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Abstract Predicting toxicity events in radiation therapy (RT) is highly
beneficial for managing patients effectively. Identifying patients who
are at a high risk of experiencing toxicity early on during their treat-
ments can help in taking measures to reduce the risk of adverse events
produced by this undesirable effect. Recent works in a related applica-
tion, namely, acute pulmonary toxicity (APT) in lung cancer patients
treated by RT, have demonstrated high accuracy in predicting such an
event using dose maps features processed by a multilayer perception
network. Thus, motivated by the success of convolutional neural net-
works (CNN) in learning semantically rich representation directly from
images, this work investigates the suitability of CNN architectures in
predicting APT directly from dose maps. Our results demonstrate the
ability of some CNN models to predict APT from planning dose maps
with an accuracy of up to 81% in terms of receiver operative character-
istic’s area under the curve. However, most of the architectures and
configurations under evaluation led to non-satisfactory accuracy, as
only shallower architectures using resized dose maps as inputs were
able to train models with good accuracy in the testing set.

1 Introduction

Prediction of toxicity events related to radiotherapy (RT)
could be very useful for better managing patients and person-
alizing treatment and follow-up. Indeed, identifying patients
at risk of suffering from these toxicity events early in the
course of patients monitoring (ideally, before initiating RT),
could allow, in the best case scenario, modifying treatment
(optimization of treatment planning, de-escalation of dose to
sub-volumes of the organs-at-risk (OAR) most responsible
for the toxicity, etc.) to reduce the risk, or at least, identifying
patients that could benefit from intensified monitoring after
RT to better prevent and treat toxicity symptoms. Recently,
we have shown that analysis of dose maps can provide predic-
tive markers of toxicity events in cervical [1] and lung cancer
[2]. We used radiomics engineered features (i.e., intensity or
textural metrics) extracted from the delineated OAR in the
dose maps to train multiparametric models that demonstrated
higher predictive value than the usual dose-volume histogram
(DVH) approach. In another work, we developed an alterna-
tive approach where all dose maps were co-registered to a
common spatial reference, and a specific region in the lung
most correlated with the acute pulmonary toxicity (APT)
event was identified through statistical analysis on a voxel-
by-voxel level in the dose maps. Dose map features (e.g.,
mean dose) from this specific area, combined with clinical
variables through a multilayer perceptron (MLP), allowed

good accuracy (AUC 81%) in predicting patients with APT([3,
4]. The main advantage of this approach was the ability to
both predict which patients are most likely to suffer from
APT and to identify a spatial area in the lung that was most
responsible. In the present work, we investigated the feasibil-
ity of achieving similar predictive power by relying on deep
learning (DL) convolutional neural network (CNN) architec-
tures trained using the dose maps as inputs, with or without
the help of clinical variables. Our long term goals are i) to
achieve similar (if not better) predictive power compared to
the previous approach, ii) to provide some explainability of
the prediction made by the network and thereby identify the
area in the lung most responsible for the APT, on a patient-
by-patient basis. Objective ii) will be investigated using in-
terpretability tools such as saliency maps of the trained CNN
model. Preliminary results will be reported in the present
paper, focusing on reporting methods and results of objective
i), while reporting on first results using saliency maps for
objective ii).

2 Materials and Methods

2.1 Workflow

The APT classification task was conducted following the
procedure presented in Figure 1, where the prediction model
takes two inputs: the RT dose maps and clinical features (e.g.,
age, gender, tumor location...). The dose maps, in the figure
represented by X are forwarded through a CNN backbone,
e.g., ResNet or DenseNet, from which a feature vector of
size 512 is obtained and later concatenated with the clinical
features X, to serve as input to a set of fully connected layers
which delivers the final prediction outcome.

2.2 Dataset and pre-processing

The dose maps as images were previously generated and
co-registered to a common spatial reference, namely a tho-
racic phantom, using a segmentation-based elastic registra-
tion via MIM Maestro (MIM v7.0.0, Cleveland, OH, USA)
[3]. The segmentation used for registration was the volume
combining the lungs and the heart. The dataset contains dose
maps of dimension 512 x 512 x 237 from 207 patients, out
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Figure 1: Proposed framework overview.

of which 45 experienced APT whereas 164 did not. Addi-
tionally, the dataset includes 37 clinical features for each
patient, as described in [3]. Expert-derived knowledge con-
sidered as additional input consisted of features previously
identified as predictive, i.e., Volume of the heart receiving
at least 40Gy (V40pgeqrt), Volume of the homolateral lung
receiving at least 10Gy (V107,,¢1), Mean dose received by
the two lungs (DMean;,ngs), American Joint Committee
of Cancer (AJCC Stage), Chronic Obstructive Pulmonary
Disease (COPD), Mean Expiratory Volume/Second (MEVS),
and smoking status [3]. The training set included the same
165 patients used in [3], while the remaining 45 patients
were included in the test set. For validation purposes during
training, we isolated 20% of the training samples.

2.3 CNN architectures

When using dose maps as input, 3D ResNet [5] and
DenseNet-based [6] architectures were used, specifically,
ResNet-10, 18, 34, 50, and DenseNet-121. We note that di-
verse other image classification architectures have been pro-
posed, some with outstanding performance on different ap-
plications. To the best of the authors’ knowledge, no specific
architecture has been designed so far for APT classification.
Therefore, we opted to evaluate seminal, general-purpose
models, extensively used and well-documented, which we
believe would facilitate the reproducibility of our experiments
and results.

Succinctly, Residual Networks (ResNet), introduced by [5],
aimed at improving convergence issues while training very
deep network architectures. ResNet addressed the problem of
vanishing gradients, which hinders the optimization process,
and the degradation problem, i.e., adding more layers to a
deep model leads to higher training error. Such problems,
including residual learning blocks among the network layers,
were dealt with. The degradation problem suggested that
when the network’s full capacity was underused for solving
a particular task, the optimization process would have diffi-
culty approximating nonlinear layers into identity mappings,
which could automatically adjust network depth. Then, in-
stead of hoping that every few stacked layers directly fit a
desired underlying mapping, e.g., identity, ResNet explicitly

lets those layers fit a residual mapping, which is easier to
optimize. DenseNet, on the other hand, introduced by [6],
similar to ResNet [5], addresses the vanishing gradient prob-
lem by adding densely connected blocks, which consists of
linking each layer to any other previous layer. This allows
the network to learn more efficiently by reusing features and
reducing the number of trainable parameters. The princi-
ple behind this proposal states that concatenating the feature
maps learned in previous layers allows each layer to access
all features of all preceding levels.

2.4 Experiments implementation

In the experiments conducted in this work, we considered
different input dose map sizes, see Table 1, the use (v') or
not (x) of data augmentation, and to take into account (v")
or not (x) the dataset imbalance. Each dose map and clinical
features, except for AJCC Stage, was normalized with min-
max normalization between 0 and 1. AJCC Stage feature
was converted from categorical to binary variable. When
data augmentation was considered, Gaussian noise, smooth,
sharpen, and histogram shift were applied randomly. We
used the MONAI library! to perform these transformations,
as well as to set the network architectures. We used the
Adam [7] optimizer and learning rate decay during training
following [8]. We set the initial learning rate (o and momen-
tum f3; equal to 0.0001 and 0.9, respectively. The batch size
was set to 2, and the early stopping procedure was used to
avoid over-fitting after 20 epochs without signals of accuracy
improvements in the validation set.

The training/testing procedures were executed three times,
each with a different (random) initialization of the trainable
parameters. When class imbalance was addressed in exper-
iments, we adopted a weighted cross-entropy cost function
to compensate for class imbalance to train the networks, by
assigning larger weights to the underrepresented ones, i.e.,
0.2 for the negative and 0.8 for the positive class. Those
weights were set experimentally.

2.5 Evaluation

Following [3]; the performance of models was evaluated us-
ing Receiver Operative Characteristic’s (ROC) Area Under
Curve (AUC). Considering each network architecture was
trained and tested three times, the final performance is ex-
pressed in terms of the average AUC. It is worth noting that
the standard deviation over the three runs was very low and
thus not included in the table for space purposes.

3 Results

Table 1 presents the AUC (average of 3 runs) of each model
in predicting APT events according to different criteria: using
only dose maps, clinical variables, or both.

Uhttps://monai.io/
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Input Clinical only Dose Map only Dose Map & Clinical
Input Size 9 64 x 64 128 x 128 256 x 256 64 x 64 128 x 128 256 x 256
Balance X v X v X v X v X v X v X v
DataAug. | x v X Vv | x Vv x V| |x Vv x V| x Vv x V| x Vv x V| |x Vv x VvV |x Vv x V

MLP 437 56.0 46.560.2 - - - - | - - - - | - - - - - - - e e e e e e

DenseNet121| - - - - |73.7 69.2 67.4 68.576.9 73.2 73.9 74.7|72.0 75.3 64.7 73.7|165.2 64.8 70.9 73.0|72.5 73.3 71.7 71.8|74.2 74.8 73.5 74.4

ResNetl0 | - - 80.2 61.2 80.4 71.3{67.0 78.4 79.9 76.7|25.3 41.0 73.0 74.9|180.9 63.3 73.6 61.2|76.0 66.8 78.5 66.9|41.5 71.4 73.0 47.5
ResNet18 - - 77.7 60.6 79.9 63.2|74.2 75.8 76.8 72.3|37.3 37.0 61.5 75.4|76.6 65.4 71.9 58.2|77.7 67.9 76.9 76.8|31.1 61.8 72.3 68.7
ResNet34 | - - 47.1 57.1 76.6 54.2|39.1 71.7 80.0 59.1|36.7 48.3 50.5 66.1(64.9 50 67.9 65.6|79.5 72.5 77.9 53.7|38.1 43.7 50.7 53.4
ResNet50 | - - 49.8 44.5 40 59.9|25.2 59.0 39.6 22.7|47.0 23.8 52.6 50.9(58.1 42.3 59.7 53.8|22.5 59.6 70.9 59.1|37.8 43.3 41.0 44.0

Table 1: Average AUC (%) for 3 executions of models.

First of all, results obtained by using only expert-derived
knowledge as input (i.e., features previously identified in
[3]) to a MLP, the highest performance of 60.2 % of AUC
was obtained with balancing and data augmentation. On the
other hand, the highest performances were obtained when
using dose maps as input in dimensions of 64 x 64 and
shallower CNN architectures, i.e., ResNet10, for which the
best-achieved performance was 80.2% (80.4%, without data
augmentation). Addressing the imbalance using weights in
the cost function delivered the best AUC (80.4%) among
these two results. Still considering dose maps-based results,
ResNet50 obtained the lowest performance among all the
experiment’s configurations, i.e., around 22.5% for the lower
result and 70.9% for the highest, which corresponded to
the dimension 128 x 128 input dimension and without data
augmentation. In the remaining experimental configurations,
ResNet50 achieved results between 40% and 60% AUC.
Considering the results where dose maps and clinical vari-
ables were jointly used as inputs, the ResNet10 architec-
ture outperformed the remaining evaluated architectures with
80.9% AUC. Such a result was reached without data augmen-
tation and weighted cross-entropy to alleviate the imbalance.
Although still low, It is worth highlighting the significant
increase obtained by ResNet50’s performance when clinical
variables and dose maps were added.

The highest results, e.g., 80.2%, 80.4%, and 80.9%, were
obtained with dimension 64 x 64, no data augmentation, and
with the shallowest architecture, namely ResNet10. On the
other hand, regardless of the use of data augmentation and
weighted cross-entropy, consistently lowest performances
were achieved with the larger dose maps size (256 x 256)
and the deepest CNN architecture, ResNet50, with AUCs
from 23.8% to 52.9% with only dose maps, and from 37.8%
to 44% when both types of data were forwarded through
the proposed prediction model. The results obtained by the
DenseNet121 architecture were between those achieved by
ResNet10 and ResNet50, i.e., in the range 64.7% to 76.9%.

4 Discussion

Our results suggest it is feasible to achieve satisfactory pre-
diction of APT events in lung cancer patients following RT
by training a CNN with co-registered dose maps as input. In-
terestingly, the overall accuracy reached by our best models

(around 80% AUC) is similar to that reached through the pre-
vious approach [3], which relied on a combination of clinical
and dosimetry features extracted from the lung area identified
as most correlated with APT events. We should, however,
emphasize that this level of accuracy could be reached with-
out any clinical variables as inputs, as the results were not
significantly improved using both dose maps and clinical vari-
ables, compared to the use of dose maps alone, whereas the
use of clinical variables alone led to poor predictive power
(60% AUC or less). Another important observation is that
the choice of the CNN architecture, the use of balancing and
data augmentation, as well as the choice of the input dose
maps resize had a strong impact on the final performance.
The best results were obtained with shallower architectures
(ResNet 10), without data augmentation or balancing, and
using smaller dose maps (64 x 64). We also tested using
the original size of dose maps as input (512 x 512), but the
results were even poorer, so we did not include them.

Considering the results obtained by larger CNN architectures,
e.g., ResNet50, it is well known that the number of training
labeled samples required for efficient learning increases with
the depth of the network. Since ResNet50 contains signifi-
cantly more trainable parameters than the other variants of
ResNet, it is not surprising that it performs worse given the
amount of available data. By contrast, the few configurations
that led to the best performance in the testing (around 80%
AUC) corresponded to the shallowest architectures. Addition-
ally, with respect to this last point, the performance (around
70% AUC) of DenseNet deserves to be highlighted, as even
though DenseNet encompasses more layers than ResNet50,
its performance was consistently superior, which may be
due to the dense blocks to alleviate the vanishing gradient
problem.

Although we focused here on our first objective, we include
in Figure 2 a preliminary result of using saliency maps gen-
erated with Grad-CAM [9] to illustrate how these could be
further exploited in our future work to provide some inter-
pretability of the CNN prediction output, as well as to confirm
the location of the area most responsible for the APT event
occurrence. The figure shows an overlaid representation of
the phantom used for the co-registration of dose maps and
the average of saliency maps computed by Grad-CAM. Note
that the average saliency maps were computed only over the
samples correctly classified by the CNN model, separately
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Figure 2: Saliency maps representations computed over ResNet10
architecture using Grad-CAM algorithm. The average of all
saliency maps is overlaid on the phantom used for co-registration
to visualize the localization of the parts of the dose maps relied
upon by the CNN in axial (a/b), sagittal (c/d), and coronal (e/f)
views for classifying patients without/with APT respectively.

for cases with and without APT. According to these saliency
maps, prediction of the absence of APT events is achieved by
the CNN by relying mostly on the dose information contained
in lower lung areas, whereas prediction of the occurrence
of APT events is achieved by relying on features located in
higher lung areas but also strangely highlights top and bot-
tom (coronal/sagittal view) of dose maps where the dose is
near-zero, which is a bit puzzling. More work is necessary to
understand better the explainability value of these saliency
maps (including the comparison with other methods such as
integrated gradient with or without smoothgrad) [10].

5 Conclusion

This study evaluated five 3D CNNs for predicting toxicity
events based on 3D RT planning dose maps and associated
clinical features. We also reported on the potential of Grad-
CAM saliency maps to provide some interpretability of the
toxicity predictions. Our results suggest that CNN can per-
form satisfactorily in this classification task. However, only
a small part of the configurations of CNN architectures we
tested led to good predictive performance. There is clearly
room for improvement regarding the generalization capac-
ity of these models. This could be achieved by better pre-
processing the training data, using additional data augmenta-

tion techniques, or by simplifying the models regarding the
number of parameters to avoid overfitting.
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