transmission should be preferred.

Although the analysis of [41] is specific to LDPC
decoders, it gives insights that using information theory
to investigate the power consumption of IMC systems
may be very relevant from a hardware implementation
perspective. In the case of in-memory computing, an
information-theoretic analysis of the power consumption
would allow to take into account everything at once:
not only the additional redundancy, but also all accom-
panying operations (DACs/ADCs, etc.). Such analysis
would also permit to fairly compare different strategies

to improve reliability, such as error-correction mecha-
nisms, increase in conductance levels, etc. On the other
hand, the power consumption of in-memory computing
systems can be difficult to analyze, since it strongly
depends on the computation structure, and on the way it
is implemented.

Interestingly, the power required for analog DPE in
memory described in Section III-A can be evaluated
using conventional electrical power formulas [29]. For
instance, the power consumption of a resistive device
with internal conductance Gj,k can be calculated using
the formula Pj,k = Gj,ku

2
j , where uj is the input

voltage. When considering stochastic conductance values
Gj,k due to the noise, it is also useful to evaluate the
average total power consumption by summing up the
average power contributions of each resistive device in
the crossbar.

The power consumption of a memristor crossbar de-
pends on various factors including the crossbar size and
the conductance levels. In particular, larger conductance
values can improve the signal-to-noise ratio and make
the system more robust to noise, at the price of increased
power. Therefore, it is proposed in [29] to optimize the
conductance values so as to achieve the best tradeoff
between robustness to noise and power consumption.

The analysis of [29] only considers the power require-
ments of the crossbar memristors and TIAs shown in
Figure 3. However, there is a need to also take into ac-
count the DACs and ADC needed for the computation. In
addition, in many applications of in-memory computing,
a part of the computation operation are still realized in
CMOS, which should also be taken into account in the
power analysis for a fair comparison of different error-
correction mechanisms.

B. Evaluating Reliability Criteria

Investigating the capacity, or a similar notion, of
IMC systems, requires to set a reliability criterion. We
now discuss relevant reliability criteria for in-memory
computing, depending on the considered computation
structure and noise model.

1) Noisy Logic Computation: When considering
noisy logic-in-memory, a relevant performance evalua-
tion criterion is the error probability at the output of the
circuit. Existing information-theoretic analysis of noisy
logic circuits [37], [42], [43] can be adapted to evaluate
such error probability in the case of in-memory comput-
ing. These works consider a logic circuit that implements
a certain function f(.) with k inputs and m outputs,
and the noise is modeled as bit-flipping probabilities in
each logic gate of the circuit. In this case, the function

9

output error probability can be calculated exactly by
using the Gallager formula [43] which provides the
probability of an odd number of gate flips. Note that
it is often impossible to achieve zero error probability,
even asymptotically, given that the final gates introduce
a level of errors bounded away from zero.

The bit-flipping noise model used in previous
works [37], [42], [43] is equivalent to the switching error
model described by a BSC presented in Section IV-C.
Therefore, the information-theoretic analysis of noisy
logic circuits can be seen as a first proxy to investigate
noisy logic-in-memory. Conversely, when considering
continuous noise models described in Section IV-B, there
is a need to update the previous theoretical analysis.

2) Hamming Distance Computation: For the Ham-
ming distance computation described in Section III-C,
the error probability is still a relevant criterion, although
its theoretical evaluation differs. The work of [23]
provided lower bounds on the minimum ratio gON/gOFF

that allow to compute exactly the Hamming distance be-
tween two vectors, following the computation model of
Section III-C. It was also recognized by [23] that channel
coding in the form of adding a particular type of redun-
dancy to the stored vectors, can enable a wider range of
memristor parameters gON and gOFF, thus enabling less
restrictive hardware designs. This work was then subse-
quently expanded in [27], where a more realistic statisti-
cal model of memristor variability was considered. The
work [27] considered two main - and complementary
- sources of memristor variability: resistance variation,
and the non-deterministic switching mechanism during
the memristor write process. Leveraging prior literature
on device physics (see Sections IV-B and IV-C), the
former type of variation was modeled in [27] as a
per-state (high or low) Gaussian random variable and
the latter was modeled as a Bernoulli random variable.
Statistical description of the resultant Hamming distance
was provided, in the form of equivalent Gaussian noise,
with known mean and variance, onto the true Hamming
distance.

3) MSE of Noisy Analog Dot Products: When con-
sidering the analog DPE described in Section III-A,
one may investigate the effect of noise by evaluating
the mean squared error (MSE) between the noisy DPE
outputs Cj and their noiseless counterparts cj . For
this problem, [28], [29], [44] proposed to theoretically
evaluate the MSE from analytical formulas of the first
and second-order moments E[Cj] and V[Cj] of the noisy
outputs Cj . These works consider that the means E[Gj,k]
and variances V[Gj,k] are known, but do not make any
further assumption on the probability distributions of the
stochastic conductance values Gj,k. The Gaussian model

described in Section IV-B fits into these assumptions, and
it is considered as a special case in [28], [29], [44]. The
moments E[Cj] and V[Cj] were next either calculated
exactly [44] or approximated from second-order Taylor
expansions [28], [29].

This analysis was further extended to predict the MSE
after fixed-point computation [28] or at the output of a
DNN, by propagating the analytical moment expressions
over the successive layers of the network [29]. In the
latter case, moments after the non-linear computation
parts were approximated from the second-order Taylor
expansions. In addition, a key challenge is that the noisy
outputs after each DNN layer are correlated, as they are
calculated from the same inputs. Therefore, analytical
expressions of the covariance terms C[CjCj′] must also
be propagated over the network.

Interestingly, all previous works show that the theoret-
ical expressions of the MSE predict the actual MSE mea-
sured from Monte-Carlo simulations with high accuracy,
even when the successive moments are approximated
from Taylor expansions. In addition, when considering
DNNs, the non-linear activation functions are shown
to reduce error propagation from one layer to another.
Further, by comparing the results of [29] and [44], it can
be observed that the widely considered DPE computation
model in which aj,k = gj,k is inherently less robust
to noise than the computation model of [4] in which
aj,k = gj,k

gs+
∑

gj,k
.

Finally, while the MSE gives a measure of the amount
of noise that remains at the end of the computation, there
is also a need to consider a criterion more specific to
the targeted application, for instance the accuracy for
classification from DNNs.

C. Additional Challenges

In addition to the previously mentioned computa-
tion structures (such as DPE, logic-in-memory, Ham-
ming distance computation, and DNN inference), there
is a need to explore additional applications of inter-
est. These include tasks like calculating the shortest
path [5], training deep neural networks (DNN training),
and implementing binary neural networks (BNN). These
applications may require specific information-theoretic
analyses due to their unique computational structures
or performance evaluation criteria. Furthermore, certain
sources of impairment, such as the sneak-path effect
or stuck-at-faults, may necessitate dedicated analyses.
This is because they do not conform to the typical
statistical assumptions required by most information
theory analyses, such as the assumptions of independent
and identically distributed (i.i.d.) noise and independence

10

with respect to inputs. Finally, an information-theoretic
analysis of IMC systems may investigate their energy ef-
ficiency by not only considering the power consumption
of the full system (including ADC and DAC, resistance
programming, etc.), but also the computation latency.

VI. ADVANCED ROBUST DESIGNS

The previous section discussed information-theoretic
analysis of in-memory computing, and in particular the
prediction of the power consumption of IMC systems.
This section now addresses the practical robust design
of power-efficient in-memory computing systems. While
simple inversion coding was shown to be sufficient in
the context of the Hamming distance computation [27],
this section describes more advanced error-correction
techniques that are necessitated by various applications.

It is well known that error correction coding tech-
niques have found broad use in data storage and com-
munication systems for many decades. What is perhaps
less known is that they have an equally long history
in being used for reliable computation. For example,
arithmetic codes named AN codes [45] were proposed
back in 1950s for correcting computational errors. As in
communication systems, error-correction codes (ECCs)
may allow to further reduce the power consumption of
in-memory computing [24], [46]. However, as for the
theoretical analysis, the code design should depend on
the considered computation structure and error model.
Especially, the sneak-path effect may necessitate its own
specific code design.

A. ECCs Defined Over the Integer Set

In [47], algebraic coding schemes defined over the
subset of integer set Z were proposed. These codes can
detect and correct computational errors occurring for
computing integer vector-matrix multiplication (VMM)
c = uA where all the components of u and A are
integers [48]. Such integer VMMs can be implemented in
the same way as analog DPE described in Section III-A.

The accuracy of the computation can be affected by
several factors, such as inaccuracies of programming
the resistors in the crossbar and noise in reading the
currents (see Section IV-A). Therefore, the error vector
e is defined as e = y−c, with y being the actual integer-
valued vector that was read. It is natural to consider
the L1-norm to characterize the errors, where the L1-
norm of a vector is the sum of the absolute values of
its elements. Alternatively, errors could be caused by the
shorted or stuck cells in the memory array. In this case, it
is more convenient to use the Hamming metric to model
these errors, where the Hamming distance between the

erroneous reading and the correct output vector equals
the number of positions in which their values differ.
Therefore, the code constructions in [47] make use of
either the L1-metric or the Hamming metric, for both
single and multiple error correction. For correcting τ
errors within a codeword of length n, the required
redundancy is on the order of τ · logq(n) for the case
with the L1-metric, and it is approximately 2τ · logq(n)
for the case with the Hamming metric. In [47], a lower
bound is provided on the code redundancy needed to
correct a single error in the L1 metric. It is then shown
that the redundancy of the proposed code construction is
within one symbol from this lower bound. However, the
optimal redundancy of codes correcting multiple errors
is still an open problem.

B. Analog Error-Correcting Codes

Different from the exact integer VMM model adopted
by [47], the coding schemes proposed by [46] considers
the computation model for analog DPE introduced in
Section III-A. In this case, both the ideal VMM com-
putation c = uA and the actual read vector y are in
the analog domain. Then, [46] considers an approximate
computation model in which entries of y are considered
“correct” if they are sufficiently close to the respective
entries of c. However, entries in y that are significantly
different from those in c are called outlying errors and
they must be corrected. More specifically, the read vector
y is given by y = c + ε + e, where the entries in ε
represent small computational errors or the circuit noise,
which are tolerable, while the entries of e denote the
outlying errors, which may be caused by the short cells
or stuck cells in the memory array. It is assumed that
the values of the tolerable errors are within the interval
[−δ, δ], while entries of the outlying errors that can be
corrected fall outside the interval [−∆,∆], where δ < ∆
are two positive real numbers. Such an approximate
computation model is suitable for applications that can
tolerate small errors, such as learning applications.

A linear [n, k] code C defined over the real number
domain R is said to be capable of correcting τ (outlying)
errors and detecting σ additional (outlying) errors if there
is a decoder of C which, for every read vector y with
at most τ + σ outlying errors, returns a set of locations
of outlying errors or an indication that errors have been
detected.

The error correction capability of the above analog
ECC C can be characterized by its height profile, which
is defined as follows. Suppose c is a codeword of C
and it is a nonzero vector. The entries of c are sorted
according to descending absolute values as |cπ(0)| ≥

11

2

designed real matrix and depends only on A. The linear
space over the real field R generated by the rows of
the matrix (A,A′) is called an analog error-correcting
code. Suppose c′ has length k and c′′ has length k′,
then it suffices to consider a k-dimensional subspace
of Rn, also called a linear [n, k] code over R, where
n = k + k′. In fact, given any linear [n, k] code C over
R, if G = (Ik, G

′) is a systematic generator matrix of
C, then (A,A′) = A(Ik, G

′), where Ik is the identity
matrix of order k.

By the approximate computation model, the actual
readout vector y can be represented by y = c + ε + e,
where ε is the small computational errors (or circuit
noise), which are tolerable, and the entries of e are
the outlying errors. It is assumed that the values of
tolerable errors are in the interval [−δ, δ] while the values
of outlying errors that can be corrected fall outside
the interval [−∆,∆], where δ < ∆ are two positive
real numbers. A linear [n, k] code C is said to be
capable of correcting τ (outlying) errors and detecting σ
additional (outlying) errors (with respect to the threshold
pair (δ,∆)) if there is a decoder D of C which, for
every readout vector y with at most τ + σ outlying
errors, returns a set of locations of outlying errors or an
indication “e” indicating that errors have been detected.1

The locations of all outlying errors falling outside the
interval (δ,∆)) must be included in the returned set and
a location that does not contain any outlying error should
not be included. Moreover, if the number of outlying
errors does not exceed τ , the decoder must return a set
(possibly empty if the values of all outlying errors are
in the interval [−∆,∆]) of outlying error locations.2

The error correction capability of an [n, k] linear code
C can be characterized by its height profile, which is de-
fined as follows. Suppose 0 6= c = (c0, c1, · · · , cn−1) ∈
C, where 0 is the zero vector. Let the entries of c
be sorted according to descending absolute values as
|cπ(0)| ≥ |cπ(1)| ≥ |cπ(2)| ≥ · · · ≥ |cπ(n−1)|, where
π is the corresponding permutation of the index set
[n〉 , {0, 1, 2, · · · , n − 1} (see Fig. 1 for an example).
For each m ∈ [n〉, the m-height of c is defined as the
ratio of |cπ(0)| to |cπ(m)|, i.e., hm(c) =

|cπ(0)|
|cπ(m)| , and the

m-height of C is defined as the greatest value of hm(c)
among all c ∈ C, where hm(0) = 0 for every m ≥ 0. In
[?], it was proved that C can correct τ errors and detect σ

1In [?], error correction means finding the locations of the outlying
errors. The bounds on the values of the outlying errors can be
computed using linear programming and is not included in the
definition of error correction.

2On the other hand, if the number of outlying errors is above τ
yet no more than τ + σ, the decoder may return a set of outlying
error locations or the indication “e”.

additional errors with respect to the threshold pair (δ,∆)
if and only if 2(hm(C) + 1) ≤ ∆

δ , where m = 2τ + σ.
Note that it is the ratio ∆

δ rather than the individual
values of δ and ∆ which determines whether the outlying
errors can be corrected or detected. Also note that there
is a “gray area” of outlying values which is not covered
by the error correction conditions: outlying errors with
value within the interval (δ,∆] are not corrected. For
practical application, the ratio ∆

δ is expected to be as
small as possible so that the “gray area” is as small as
possible. Given n, k and m = 2τ + σ, a basic problem
is to design an [n, k] code C with hm(C) as small as
possible. By the definition of m-height, it is easy to see
that for any linear [n, k] code C, hm(C) ≥ 1. For the
case that n is divisible by m + 1, it was proved in [?]
that hm(C) = 1 if and only if C is the (n/(m + 1))-fold
Cartesian power of the [m + 1, 1] repetition code.

n

c

0 1 2 3 4 5 6 7 8

3.2

−2.5

2.0

0.4

cπ(0)

cπ(1)

cπ(2)

cπ(8)

Fig. 1. An example of the m-height of a real vector c of length
9: We can see that |c3| > |c7| > |c1| > · · · > |c5|, so π(0) = 3,
π(1) = 7, π(2) = 1, · · · , and π(8) = 5. According to the definition,
h0(c) = |c3|

|c3| = 1, h1(c) = |c3|
|c7| = 3.2

2.5
= 1.28, h2(c) = |c3|

|c1| =
3.2
2.0

= 1.6, · · · , h8(c) = |c3|
|c5| =

3.2
0.4

= 8.

In [?], a family of single-error correction codes is
constructed. The effectiveness of the constructed single-
outlying-error-correction code is demonstrated at the
circuit level by [?]. However, the construction of analog
ECCs that can locate/correct more outlying errors, as
well as the analysis of the bound of the magnitude of the
outlying errors that can be corrected remain challenging
open problems.

3) LDPC Codes for VMM: In [?], an approach is pro-
posed to improve the reliability of MVM in the presence
of errors by employing low-density parity-check (LDPC)
codes. LDPC codes are a family of graph-based linear
block codes in current use in many telecommunication
standards. An LDPC code is defined by a sparse parity
check matrix H and by a generator matrix G such that
GHT = 0. In [?], the MVM operation is partitioned into
bit slices, and each slice is computed within a particular

Figure 6. An example of the m-height of a real vector c of length
9: We can see that |c3| > |c7| > |c1| > · · · > |c5|, so π(0) = 3,
π(1) = 7, π(2) = 1, · · · , and π(8) = 5. According to the definition,
h0(c) = | c3

c3
| = 1, h1(c) = | c3

c7
| = 3.2

2.5
= 1.28, h2(c) = | c3

c1
| =

3.2
2.0

= 1.6, · · · , h8(c) = | c3
c5
| = 3.2

0.4
= 8.

|cπ(1)| ≥ |cπ(2)| ≥ · · · ≥ |cπ(n−1)|, where π denotes the
corresponding permutation of the coordinates of c (see
Fig. 6 for an example). For each m ∈ {0, 1, · · · , n− 1},
the m-height of c, denoted by hm(c), is defined as
the ratio of |cπ(0)| to |cπ(m)|, i.e., hm(c) = | cπ(0)

cπ(m)
|.

The m-height of C, denoted by hm(C), is defined as
the largest value of hm(c) among all c ∈ C, where
hm(0) = 0 for every m ≥ 0. In [46], a necessary and
sufficient condition for the existence of the decoder of
C is presented. That is, the decoder of C can correct τ
errors and detect σ additional errors with respect to the
threshold pair (δ,∆) if and only if 2(hm(C) + 1) ≤ ∆

δ ,
with m = 2τ + σ. Given n, k and m = 2τ + σ, a basic
problem is to design an [n, k] code C with hm(C) as
small as possible.

The analog ECC proposed in [46] can detect or correct
a single outlying error. For encoding, the programmed
matrix A is designed in the form A = (A′, A′′), and
hence the encoded codeword is given by c = (c′, c′′),
where c′ = uA′ is the expected result (i.e. the target
computation), while c′′ = uA′′ is the redundancy part
for detecting or correcting the outlying errors. Given
any linear [n, k] code C over R, if G = (Ik, G

′) is
a systematic generator matrix of C with Ik being the
identity matrix of order k, A′′ can be determined as
A′′ = A′G′. That is, the encoding is done by adding in a
sub-matrix A′′ next to the matrix A′ for VMM operation,
which can be implemented using the memory crossbar
array in parallel to the array for VMM. Therefore, the
encoding can be carried out simultaneously with the
VMM operation and it does not incur additional latency.
For decoding, single error detection or correction can
be achieved by examining the entries of the syndrome
s = HyT of the read vector based on a specifically
designed parity-check matrix H of C such that the

necessary and sufficient condition for the existence of
its decoder is satisfied.

The effectiveness of the constructed single-outlying-
error-correction code was demonstrated at the circuit
level by [49]. However, the construction of analog ECCs
that can locate/correct more outlying errors, as well
as the analysis of the bound of the magnitude of the
outlying errors that can be corrected remain challenging
open problems.

C. Additional Challenges

Ultimately, when developing ECC for IMC systems,
one should target to improve not only the robustness, but
also the energy efficiency of the computation. In addition
to the previous code constructions, a key question is to
determine whether modern codes, such as LDPC and
Polar, which can correct a large amount of errors, are
suitable for energy-efficient in-memory computing with
strict latency and complexity constraints. A first con-
ceptual error-correction solution based on LDPC codes
for DPE was proposed in [24], although it does not yet
satisfy these constraints.

Additionally, complementary to the hardware-based
solutions are signal processing and communication meth-
ods that can help further optimize the underlying de-
vices. For instance [50], [51] investigated the sneak-path
effect from a classical communication theory viewpoint,
proposing either a simple pilot construction or an optimal
detector to mitigate this effect. More recently, [52] de-
veloped a new quantized channel model for the ReRAM
array that incorporates both the sneak path interference
and the random resistance variation caused by process
variations. Next, by maximizing mutual information of
the induced channel, [52] developed adaptive sneak
path-aware detection and decoding schemes that can
successfully operate with only a few bits of quantization.
The previous solutions [50]–[52] were investigated in the
context of data storage only, and it would be interesting
to adapt them to in-memory computing.

VII. CONCLUSION

This paper provided an overview of in-memory com-
puting systems, with the aim of connecting the fields of
information theory and hardware implementation. The
paper emphasizes the importance of considering accu-
rate noise models, as well as hardware implementation
constraints such as latency and power, in the theoretical
analysis of in-memory computing systems. Additionally,
the analysis and design of in-memory computing systems
should be done from the perspective of the target appli-
cations, an idea which is now being intensively explored

12

in the field of goal-oriented communications, where the
communication objective is to address a given learning
task (decision making, classification, etc.), rather than
data reconstruction.

REFERENCES

[1] G. E. Moore, “No exponential is forever: but forever can
be delayed!” in IEEE Int. Solid-State Circuits Conf. (ISSCC).
Digest of Technical Papers., 2003, pp. 20–23.

[2] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandaku-
mar, C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and
E. Eleftheriou, “Accurate deep neural network inference using
computational phase-change memory,” Nature comm., vol. 11,
no. 1, pp. 1–13, 2020.

[3] B. Li, B. Yan, and H. Li, “An overview of in-memory pro-
cessing with emerging non-volatile memory for data-intensive
applications,” in Proc. of the Great Lakes Symp. on VLSI, 2019,
pp. 381–386.

[4] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, “A memristor-
based optimization framework for artificial intelligence appli-
cations,” IEEE Circ. and Syst. Mag., vol. 18, no. 1, pp. 29–44,
2018.

[5] D. Stathis, I. Vourkas, and G. C. Sirakoulis, “Shortest path com-
puting using memristor-based circuits and cellular automata,” in
Int. Conf. on Cellular Automata. Springer, 2014, pp. 398–407.

[6] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and
B. Scellier, “Training end-to-end analog neural networks with
equilibrium propagation,” arXiv preprint arXiv:2006.01981,
2020.

[7] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleft-
heriou, “Memory devices and applications for in-memory com-
puting,” Nature nanotech., vol. 15, no. 7, pp. 529–544, 2020.

[8] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila,
C. Graves, S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-
product engine for neuromorphic computing: Programming
1T1M crossbar to accelerate matrix-vector multiplication,” in
53nd ACM/EDAC/IEEE design autom. conf. (DAC), 2016, pp.
1–6.

[9] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser, “Memristor-based material implication (IM-
PLY) logic: design principles and methodologies,” IEEE Trans.
on Very Large Scale Int. (VLSI) Syst., vol. 22, no. 10, pp. 2054–
2066, 2013.

[10] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K.
Likharev, and D. B. Strukov, “High-performance mixed-signal
neurocomputing with nanoscale floating-gate memory cell ar-
rays,” IEEE Trans. on Neural Net. and Learning syst., vol. 29,
no. 10, pp. 4782–4790, 2017.

[11] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing
in memory with spin-transfer torque magnetic RAM,” IEEE
Trans. on Very Large Scale Int. (VLSI) Syst., vol. 26, no. 3, pp.
470–483, 2018.

[12] M. Le Gallo and A. Sebastian, “An overview of phase-
change memory device physics,” Journal of Physics D: Applied
Physics, vol. 53, no. 21, p. 213002, 2020.

[13] L. Ni, H. Huang, Z. Liu, R. V. Joshi, and H. Yu, “Distributed in-
memory computing on binary RRAM crossbar,” ACM Journal
on Emerging Tech. in Comp. Syst. (JETC), vol. 13, no. 3, pp.
1–18, 2017.

[14] T. Soliman, F. Müller, T. Kirchner, T. Hoffmann, H. Ganem,
E. Karimov, T. Ali, M. Lederer, C. Sudarshan, T. Kämpfe,
A. Guntoro, and N. Wehn, “Ultra-low power flexible precision
fefet based analog in-memory computing,” in IEEE Inte. Elec-
tron Devices Meeting (IEDM), 2020, pp. 29.2.1–29.2.4.

[15] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
“The missing memristor found,” Nature, vol. 453, no. 7191, pp.
80–83, 2008.

[16] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Team: Threshold adaptive memristor model,” IEEE Trans. on
Circ. and Syst. I: reg. papers, vol. 60, no. 1, pp. 211–221, 2012.

[17] H. Lv, X. Xu, H. Liu, R. Liu, Q. Liu, W. Banerjee, H. Sun,
S. Long, L. Li, and M. Liu, “Evolution of conductive filament
and its impact on reliability issues in oxide-electrolyte based
resistive random access memory,” Scientific reports, vol. 5,
no. 1, pp. 1–6, 2015.

[18] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. Di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. Farinha
et al., “Equivalent-accuracy accelerated neural-network training
using analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67,
2018.

[19] S. Shukla, S. Balasubramanian, and M. Pavlović, “A general-
ized banach fixed point theorem,” Bulletin of the Malaysian
Mathematical Sciences Society, vol. 39, pp. 1529–1539, 2016.

[20] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic de-
sign within memristive memories using memristor-aided logic
(MAGIC),” IEEE Trans. on Nanotech., vol. 15, no. 4, pp. 635–
650, 2016.

[21] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser,
A. Chattopadhyay, and G. De Micheli, “The programmable
logic-in-memory (PLiM) computer,” in Design, Autom. & Test
in Europe Conf. & Exhibit. (DATE). IEEE, 2016, pp. 427–432.

[22] K. A. Ali, M. Rizk, A. Baghdadi, J.-P. Diguet, J. Jomaah,
N. Onizawa, and T. Hanyu, “Memristive computational memory
using memristor overwrite logic (MOL),” IEEE Trans. on Very
Large Scale Int. (VLSI) Syst., vol. 28, no. 11, pp. 2370–2382,
2020.

[23] Y. Cassuto and K. Crammer, “In-memory Hamming similarity
computation in resistive arrays,” in IEEE Int. Symp. on Inf. Th.
(ISIT), 2015, pp. 819–823.

[24] Q. Lou, T. Gao, P. Faley, M. Niemier, X. S. Hu, and S. Joshi,
“Embedding error correction into crossbars for reliable matrix
vector multiplication using emerging devices,” in Proc. of the
ACM/IEEE Int. Symp. on Low Power Elec. and Design, 2020,
pp. 139–144.

[25] S. K. Roy, A. Patil, and N. R. Shanbhag, “Fundamental limits
on the computational accuracy of resistive crossbar-based in-
memory architectures,” in 2022 IEEE Int. Symp. on Circ. and
Syst. (ISCAS), 2022, pp. 384–388.

[26] K. V. Pham, S. B. Tran, T. V. Nguyen, and K.-S. Min, “Asym-
metrical training scheme of binary-memristor-crossbar-based
neural networks for energy-efficient edge-computing nanoscale
systems,” Micromachines, vol. 10, no. 2, p. 141, 2019.

[27] Z. Chen, C. Schoeny, and L. Dolecek, “Hamming distance
computation in unreliable resistive memory,” IEEE Trans. on
Comm., vol. 66, no. 11, pp. 5013–5027, 2018.

[28] E. Dupraz and L. R. Varshney, “Noisy in-memory recursive
computation with memristor crossbars,” in IEEE Int. Symp. on
Inf. Theory (ISIT), 2020, pp. 804–809.

[29] E. Dupraz, L. R. Varshney, and F. Leduc-Primeau, “Power-
efficient deep neural networks with noisy memristor implemen-
tation,” in IEEE Inf. Th. Workshop (ITW), 2021, pp. 1–5.

[30] M. Le Gallo, S. Nandakumar, L. Ciric, I. Boybat, R. Khaddam-
Aljameh, C. Mackin, and A. Sebastian, “Precision of bit slicing
with in-memory computing based on analog phase-change
memory crossbars,” Neuro. Comp. and Eng., vol. 2, no. 1, p.
014009, 2022.

[31] G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D.
Pickett, and R. S. Williams, “Lognormal switching times for
titanium dioxide bipolar memristors: origin and resolution,”
Nanotech., vol. 22, no. 9, p. 095702, 2011.

13

[32] A. Chen, “A comprehensive crossbar array model with solutions
for line resistance and nonlinear device characteristics,” IEEE
Trans. on Elec. Devices, vol. 60, no. 4, pp. 1318–1326, 2013.

[33] M. Hu, H. Li, Q. Wu, G. S. Rose, and Y. Chen, “Memristor
crossbar based hardware realization of BSB recall function,” in
The 2012 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2012, pp. 1–7.

[34] M. Zorgui, M. E. Fouda, Z. Wang, A. M. Eltawil, and F. Kur-
dahi, “Non-stationary polar codes for resistive memories,” in
IEEE Global Comm. Conf. (GLOBECOM), 2019, pp. 1–6.

[35] Z. Chen and L. Dolecek, “Coding schemes for crossbar resistive
memory with high line resistance in SCM applications,” in Int.
Symp. on Topics in Coding (ISTC), 2021, pp. 1–5.

[36] K. Huang, P. H. Siegel, and A. Jiang, “Functional error cor-
rection for robust neural networks,” IEEE Journal on Selected
Areas in Inf. Th., vol. 1, no. 1, pp. 267–276, 2020.

[37] M. G. Taylor, “Reliable computation in computing systems
designed from unreliable components,” Bell Syst. Tech. Journal,
vol. 47, no. 10, pp. 2339–2366, 1968.

[38] E. Dupraz, V. Savin, S. K. Grandhi, E. Popovici, and D. De-
clercq, “Practical LDPC encoders robust to hardware errors,” in
IEEE Int. Conf. on Comm. (ICC), 2016, pp. 1–6.

[39] P. Gács and A. Gál, “Lower bounds for the complexity of
reliable boolean circuits with noisy gates,” IEEE Trans. on Inf.
Theory, vol. 40, no. 2, pp. 579–583, 1994.

[40] N. Pippenger, “On networks of noisy gates,” in 26th Ann. Symp.
on Found. of Comp. Sci. (sfcs 1985). IEEE, 1985, pp. 30–38.

[41] K. Ganesan, P. Grover, J. Rabaey, and A. Goldsmith, “On
the total power capacity of regular-ldpc codes with iterative
message-passing decoders,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 2, pp. 375–396, 2015.

[42] N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis, “On a lower
bound for the redundancy of reliable networks with noisy gates,”
IEEE Trans. on Inf. Theory, vol. 37, no. 3, pp. 639–643, 1991.

[43] Y. Yang, P. Grover, and S. Kar, “Computing linear transfor-
mations with unreliable components,” IEEE Transactions on
Information Theory, vol. 63, no. 6, pp. 3729–3756, 2017.

[44] J. Kern, S. Henwood, G. Mordido, E. Dupraz, A. Aı̈ssa-El-
Bey, Y. Savaria, and F. Leduc-Primeau, “MemSE: Fast MSE
prediction for noisy memristor-based DNN accelerators,” in
IEEE 4th Int. Conf. on Artif. Intelligence Cir. and Syst. (AICAS),
2022, pp. 62–65.

[45] J. Diamond, “Checking codes for digital computers,” in Proc.
of IRE, 1995, pp. 487–488.

[46] R. M. Roth, “Analog error-correcting codes,” IEEE Trans. on
Inf. Theory, vol. 66, no. 7, pp. 4075–4088, 2020.

[47] ——, “Fault-tolerant dot-product engines,” IEEE Trans. on Inf.
Th., vol. 65, no. 4, pp. 2046–2057, 2019.

[48] M. H. et al., “Memristor-based analog computation and neural
network classification with a dot product engine,” Advanced
Materials, vol. 30, no. 9, p. 1705914, 2018.

[49] C. Li, R. M. Roth, C. Graves, X. Sheng, and J. P. Strachan,
“Analog error correcting codes for defect tolerant matrix mul-
tiplication in crossbars,” in 2020 IEEE Int. Electron Devices
Meet. (IEDM), 2020, pp. 1–4.

[50] Z. Chen, C. Schoeny, and L. Dolecek, “Pilot assisted adaptive
thresholding for sneak-path mitigation in resistive memories
with failed selection devices,” IEEE Trans. on Comm., vol. 68,
no. 1, pp. 66–81, 2019.

[51] Y. Ben-Hur and Y. Cassuto, “Detection and coding schemes
for sneak-path interference in resistive memory arrays,” IEEE
Trans. on Comm., vol. 67, no. 6, pp. 3821–3833, 2019.

[52] P. Li, K. Cai, G. Song, and Z. Mei, “Sneak path interference-
aware adaptive detection and decoding for resistive memory
arrays,” IEEE Comm. Lett., vol. 26, no. 9, pp. 2032–2036, 2022.

Elsa Dupraz was born in Paris, France. She received the Master
degree in advanced systems of radio-communications from ENS
Cachan and University Paris Sud, France, in 2010, and the Ph.D.
degree in physics from University Paris-Sud, France, in 2013. From
January 2014 to September 2015, she held a Postdoctoral position
with ETIS (ENSEA, University Cergy-Pointoise, CNRS, France)
and ECE Department, University of Arizona, USA. Since October
2015, she has been an Assistant Professor with IMT Atlantique. Her
research interests lie in the area of coding and information theory,
with current interest on source/channel coding for Machine Learning
applications, in-memory computing, and DNA data storage.

François Leduc-Primeau is an Associate Professor with the Depart-
ment of Electrical Engineering at Polytechnique Montreal, Montreal,
Canada. He received the B.Eng., M.Eng., and Ph.D. degrees in
electrical & computer engineering from McGill University, Mon-
treal, Canada. His research interests span digital system design,
telecommunications, and machine learning, with applications in next-
generation wireless communication systems, energy-efficient artificial
intelligence, and other low-energy computing systems. He is an
IVADO Professor, and he has served in the organization of various
research events, such as the 2021 International Symposium on Topics
in Coding (ISTC).

Kui Cai is an Associate Professor with the Science, Mathematics
and Technology Cluster at Singapore University of Technology and
Design (SUTD). She received her B.E. degree in information and con-
trol engineering from Shanghai Jiao Tong University, China and joint
Ph.D. degree in electrical engineering from Technical University of
Eindhoven, The Netherlands, and National University of Singapore.
She received 2008 IEEE Communications Society Best Paper Award
in Coding and Signal Processing for Data Storage and was listed in
the 2020 Who’s Who in Engineering Singapore. Her main research
interests are in the areas of coding theory, information theory, and
signal processing for emerging data storage systems and computing.

Lara Dolecek is a professor of Electrical and Computer Engineering
and (by courtesy) of Mathematics at UCLA. Prof. Dolecek earned
a B.S., M.S., Ph.D. degrees in EECS as well as an M.A. degree in
Statistics from UC Berkeley. She is the 2019-21 Secretary, a 2021-22
Distinguished Lecturer, and a 2022-24 Board Member of the IEEE
Information Theory Society. Prof. Dolecek received IBM Faculty
Award, Intel Early Career Award, Okawa Research Grant, and NSF
CAREER Award, among others, and with her research group and
collaborators, she received over dozen best paper awards on topics
in theory and applications of channel coding methods.

	Introduction
	Physical Background
	Existing Memory Devices for In-Memory Computing
	Memristor Physical Model
	Memristor Crossbars for In-Memory Computing
	Memory Reads and Writes

	Computation Structures
	Dot-Product Computation
	Logic-in-Memory
	Hamming Distance Computation

	Error Models
	Sources of Impairments
	Continuous Noise Models
	SLC Error Models
	Noise Models for the DPE Interface

	Information-Theoretic Analysis
	An Equivalent of the Capacity for IMC
	Redundancy of IMC Systems
	Power Consumption of IMC Systems

	Evaluating Reliability Criteria
	Noisy Logic Computation
	Hamming Distance Computation
	MSE of Noisy Analog Dot Products

	Additional Challenges

	Advanced Robust Designs
	ECCs Defined Over the Integer Set
	Analog Error-Correcting Codes
	Additional Challenges

	Conclusion
	References
	Biographies
	Elsa Dupraz
	François Leduc-Primeau
	Kui Cai
	Lara Dolecek

