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I. CONTEXT

In recent years, Self-Supervised Learning (SSL) has gained
in popularity due to the availability of unlabeled data. SSL
consists in training a neural network encoder capable of
representing data in a low-dimensional space efficiently, i.e.,
capable of extracting useful features from data (the one it is
trained on, as well as new data). This problem of learning good
representations is generally called representation learning. To
this end, SimCLR [1] is a popular contrastive method that
optimizes an encoder to output similar representations for
different views of the same data (positive pairs), and different
representations for views of different data (negative pairs).

In this work, we treat the representation learning problem
as a random walk on a graph of data representations in the
latent space (vertices) and their similarities (edges). This can
be formulated as an optimization problem that maximizes
the transition probability between views of the same data,
and minimizes the transition probability between views of
different data. This problem has been approximated in [2],
which proposes a solution minimizing the sum of euclidean
distances between positive pairs, and adds a decorrelation term
to avoid representation collapse (i.e., convergence to a trivial
solution in which representations are constant). In this work,
we propose a simpler loss function, that leverages the random
walk Laplacian matrix directly. We benchmark our approach
on the CIFAR10 dataset using standard data augmentations
from the literature to create different views of data [3], and
compare our results to SimCLR.

II. METHOD

We model a graph of data augmentations using an adjacency
matrix W ∈ RN×N between N vertices, each representing an
augmented view of a sample in a given dataset to learn from1.
Weights in W denote positive similarities between samples,
defined as :

Wi,j =

{
exp

(
fθ(xi)

⊤fθ(xj)
)
, if i ̸= j

0, otherwise
, (1)

This work was co-funded by the AI at IMT ANR project, as well as the
company OSO AI.

1Data augmentations can be diverse, depending on the task and considered
dataset. Those we consider in this work are detailed in Section V.

where fθ is a Neural Network of parameters θ that en-
codes an image into an abstract representation in a lower
dimensional space. From W, we define the degrees matrix
D = diag

([∑N
j=1 Wi,j

]
i

)
and the random walk Laplacian

matrix P = D−1W. Here, Pi,j represents the transition
probability from view xi to view xj . The rationale behind our
approach is as follows : we want Pi,j = 1 when xi and xj

are two views of the same data (noted xi ∼ xj), and Pi,j = 0
when they are views of different data (noted xi ̸∼ xj), similar
to the philosophy of contrastive methods [1].

III. TRAINING LOSS

Within a batch B, we define the loss function L between a
view xi ∈ B and a view xj ∈ B as :

L(xi,xj) = 1[i∼j](1−Pi,j) + 1[i ̸∼j]Pi,j , (2)

where 1[·] is the indicator function, equal to 1 when condition
is verified and 0 otherwise. The batch loss LB is the sum of
losses L computed for all pairs in the batch :

LB =
∑

xi,xj∈B
i ̸=j

L(xi,xj) . (3)

Fig. 1 illustrates our method visually. In this small example,
a batch of 4 images is used to generate a two-view batch
of N = 8 views B = {x1,x2,x3,x4,x5,x6,x7,x8}, where
a same color represents a same original data from which
augmentation is made. We define the random walk matrix P
of these views, then the loss LB is computed using Eq. 3 to
optimize the parameters θ of fθ.

IV. COMPARISON TO SIMCLR
SimCLR uses the normalized temperature-scaled cross en-

tropy loss LSimCLR [1] defined as :

LSimCLR(xi,xj) = − log

 exp(fθ(xi)
⊤fθ(xj)/τ)

N∑
k=1

1[k ̸∼i]exp(fθ(xi)⊤fθ(xk)/τ)

 ,

(4)
where τ is a temperature parameter helping to discriminate
hard examples.



Fig. 1. Overview of the framework. Each image is augmented twice to
produce two views. The edges represent probability transitions of pair of
views. Thick edges represent high probability transitions (positive pairs) that
are maximized toward 1, while dotted lines correspond to low probability
transitions (negative pairs), minimized toward 0.

It is interesting to notice that our loss introduced in Eq. 2 is
similar to LSimCLR, as it can be reformulated as follows using
the cosine similarity used in the definition of W in Eq. 1:

L(xi,xj) = 1[i∼j]

1− exp(fθ(xi)
⊤fθ(xj))

N∑
k=1

exp(fθ(xi)⊤fθ(xk))


+ 1[i ̸∼j]

 exp(fθ(xi)
⊤fθ(xj))

N∑
k=1

exp(fθ(xi)⊤fθ(xk))

 .

(5)

Due to the mutual exclusion of indicator functions, only one
term of the sum is used for each pair (xi, xj). The other main
difference with LSimCLR is the presence of a log. Also, we
do not use a temperature parameter in our similarity measure.
Adding such a parameter may help and will be investigated in
future work.

V. EXPERIMENTS

For learning representations, we train the CIFAR variant of a
ResNet18 backbone, followed by a 2-layer MLP, on CIFAR10,
without labels, for 100 epochs. We use the following data
augmentations: resized crop, horizontal flip, color jitter, and
grayscale conversion. These are the same augmentations as [3],
where hyperparameters can be found for the interested reader.
We train our model using SGD optimizer with base learning
rate = 0.06 and a cosine schedule for 100 epochs, weight
decay = 0.0005, momentum = 0.9, and batch size = 512.
After training the encoder, we freeze its parameters, and we
evaluate the classification performance on CIFAR10 classes
using a logistic regression, trained using SGD optimizer for
100 epochs with base learning rate = 0.1, momentum = 0.9,
without weight decay and with batch size = 256.

Table I shows the performance obtained by our method
compared to SimCLR in the settings described above. Our

TABLE I
RESULTS OF LINEAR EVALUATION OF OUR METHOD COMPARED TO

SIMCLR AND [2] ON CIFAR10. RESULTS ON [2] ARE THOSE REPORTED
IN THEIR ARTICLE DUE TO UNAVAILABILITY OF THE CODE AND MISSING

INFO ON TRAINING SETTINGS.

Method Epochs Accuracy
SimCLR (reproduced) 100 80.17± 0.20
Lee [2] (reported) 800 92.24
Ours 100 84.03± 0.29

approach shows competitive results against SimCLR [1], but
seems to be outperformed by [2]. However, their results are
reported from their article, and are not reproducible due
to missing information or code. Besides, they train on 800
epochs, while we train on 100. We plan to extend our
simulations to similar settings by the time of the conference.

VI. PERSPECTIVES

Our first experiments show promising results in the integra-
tion of a new loss based on the random walk Laplacian matrix,
on CIFAR10. In addition to the points already mentioned
– studying addition of a parameter τ and training for more
epochs – we want to perform experiments on more advanced
datasets, and explore new choices of similarity measures.
Finally, we are interested in evaluating the ability of the
representations learned using our loss function to be used in
transfer learning for downstream tasks.
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