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ABSTRACT

District Heating Networks (DHNs) provide very efficient
and flexible solutions to produce and supply heat energy
for local uses but are computationally expensive both to
optimize and simulate. Leveraging the formulation of a DHN
as series of graphs with time series signals on its vertices, the
objective of this work is to reduce such computational costs by
aggregating identified vertices. We investigate recurrent neural
network model to learn and mimic the temporal dynamic of
the signals of aggregated vertices.

INTRODUCTION

Despite its existence for more than a century, District
Heating (DH) is still a niche technology [1]. The purpose
of DH is to transport heat energy by connecting heat pro-
duction facilities (producers) to end users (consumers) with
two inversely-oriented parallel distribution pipes (supply and
return) forming the District Heating Network (DHN). Tra-
ditionally, the evaluation of optimal scenarios in the design
and/or management of a DHN (e.g., optimal design and power
management of production units constrained by the consumer
demands, or heat losses minimization in the pipes) requires
complex algorithms which combine mathematical optimization
and physical simulation [2] [3]. Since, these algorithms require
a full description of the network, run on short time steps
(e.g., 10 minutes) and large time window (e.g., a year), they
tend to be computationally intensive in terms of memory and
computational time.

To tackle this problem, we propose to simplify the topolog-
ical description of the DHN by aggregating identified vertices
of the graph, and performing a cluster-level regression of
this aggregate of vertices. We then reduce the size of the
network but preserve the energetic properties of the DHN.
In this first work, we study the case of a simple cluster of
two adjacent vertices, and propose a regression methodology
to learn their behavior in the network. Future work will use
clustering techniques on graphs.
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GRAPH FORMULATION

Physical values describing the state of a DHNs are time
series data modeling the demand at the various vertices of the
graph, and are obtained through physical simulation. Inspired
by related work [4], [5], we formulate the DHN as a series
of graphs W ∈ RT×N×N , where T is the number of time
observations and ∀t : Wt ∈ RN×N is the weights matrix
of the graph at instant t. Due to the physical structure of
the considered application, all graphs in W share the same
N vertices and edges support E (i.e., for two t and t′, only
non-zero entries of Wt and Wt′ may differ). Moreover, we
consider that all graphs are symmetric and have no self-loops.

For each time instant t, we determine the weights of Wt

through Equation 1, derived from the resolution of the heat
transfer equation under the hypothesis of no thermal inertia
of the pipes wall [6], that gives the decay and delay of the
temperatures signals through the pipes, and hence gives a
physical similarity measure of two adjacent vertices:

∀i, j, t : Wt,i,j
def
=

{
exp

(
−πHi,jLi,jDi,j

CMt,i,j

)
if (i, j) ∈ E

0 otherwise
, (1)

where H is the matrix of convective heat loss coefficients, L
and D are respectively the lengths and diameters of the pipes,
M is the tensor of mass flow rate of water traversing the
pipes, and C is the water specific heat capacity. These values
are given and model the properties of the studied DHN.

On each vertex, we observe four multi-variate time series
signals {Xs,Xr,Xp,Xd} ∈ R4×T×N , respectively modeling
the available temperature of the hot water Xs (supply pipe),
the temperature of the cold water Xr (return pipe) after
consumption [2], the produced power Xp and the demand
power Xd.

PROPOSED METHODOLOGY

A cluster of DHN vertices is an ensemble of vertices,
aggregated as a single one with the edges inside the cluster.
The external edges (entering and exiting) of the cluster are
kept unchanged. This new vertex mimics the temporal dynamic
of the original vertices within the cluster. The aggregation is
therefore a two fold process: 1) similar vertices are aggregated
in a cluster (either by hand or through a clustering approach);



and 2) a cluster-level supervised learning approach aims to
learn how to reproduce the dynamic of the cluster. In this
work, we focus on step 2.

Given the objective task, a good clustering must allow to
significantly decrease the overall simulation cost of the DHN
and its replacement by a clustered vertex shall not perturb
the rest of the DHN from an energetic point of view. To
enforce these settings, in this preliminary work, we consider
a simple cluster of two vertices manually selected by experts
for their pertinence w.r.t. the objective, to train the supervised
regression model. The goal of this supervised regression is to
train a neural network model to learn the temperature signals
(Xs and Xr) from the cluster to each of its output edges, given
its input edges. This is illustrated in Figure 1. The quality of
the regression is evaluated using a mean absolute error.
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(a) Original graph, for a time t. Vertices to group in a cluster
are identified in grey. The four signal entries associated with
the vertices are represented below.
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(b) Graph where the two identified vertices have been clustered,
in the case where supply flows from v1 to v4 and return from v4
to v1. We indicate how signals and weights are merged. Here,
fp and fd denote functions of the production and demand of
aggregated vertices, taking heat losses and stocking properties
into consideration. Details are beyond the scope of this abstract.

Fig. 1: Illustration of vertices aggregation process.

EXPERIMENTS

We consider here the two-vertex cluster illustrated in Fig-
ure 1. Note that this is a simple example for demonstration.
The cluster of vertices can be more complex, by aggregating
more vertices, a higher number of connections, loops. . . The
goal is now to train a regression model to predict Xs

t,v23

and Xr
t,v23 from Xd

t,v2 , Xd
t,v3 , Xs

t,v1 , Xr
t,v4 , Wt,v1,v23 , and

Wt,v23,v4
. Note that power and demand signals of adjacent

vertices (i.e., Xp
t,v1 , Xd

t,v1 , Xp
t,v4 , Xd

t,v4 ) are not used as input
as, physically, they do not influence directly the dynamic of
the temperatures at the clustered vertex.

We introduce a neural network model made of two-layers
of Gated Recurrent Unit [7] of 20 units, max length of 10
step, dropout rate of 0.2, followed by one dense layer of 60
units and the output dense layer. Dense layers are activated

with ReLU. Chosen hyperparameters are the result of grid
search tuning and the ones that are not mentioned are using
the default values provided by Keras implementation. The loss
to minimize is a mean absolute error (MAE) between predicted
values of {Xs

t,v3 ,X
r
t,v2} (∀t) and their actual values, optimized

using Adam with a 0.001 learning rate and a batch size of 25.
Here, we consider a dataset of T = 240, 000 time-steps, for

which values are derived by simulation of the whole network
(modeling a DHN of N = 71 vertices). The cluster we aim at
modeling is the one shown in Figure 1. Our model is trained
with the first 70% of the dataset and tested with the remaining
last 30%. It is trained with a maximum of 50 epochs and a
validation split of 0.3. Figure 2 shows the performance of the
model to infer the dynamic of the return temperature signal
Xr

t,v23 on the test set. It achieves a satisfying performance to
learn the physical dynamic of both temperatures signals with
a MAE of 0.0074◦C on the test set.
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Fig. 2: Illustration of the model performance on the test set.
Results on Xs

t,v23 show an even lower MAE.

COMPLEMENTARY DISCUSSIONS

Leaning on the results of the supervised regression, in the
following work, we will investigate Graph Neural Network
clustering techniques to identify clusters of vertices with good
properties with respect to the considered problem, i.e., which
replacement results in minimal error on the conservation of
the DHN energetic properties.
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