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Abstract—In the realm of image classification, annotations
often describe a single category. However, images might contain
multiple objects including spurious ones with respect to the
annotation. In few-shot image classification, where data is scarce,
the ambiguity of these labels can severely impact classification
performance. This paper addresses this issue by localizing objects
in test images before classification and providing a disambiguated
image embedding. We first show that using ground truth localiza-
tion information can significantly improve performance. Second,
we propose a method that leverages unsupervised object seg-
mentation to detect and segment objects in images, in a training-
free manner. Through extensive experiments and evaluations, we
illustrate the efficacy of our method, highlighting its capacity to
improve state-of-the-art classifiers in few-shot classification.

Index Terms—deep learning, machine learning, few-shot clas-
sification, disambiguation, segmentation

I. INTRODUCTION

Few-shot image classification is characterized by a small
number of available annotated examples, typically 1–5 per
class. Given the few available data, existing approaches often
leverage the power of pre-trained image encoders, mostly due
to their generalized classification capabilities [1], [2]. How-
ever, such models might struggle when faced with complex
scenes involving multiple objects, as the feature representation
of such an image integrates information not only from the
object of interest but also from surrounding elements.

In this article, we address the challenge of ambiguous few-
shot image classification. A possible solution to improve the
classification of ambiguous images is to segment their content
before computing the feature representations of corresponding
parts using a pre-trained Vision Transformer (ViT) such as
DINO [3]. Indeed, these parts may convey more specific
information on areas of the images, and therefore allow one
to separate concepts for few-shot classification.

In this work, we introduce a fully unsupervised methodol-
ogy – FICUS – to decompose query images into meaningful
crops in a few-shot image classification problem. Our method
capitalizes on pre-trained segmentation models, in particular,
the Segment Anything Model (SAM) [4].

This article is organized as follows: after introducing related
work in Section II, we describe the few-shot classification
pipeline used, and introduce our methodology in Section III for
instance detection and integration in that pipeline. Section IV

then presents our experiments1 on three datasets. Section V is
a conclusion. Main findings of this work are:

• We demonstrate that the ability to localize instances in
images improves performance;

• We propose a methodology – FICUS – exploiting pre-
trained image segmentation models, and evaluate its
performance in few-shot image classification.

II. RELATED WORK

A. Few-shot image classification

In few-shot classification [5], one aims to predict the
labels of a query set Q = {(xi, yi)}i, given a support
set S =

{
(x∗

j , y
∗
j )
}
j
, where xi (resp. x∗

j ) denote data to
classify (resp. annotated data) and yi ∈ Y (resp. y∗j ∈ Y)
the associated class labels. In few-shot problems, yi are the
targets to predict, and y∗j are generally available in very
low numbers. In this work, we consider that S contains K
examples of each class. We generally distinguish two settings:
1) inductive few-shot classification has access to points in
Q one by one and should make predictions on the fly; 2)
transductive few-shot classification has full access to Q and
makes a posteriori predictions. We focus on the inductive
setting, leaving transductive for future work.

There are several approaches to address few-shot classifi-
cation problems. Nearest Class Mean (NCM), or prototypical
networks [6], [5] rely on computing a prototype zy for each
class y ∈ Y , or by finding it by gradient descent [1], and
associate a class to a query by assigning the label of the closest
prototype. Methods based on meta-learning [7], [8] aim at
training models on abstract tasks for rapid adaptation to new
problems. Other methods rely on knowledge transferability of
models and train a simple linear layer for classification [1].
Those methods leverage a pre-trained network. It is shown
in [2] that using a pre-trained DINO model [3] is very
effective, demonstrating that having a great semantic diversity
in the training dataset – e.g., ImageNet with its 21k classes – is
a key factor for generalization properties, which is important
in few-shot learning. The efficacy of feature extraction heavily
relies on the model’s ability to generalize across diverse visual
concepts encountered during training.

1Codes are available at https://github.com/NewS0ul/FICUS.
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B. Ambiguous few-shot image classification

More specifically, we consider in this work ambiguous few-
shot problems. In this setting, images in S and Q can feature
multiple objects, but each image only has a single annotation.
It may therefore be beneficial to restrict images to the crops
that feature these objects only.

The exploration of ambiguity within few-shot problems
has not received extensive attention in recent research. While
prior studies [9], [10], [11] have tackled similar challenges by
incorporating multiple local features to represent an image,
instead of a single global representation, it is noteworthy that
many of these approaches heavily rely on training convo-
lutional neural networks for feature generation. In contrast,
our approach stands out for being training-free, providing a
distinctive perspective on addressing ambiguity in few-shot
problems without the need for high performance devices.

Within the limited body of works addressing ambiguous
few-shot problems, the authors of [12] introduce an optimiza-
tion routine based on random crops to detect multiple objects
in an image. FewTure [13] adjusts the model’s patch weights to
enhance the representation of the area of interest in an image.
In this work, we take an approach that exploits pre-trained
segmentation models to identify possible objects of interest.

C. Object detection and image segmentation

SAM [4], is a class-agnostic segmentation model, having
undergone training on an extensive dataset comprising 1
billion masks across 11 million images. This extensive training
ensures minimal bias from the dataset and notable zero-shot
capabilities. Notably, SAM’s class-agnostic nature empowers
the model with broad applicability across various classes,
showcasing its strong generalization capabilities. SAM comes
with an Automatic Mask Generator (AMG), which evenly
distributes a grid of points on the image to use them as
prompts. Each prompt results in three masks of various scales,
and it frequently happens that objects are split into separate
masks. This method therefore often results in numerous masks,
as the grid of points holds no prior information about where
the object is located in a scene.

Unsupervised methods for object detection and semantic
segmentation models from ViT have been developed. The
LOST method [14] exploits a graph representation of patches
in the image to expand a seed patch until a coarse estimation
of patches that contain the object of interest is produced.
However, this method can only extract one object of interest,
meaning it falls short when dealing with ambiguous situations
with multiple instances. Deep Spectral Method (DSM) [15]
also considers the output of a ViT as a graph. Then, a
spectral decomposition is performed on the corresponding
Laplacian matrix. The resulting eigenvectors represent several
orthogonal concepts in the latent space. Those eigenvectors can
be reshaped into images, each representing a different semantic
concept due to the orthogonality property.

III. METHODOLOGY

Our methodology is illustrated in Figure 1. Given a query
image xi, FICUS consists of three steps:

A. Instance extraction

We first proceed by localizing objects in the image. The
rationale is to identify a set of crops in the image that may
accurately describe distinct semantic concepts.

We segment the query image xi using SAM. It takes as
input an image and a prompt, and generates a segmentation in
a zero-shot and class-agnostic way.

To determine interesting prompt points, we leverage E
eigenmaps {ei,e}e∈{1...E} extracted by the Deep Spectral
Method (DSM) II-C, which we turn into multinomial spatial
distributions by applying a softmax function. For each map
ei,e, we thus obtain a distribution of the concept captured by
the map across the image. We can then randomly sample P
points {pi,e,p}p∈{1...P} using this distribution, which can be
used to prompt SAM.

By default, for eigenmap ei,e and point pi,e,p, SAM outputs
a triplet

(
msmall

i,e,p,m
medium
i,e,p ,mlarge

i,e,p

)
of masks, with distinct

scales, around the prompt point.

B. Masks selection

To select the correct scale among the three candidate masks
per eigenmap and point, we create an additional mask motsu

i,e . It
is determined using Otsu’s method, a parameter-free automatic
image thresholding method [16], on the eigenmap ei,e. We
then keep the candidate mask that maximizes Intersection over
Union (IoU) with motsu

i,e .
After applying this procedure to all eigenmaps and points,

we filter out some masks that are redundant, in the sense that
they cover the same image areas. To do so, we employ a Non-
Maximum Suppression (NMS) algorithm, based on masks
intersection and the confidence score provided by SAM.

Masks left after this filtering are then used to extract
corresponding crops. To these crops, the original image is
added to account for any segmentation model failure. The
resulting set is denoted {xi,c}c, from image xi .

C. Classification

For each class y ∈ Y , we compute its prototype:

∀y ∈ Y : zy =
1

K

∑
j s.t. y∗

j=y

z∗j , (1)

where z∗j is the feature representation of support image x∗
j .

Finally, we attribute a label to xi using Equation (2), an
adapted NCM classifier with cosine similarity:

NCM(xi) = argmax
y∈Y

(
max

c

zi,c · zy
∥zi,c∥ ∥zy∥

)
, (2)

where {zi,c}c are the feature representations of crops {xi,c}c
from previous step, and · is the dot product.
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Fig. 1: Overview of FICUS. (violet) First, eigenmaps are produced using DSM (here 2). Each map is treated separately. (blue)
Using the maps, random points (here 2) are sampled and used to prompt SAM. For each point, we obtain 3 candidate masks.
(green) Out of each group of 3 candidate masks, we keep the one that maximizes IOU with an Otsu thresholding of the map.
Redundant masks are then filtered out using NMS. (red) Finally, kept masks are used to compute feature representations of
associated crops. A NCM is then used to return a label for the image.

IV. EXPERIMENTS

A. Experimental settings

We consider two distinct settings for support images, cor-
responding to possible use cases:

• Full. Support images are used in their entirety to compute
prototypes in Equation (1);

• Human. For each pair (x∗
j , y

∗
j ) ∈ S , we ask a human

annotator to extract a set of crops {x∗
j,c}c of objects of

class y∗j in that image. This leads to a better estimation
of class prototypes, by replacing z∗j with 1

Ci
z∗j,c in Equa-

tion (1), where {x∗
j,c}c are the feature representations of

these Ci crops.

For each of these settings, we consider the following four
approaches to classify the query images:

• Baseline. The whole image is used;
• FICUS. Our methodology introduced in Section III;
• AMG. SAM’s automatic mask generator;
• Oracle. We use crops obtained from ground truth bound-

ing boxes. This aims at estimating the gap between
previous approaches and the best achievable accuracy
when cropping.

We report results on PascalVOC [17], CUB [18] and Im-
ageNet [19], complemented with bounding boxes from [20].
Bounding boxes associated with each dataset are used for the
Human support setting and the Oracle query setting. Few-shot
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Fig. 2: Comparison of accuracies obtained in Human (continuous lines) versus Full (dashed lines) support settings.

problems created on PascalVOC are in general ambiguous as
it is a detection dataset. This is also partially the case for
ImageNet, but not for CUB, which allows us to evaluate our
method on that setting too.

To create few-shot problems, we randomly select 5 classes,
from which we sample K ∈ {1 . . . 10} support images and
15 query images per class. In our experiments, for the FICUS
methodology, we use E = 5 eigenmaps as described in [15]
with the softmax temperature set to 0.1, and sample P = 10
points per eigenmap.

To compute the feature representation of images/crops, we
used the dino_vits16 ViT encoder [3]. Note that the
image encoder used was trained on the Imagenet dataset.
Consequently, the image encoder is exposed to the dataset’s
distribution, which may affect its classification performance.

For each dataset, we perform the following experiments:
for multiple values of K, we compare – both for the Full
and Human support settings – all query settings previously
described. We report the classification accuracy using the
NCM described in Equation (2), averaging over 500 random
independent few-shot runs for each K.

B. Results

Support localization importance. We first examine the
potential benefits of incorporating localization information
to improve accuracy compared to full images. Specifically,
we study the improvements observed in the Human setting
compared to the Full one. As shown in Figure 2, with the
exception of the ImageNet dataset, the accuracy is always
higher in the Human setting compared to the Full setting, for
both query settings. We hypothesize that the ImageNet gap is
related to the encoder knowing the dataset’s distribution, and
therefore slightly overfitting on background data. Interestingly,
results on PascalVOC highlight the high benefits of support
localization in ambiguous situations. We also observe a small
improvement on CUB, showing interest of cropping even in
non-ambiguous scenarios.

Performance evaluation. Quantitatively speaking, results
in Figure 3 and Table I show a slight improvement of accuracy
with FICUS over AMG, in nearly all cases. In all settings, both
approaches improve performance over baseline, highlighting
the benefits of localization in the query set, in conjunction
with the support, on ambiguous datasets or not. Note that
there is still room for improvement, as the Oracle is still
way above achieved performance in most settings, notably on
PascalVOC. Thus, better localization of objects of interest is
still an interesting direction for future research.

V. CONCLUSIONS

This work demonstrated the positive impact of image dis-
ambiguation in the context of few-shot image classification.
Instance localization improved classification accuracy for all
tested datasets, whether applied to support or query images.
We introduced FICUS, a non-supervised approach leveraging
segmentation models to crop query images. FICUS exhibits
higher performance compared to methods that rely on seg-
mentation tools only, or do not address ambiguity at all.

Future work includes extension of the approach to the trans-
ductive setting. Additionally, to obtain a fully non-supervised
process for both support and query sets, we should investigate
methods for support disambiguation.
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