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Abstract—Diversity is a concept of prime importance in almost
all disciplines based on information processing. In telecommuni-
cations, for example, spatial, temporal, and frequency diversity,
as well as redundant coding, are fundamental concepts that have
enabled the design of extremely efficient systems. In machine
learning, in particular with neural networks, diversity is not
always a concept that is emphasized or at least clearly identified.
This paper proposes a neural network architecture that builds
upon various diversity principles, some of them already known,
others more original. Our architecture obtains remarkable re-
sults, with a record self-supervised learning accuracy of 99. 57%
in MNIST, and a top tier promising semi-supervised learning
accuracy of 94.21% in CIFAR-10 using only 25 labels per class.

Index Terms—Neural network, diversity, competition, sparsity,
self- and semi-supervised learning, ensemble learning.

I. INTRODUCTION

In the information sciences, the principle of diversity con-
sists in combining information from different sources to better
estimate the data. Diversity is all the more effective when
the sources are decorrelated, i.e. when the information they
provide is not processed in the same way and/or does not
derive from the same observations. This ideal condition is
rarely met, and we generally make do with partially correlated
information. It is probably the field of telecommunications
that has benefited most from the principle of diversity in
moving towards very high-performance systems, both fixed
and mobile. In the time domain, channel coding (or error
correcting coding) makes it possible to transmit the binary
elements of an augmented (redundant) version of the original
message at different times (and therefore generally subject to
different disturbances) and to benefit from this redundancy
in the receiver. In the frequency domain, techniques such as
Orthogonal Frequency-Division Multiplexing can more or less
eliminate spectrum irregularities and interferences. Pruning
techniques may also be considered to remove inappropriate
parts of the bandwidth. The spatial dimension is of course
also used, with multi-path techniques such as Multiple-Input
Multiple-Output taking advantage of the particular properties
of the wave paths. Other types of diversity can be exploited

at higher system levels (multiuser, multistandard, etc.). In
contrast, the classic architecture of a neural network, i.e. a
few convolution layers followed by a classifier with a simple
one-hot output (as many neurons as classes), does not reveal
any deliberately introduced diversity technique. It could of
course be pointed out that the totality of the weights of a
neural network’s connections is always oversized and therefore
redundant. However, in the absence of a theory on neural
network capacity and redundancy, we cannot really speak of
intentional, controlled diversity. Analogies can however be
drawn between different types of diversity found in digital
communications and in neural networks:

A. Channel Coding

Two techniques can be related to channel coding (redun-
dant coding). The first, of high importance in self-supervised
and semi-supervised applications, is data augmentation. This
involves submitting several distorted versions (rotation, crop-
ping, mirroring, etc.) of the same sample to the network.
Redundancy rates are therefore several hundred percent. The
second technique involves increasing the length of the network
output by multiplying the number of neurons that must be
activated for a given class. This is known as distributed coding.
The redundancy rate is determined by the length of the output
and can be several thousand percent. A theory of this process
has been developed under the name of Error Correcting Output
Coding (ECOC) [1].

B. Spatial Coding

A convolution layer can be presented as a spatio-temporal
encoding layer. This is because the implementation of filters
seeking to extract features independently of coordinates in-
volves sharing the synaptic weights of these filters. There is
therefore both redundant coding (repeated weights) and spatial
coding (the search for a certain invariance with respect to co-
ordinates). Regularization techniques such as dropout or drop-
connect can also be assimilated to a form of spatial diversity.
Another type of spatial diversity, not often implemented to



our knowledge, can be provided by the sparsity of connection
matrices. This concept is developed in section II.

C. Pruning

A famous example of pruning in digital communications
is Discrete MultiTone (DMT) modulation, which enabled the
massive development of the Asymmetric Digital Subscriber
Line (ADSL) application. This modulation divides the spec-
trum into multiple sub-channels whose capacity (number of
bits transmitted per unit of time) is evaluated once and for
all on a fixed channel (telephone pair). The least favorable
sub-channels are assigned the lowest data rates. Some sub-
channels may even be discarded. In a neural network, which
will also eventually become a fixed device, pruning consists
in removing the least discriminating paths with regard to
the categories to be recognized. The analogy is relative,
however, because in the first case, the aim is to maximize
transmission throughput, whereas pruning in a neural network
aims to simplify implementation and reduce computational
requirements.

D. Ensemble processing

In the world of telecommunications, the most representative
example of an ensemble processing is probably a constellation
of satellites such as OneWeb or Starlink. In this type of
system, the operation is unimodal, meaning that each satellite
is entrusted with the task of communicating with the earth
using the same transmission mode and the same type of
equipment. The only parameter that distinguishes one satellite
from another, towards a potential user, is the link budget, on
which the choice of the most favorable satellite is based. In the
field of discriminative neural networks, a unimodal ensemble
processing does not consist in selecting one network among
several, but in using all or almost all of them at the same time
for the inference task [2]. Networks differ in the initialization
of their weights or in their hyperparameters, which diversifies
the ways in which they learn, particularly with regard to
the inevitable local minima. Often, a simple majority vote
decision or, if weighted decisions are available, a probabilistic
vote is enough to improve performance compared to that
of a single network. Ensemble processing can be performed
independently by each network (in this case, it is better to
call this ensemble inference rather than ensemble learning) or
by linking their operations, using some information transfer
algorithm [3].

II. COMPETITION AND SPARSITY

Competition has played an important role in the evolution of
species, most often due to limited resources. The same is true
for nearby neurons in the nervous system, because the energy
provided by the local blood flow does not allow them all to
activate at the same time. It is then not unreasonable to think
that the brain relies on some kind of competition in order to
learn and memorize while saving energy, and the same applies
for artificial networks, by bio-inspired analogy. The first paper
to highlight the benefits of using the competition principle

in neural networks dates back ten years [4]. It showed that
the classical activation function of neurons in a hidden layer,
usually a sigmoid or ReLU function, can be advantageously
replaced by a Local Winner-Takes-All (LWTA) function in
blocks of several neurons. In a given layer, this technique
thus puts into competition all the activities coming from
the neurons of the underlying layer through a full matrix
of connections. It turns out that this principle works just as
well, and perhaps even better, if the matrix is sparse, or even
very sparse, although this possibility was not considered in
[4]. In this situation, the competition is performed between
subpopulations of the underlying neurons, rather than within
the whole population. These small groups of neurons are
selected completely at random, since the drawing of the
matrix of sparse connections is itself random. In addition
to the diversity brought about by multiple, quasi-independent
competitions within the considered layer, extra-diversity can
be added when learning by an ensemble of networks. As
each network is initialized in a different way (each time by a
different seed that decides the topology of connections), the
number of different competitions in the ensemble is increased.
The realities of competition (see [4] for relevant references)
and sparse connections [5], [6] are considered proven and
fundamental properties in mammalian cortexes. Our contribu-
tion appears to be the first to combine these two bio-inspired
principles in artificial neural networks, and to evaluate the
potential of such architectures for self- and semi-supervised
learning. We note that the competition and sparsity are very
simple to implement. No particular pre- or post-processing is
needed to make the best use of. We will only rely on the
now classical functions adopted in neural networks, such as
data augmentation, convolutional layers, batch normalization,
pseudo-label estimation, etc.

III. PROPOSED LEARNING METHOD

In this section, we start by revisiting preliminary work in
self and semi-supervised learning frameworks, in particular
those involving the principle of data augmentation and label
estimation. Then we introduce the proposed learning method,
detailing the architectural design of the models for each
dataset. Next, we elaborate on our label estimation algorithm,
highlighting its main features and operation.

Semi-supervised learning lies between supervised and un-
supervised learning. It involves the use of a small amount of
labeled data in conjunction with a large amount of unlabeled
data during the training process. This approach is particularly
beneficial in scenarios where labeled data is scarce or expen-
sive to obtain, but there is an abundance of unlabeled data.

Consistency regularization, a key feature of many advanced
semi-supervised learning algorithms, exploits unlabeled data
based on the principle that a model should produce consistent
predictions for different perturbed versions of the same image.
This concept was initially introduced in an earlier work
[7], and has been more widely recognized in subsequent
studies [8], [9]. It is implemented by training the model
with traditional supervised classification loss and an additional



Fig. 1. Overview of the proposed learning method for unlabeled data. For MNIST, the size of the blocks is 8 and 10 for CIFAR-10.

loss function that handles unlabeled data, thus improving the
model’s ability to learn from a wider spectrum of data.

Another common approach in semi-supervised learning is
pseudo-labeling [10], where the model uses its predictions on
unlabeled data to generate artificial labels. These pseudo-labels
are then used in subsequent training to refine the model’s
performance.

Our semi-supervised learning approach leverages the
strength of both labeled and unlabeled data, strategically in-
corporating data augmentation to enhance model performance.
This allows us to make efficient use of all available data,
combining the reliability of labeled examples with the broader
coverage provided by unlabeled examples, thus improving the
efficiency and robustness of the model.

Conversely, in our self-supervised learning approach, we
exclusively rely on unlabeled data for training, omitting the use
of labeled data. This method focuses on extracting meaningful
patterns and structures from the data itself without direct
guidance from explicit labels.

To efficiently handle unlabeled data, our approach starts
with pseudo-labeling, a critical step where we utilize our
model on subtly altered data to generate pseudo-labels. This
is instrumental in guiding the learning process, even without
standard labeled data. What sets our label estimation process
apart is its unique treatment of embeddings. Within each block
of size n of the embedding space (embedding refers to the
output of the model), we identify the maximum value and
assign it a label of 1, while all other elements within the block
are set to 0, following the principle of competition presented
in Section II. This selective activation within the embedding
space effectively highlights the most prominent features or
characteristics captured by each block, acting as a form of
dimensionality reduction and targeted feature amplification.

Subsequently, we expose the same batch of data to strong
deformations, such as extensive augmentation or distortion,

while utilizing the estimated label as the target. This method
effectively challenges the model to maintain its predictions
under more significant variations, thereby enhancing its ro-
bustness and ability to generalize from complex or noisy data.
The complete learning process is illustrated in Figure 1.

It is worth noting that for the labeled batch, nothing changes
compared to other supervised learning approaches. Labeled
data continue to serve as a reliable source of ground truth,
anchoring the model learning with trustable examples. This
combination of reliable labeled data with a creative use of
unlabeled data allows our model to benefit from the full
spectrum of available information, leading to more effective
and comprehensive learning outcomes.

A. Datasets

The MNIST dataset [11] is a well-known benchmark in the
field of machine learning. It consists of 60,000 handwritten
digits (0-9), with each digit represented as a 28 × 28 pixels
grayscale image. This dataset is commonly used for tasks
related to digit recognition and image classification, making
it a fundamental resource for testing and developing various
machine learning algorithms.

The CIFAR-10 dataset [12] is another widely used dataset
in computer vision. It contains 60,000 colored images, divided
into 10 classes, with each class representing various everyday
objects or animals, such as cars, birds, or cats. These images
are relatively small, 32 × 32 pixels in size, and serve as a
valuable benchmark for testing image classification and deep
learning models due to their intrinsic diversity and complexity.

B. Model Architecture

Our models dedicated to self- and semi-supervised classifi-
cation on the MNIST and CIFAR-10 datasets use the same
general two-part architecture, consisting of an encoder in
charge of the features extraction, followed by a Multi-Layer
Perceptron (MLP) classifier.



1) Encoder: The encoder architecture is tailored to the
target dataset.

For MNIST ( see Fig. 2): The encoder features two convo-
lutional layers, each followed by a ReLU activation function.
At the output of each convolutional layer, max pooling is
applied to reduce the feature maps’ spatial dimensions, thereby
decreasing computational complexity and parameters, and
enhancing network efficiency.

Fig. 2. Proposed network architecture for MNIST

For CIFAR-10 (Fig. 3): To increase learning efficiency for
this more challenging dataset, the simple encoder for MNIST
is replaced with ResNet-18. ResNet-18 is a deeper Residual
Network variant, that incorporates residual connections to
facilitate deeper network training, improving image classifi-
cation performance on complex datasets like CIFAR-10.

Fig. 3. Proposed network architecture for CIFAR-10

2) MLP: The architecture of our MLP classifier relies on
an innovative structure with two distinct sparse layers and
specialized processing blocks. The first sparse layer, inserted
after the last max pooling stage, achieves a sparsity level
of 85%, allowing the network to focus on essential features,
thus reducing overfitting and improving efficiency. Coming
next, the Add-Compare-Select (ACS) function introduces a
competition among neurons, activating only the one with
the highest value. A second sparse layer follows, with an
increased sparsity of 96%, after which we may find an Add-
Normalize-Compare-Select (ANCS) function, but for MNIST
only. The ANCS function extends the ACS functionality by
incorporating block-by-block normalization. To enable this
local normalization, the weights of the final sparse layer are
made positive through the utilization of the ReLU activation
function.

IV. EXPERIMENTS

The performance of the proposed learning architecture has
been evaluated on MNIST in a self-supervised learning con-
text, as well as on CIFAR10 in a semi-supervised configura-
tion.

A. Implementation Details

To ensure consistent, systematic learning and model re-
finement for both MNIST and CIFAR-10, we found crucial
to organize the training into cycles, epochs, and batches.
Cycles ensure complete dataset coverage, epochs allow full
iterations over all data batches, and batches enable efficient
data processing and incremental model updates, collectively
facilitating continuous model improvement. It is important
to note that each epoch uses different data augmentation
strategies, further enriching the learning and ensuring that the
model encounters diverse data representations throughout its
training.

For the MNIST dataset, the model architecture is trained
through 100 cycles, each cycle consisting of five epochs.
At the beginning of each cycle, pseudo-labels estimation
is conducted once. These pseudo labels are then used for
the subsequent five epochs of training. For training, we use
Adam optimizer and a linear learning rate schedule with
damping coefficient decaying from 1.0 to 0.001, starting from
an initial learning rate of 0.0015. The model’s robustness
and adaptability are further enhanced by a series of data
augmentation techniques: rotation, elastic distortion, random
erasing, and center cropping. The Binary Cross-Entropy (BCE)
loss is used to measure the difference between predictions and
pseudo-labels, paired with a local normalization strategy for
block-by-block data processing. This comprehensive approach
ensures robust learning and model’s effectiveness in discerning
complex patterns throughout its extensive training.

Similarly, for CIFAR-10, our model undergoes 300 training
cycles, with each cycle comprising five epochs to deeply
engage with the complexity of the dataset. At the core of our
model is the ResNet18 encoder, selected for its robust feature
extraction capabilities. Stochastic Gradient Descent (SGD)
with Nesterov momentum is used to optimize the model,
starting with an initial learning rate of 0.03. The learning rate
is meticulously modulated across the 300 cycles by means of
a cosine decay schedule, of the form 0.03 cos

(
8πs
16S

)
, where s

and S represents the current and last training steps, respec-
tively. An MSE loss function is used for both labeled and
unlabeled batches. For labeled data, the MSE loss quantifies
the difference between the model’s predictions and the true
labels. For unlabeled data, it measures the discrepancy between
predictions and generated pseudo-labels. The labeled and
unlabeled datasets will be denoted by X and U, respectively.
The batch size for X is set to 64. The batch size for U is set to
be 8 times the batch size of X, that is 8×64 = 512. In terms of
data augmentation, our implementation strictly adheres to the
strong and weak augmentation strategies outlined in FixMatch
[13].

B. Evaluation

Our comprehensive evaluation strategy for the MNIST
dataset relies on two distinct methods to assess the perfor-
mance of our model using the embeddings as features. Firstly,
we use K-means clustering [14] to categorize the embeddings
from the test set into 10 clusters. Each cluster is mapped onto



one of the ten digits, based on the majority label of its mem-
ber embeddings. Secondly, we randomly select one labeled
instance from each class in the training set as a representative.
We then measure the similarity between the selected instances
and the embeddings of the test set to assign class labels.
For the CIFAR-10 dataset, the evaluation relies solely on the
second method. We choose a single representative labeled
example per class, and then assess model performance based
on the similarity between the selected examples and the test
embeddings. This more focused approach adopted for CIFAR-
10 allows us to take advantage of the more complex and varied
nature of the dataset, aligning the evaluation strategy with the
specific challenges and characteristics inherent to CIFAR-10
images.

As for the experimental design, we conducted five dis-
tinct experiments for both self-supervised and semi-supervised
learning methods to confirm the robustness and reliability of
our results. Each experiment begins with random initialization
of the weights and sparse layers’ connections for each network,
to avoid any initialization bias and create network diversity.
Within each cycle, data augmentation is introduced in a
stochastic manner over different sets of training images. Last
but not least, to assess the outcomes, we use a dual strategy
that combines taking the majority vote from the five models,
and computing the average accuracy across different labeled
data sets.

C. Results

In Table I, we present the classification accuracy achieved
on the MNIST dataset by the proposed self-supervised learning
approach. The Table reports the average accuracy across five
different labeled data (avg acc), as well as the collective
decision-making accuracy obtained by majority vote among
the five networks with the same labeled data (maj. vote).
Two distinct methodologies were used to assess model per-
formance: one using K-means clustering (’K-means(%)’) and
the other leveraging cosine similarity (’cosine sim(%)’) for
each network. Together these metrics provide a clear and com-
prehensive view of the model’s performance, demonstrating
the effectiveness of both individual networks and a collective
ensemble approach in accurately classifying MNIST digits.

TABLE I
TEST ACCURACY ON MNIST WITH SELF-SUPERVISED LEARNING.

Method avg acc (%)1 maj. vote (%)2

Fully Supervised [15] 99.83 99.87
self supervised IIC [16] 99.30 -
Ours ( K-means ) 99.46 99.56
Ours ( Cosine similarity) 99.45 99.57

Table II presents a comparison of the classification accuracy
obtained for semi-supervised learning on CIFAR10 with vari-
ous well-established as well as more recent methods, including

1Average accuracy (avg acc): this is the mean of the accuracy values
obtained from five networks (five distinct instances of the model).

2Majority vote (maj. vote): this method aggregates the votes from the five
networks to decide the class label.

the Π-Model [9], Pseudo-Labeling [18], Mean Teacher [19],
UDA [20], MixMatch [21], FixMatch (RA) [13], and Dash
[22], each referenced accordingly. The Table also showcases
the performance of our method, both in terms of average
accuracy (avg. acc) and majority vote accuracy (Maj. Vote).

TABLE II
TEST ACCURACY COMPARISON (MEAN OVER 5 RUNS) FOR

SEMI-SUPERVISED LEARNING ON CIFAR-10, USING 25 LABELED
SAMPLES PER CLASS.

Method Accuracy (%)
Π-Model 45.74
Pseudo-Labeling 50.22
Mean Teacher 67.68
UDA 91.18
MixMatch 88.95
FixMatch(RA) 94.93
Dash 95.44
Our Method (avg. acc) 93.51
Our Method (Maj. Vote) 94.21

At this early stage of our research on CIFAR-10 classifi-
cation, the results obtained with our semi-supervised learn-
ing method are quite competitive, achieving an accuracy of
94.21% with majority vote. What sets our approach apart is
the strategic use of sparsity layers, which significantly reduces
the number of parameters in the model, thereby increasing its
efficiency and speed. Despite the current state-of-the-art for
CIFAR-10 being held by Dash with an accuracy of 95.44%,
our method stands out by its promising performance as well
as its efficiency. Part of this efficiency gain can be attributed to
our use of sparse layers, making our approach an attractive and
resource-efficient choice to tackle the CIFAR-10 dataset. The
residual accuracy gap of 1.93% only between our approach and
the current leader leaves room for additional improvement, for
example by further fine-tuning of hyperparameters and other
model enhancements.

V. CONCLUSION

It is possible to design and operate an artificial neural
network without having to understand all its components and
behavior in detail. However, there are critical applications,
such as autonomous driving or medical diagnostics, which
require total control over the explainability of operations
performed and decisions made, especially when the network
makes mistakes [23], [24]. One way of ensuring that al-
gorithms behave as desired is to introduce principles and
functions that have proved their worth in other technological
fields. In this paper, we have compiled a list of concepts
from which the telecommunications field has benefited greatly.
Among these, it seemed relevant to us to combine redundant
coding and spatial diversity in a relatively simple learning
architecture integrating competition layers and sparse matrices.
The results obtained with self-supervised learning experiments
on the MNIST dataset are convincing, with an inference accu-
racy higher than the previous state-of-the-art. Semi-supervised
learning simulations have also been conducted on the more
challenging CIFAR-10 dataset. To date, the results are not
quite up to the state-of-the-art, yet very close. This is even



more promising, as they were obtained without the need for
sophisticated mathematical processing. Therefore, our future
work will focus on finding the reasons for this performance
gap between self-supervised and semi-supervised applications.
Throughout our work, we have observed that the classification
performance of CIFAR-10 images is very sensitive to the
values of hyperparameters, in particular sparsity rates and
learning rate, which we have not been able to refine com-
pletely. Other avenues could also be investigated: increasing
the number of competition-based layers, merging the X and U
batches into a single one, replacing binarization (hard decision)
with a more progressive function (soft decision), still to be
determined.
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