
HAL Id: hal-04620379
https://imt-atlantique.hal.science/hal-04620379

Submitted on 21 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-efficiency Asymmetrical Shuffled decoding
Aomar Bourenane, Frédéric Guilloud, Matthieu Arzel, Alain Thomas

To cite this version:
Aomar Bourenane, Frédéric Guilloud, Matthieu Arzel, Alain Thomas. High-efficiency Asymmetrical
Shuffled decoding. 9th International Workshop on Tracking, Telemetry and Command Systems for
Space Applications (TTC), Nov 2022, Noordwijk, Netherlands. �hal-04620379�

https://imt-atlantique.hal.science/hal-04620379
https://hal.archives-ouvertes.fr

TT&C 2022

High-efficiency Asymmetrical Shuffled decoding

28 November - 1 December 2022
ESA/ESTEC, Noordwijk, The Netherlands

Aomar BOURENANE(1), Frederic GUILLOUD (2), Matthieu ARZEL(2), Alain THOMAS(3)

(1) Space and Communication Lab - Safran Data Systems / IMT Atlantique Lab-STICC, UMR CNRS 6285

5 Av. des Andes, 91940 Les Ulis, France.
aomar.bourenane@safrangroup.com

(2) IMT Atlantique Lab-STICC, UMR CNRS 6285

F-29238 Brest, France.
firstname.lastname@imt-atlantique.fr

(3) Space and Communication Lab Safran Data Systems

5 Av. des Andes, 91940 Les Ulis, France.
alain-dominique.thomas@safrangroup.com

INTRODUCTION

As an alternative for turbo-codes [1], S. Benedetto and G. Montesi have proposed Serial Concatenated Convolutional
Codes (SCCC) [2]. While demonstrating a better error floor performance, their error-correcting performance is equivalent
to its parallel counterpart and LDPC codes [3]. Additionally, SCCC encoders are appropriate for onboard satellite
implementations thanks to their low complexity [4,5]. SCCC encoding comprises a serial concatenation of two
convolutional encoders connected by an interleaver, the first corresponding to the outer code and the second to the inner
code [2]. Hence, the iterative decoding technique employs Soft-Input Soft-Output (SISO) algorithms to iteratively decode
the inner and the outer codewords while exchanging extrinsic information. Several efforts have been conducted to achieve
high throughput turbo-code decoders in the literature using multiple parallelism techniques. Handful contributions are
devoted to SCCC decoders, even though their efficient implementation is a prime concern for satellite telemetry systems
[6]. Based on the sliding windows parallelism approach [7], [8] suggested a parallel SCCC decoder architecture with 16
concurrent SISO decoders. A high throughput Max-Log-Map SCCC turbo-decoder for an optical channel was presented
in [9] for hardware implementation. Parallelism was implemented in both the calculation of state metrics inside SISO
decoders and the use of sub-block parallelism. In these prior contributions, the parallelism incorporated in SCCC decoders
was intended to accelerate the metric computations but not the exchange of extrinsic information, which is essential for
increasing the decoder's throughput. In a previous paper, we introduced a new technique called Asymmetrical Shuffled
decoding (ASD) that uses the shuffled decoding technique [10] to speed up and increase the exchange of extrinsic
information [11]. The ASD technique uses the idle time of the hardware resources of the outer decoder to improve
efficiency without adding any additional hardware resources by executing the outer component decoder twice in the same
iteration. We are considering whether there is more parallelism or scheduling that we should explore to improve efficiency
even more. A sub-block parallelism degree is applied to the ASD technique in this article to improve efficiency through
the use of various scheduling techniques. This article offers two solutions that triple the decoder's overall throughput
while preserving excellent efficiency. These designs use various parallelism techniques and proper scheduling.
The remaining sections are organized as follows. In Section 2, we describe the notations used throughout the study, as
well as the encoding and decoding schemes of SCCC. In sections three and four, we suggest two high-efficiency ASD for
systematic SCCC. The fifth section compares the various schemes based on their hardware and time resource usage,
throughput, and performance. Finally, in section 6, we come to an end with a conclusion.

MODEL AND NOTATIONS

For clarity, we will refer throughout the study to the communication channel depicted in Fig.1, as a systematic SCCC
encoder, a binary input memoryless additive white Gaussian noise (Bi-AWGN) channel, and an SCCC decoder.
The SCCC encoder has an outer convolutional recursive systematic code (RSC) with rate  = 1/2, an interleaver Π,

and an inner RSC  with rate  = 1/2. We assume that both component codes share the same constraint length  to
simplify the notations without incurring generality. The superscripts  and  represent, respectively, the inner and outer
codes.  denotes the  information bit at the input of the SCCC encoder, for  ∈ 1 . . , which is encoded first by

TT&C 2022

the outer encoder.   for  ∈ 0 . . 2 represents the outer coded bits that are interleaved into bits  and sent into

the inner encoder. Let   for ! ∈ 0 . . 4 represent the inner coded bits modulated and sent through a Bi-AWGN

channel. Let # represent the channel output proportional to the log-likelihood ratios (LLRs) of   , and let % represent
the estimated information bit. Assuming that the outer (respectively inner) encoder is systematic, the output 
(respectively  ) is alternately equal to the systematic bit  (respectively ) and the redundant bit & (respectively &).
Fig. 2. illustrates the functional block diagram of the SCCC decoder for two received sub-blocks. It is composed of three
SISO decoders referred to as outer SISO, inner1 SISO, and inner2 SISO, as well as an interleaver and a deinterleaver.
Serial concatenation of the two inner SISOs to the shared outer SISO is performed. Notably, even though the two inner
SISOs share the same outer SISO but decode separately, the decoding process is similar to two serial turbo-decoders
operating in tandem on two received sub-blocks without exchanging any pieces of information. The injection of channel
information relative to the LLRs (1'() and 2'()) is highlighted in blue. This information is received at the receiver's
input and is transmitted to the outer decoder through the blue wires. Using the same code rate as in the previous paper,
we remind readers that the size of the frames to be decoded is inevitably different for the two component decoders (hence
the decoding time is different). For example, at a code rate of ½ for the outer encoder, the inner decoder needs to decode
twice the trellis length decoded by the outer decoder. The max-log-MAP algorithm [12] will be implemented as a SISO
component to decrease computational complexity. Two decoding schemes are proposed based on the same decoding
functional block of Fig. 2, except with two unique scheduling strategies to maximize decoder efficiency. In the following
sections, these two decoding schemes are referred to as Asymmetrical Shuffled Simultaneous Decoding (ASSD), and
Asymmetrical Shuffled Continuous Decoding (ASCD).

ASYMMETRICAL SHUFFLED SIMULTANEOUS DECODING SCHEME

Architectural Description

Since two inners are implemented, two sub-blocks can be decoded simultaneously, namely sub-block1 and sub-block2.
Therefore, let us define two modes corresponding to their respective decoding: the Ping and the Pong modes.
The Ping (resp. Pong) mode: We associate this mode with the decoding of sub-block1 (resp. sub-block2). The inner1
(resp. inner2) decoder and the shared outer decoder are both decoding simultaneously. During this mode, the two SISOs
are computing and exchanging the extrinsic information for the current trellis section through the two extrinsic memories

Fig. 2. Functional block diagram of the SCCC decoder for two received sub-blocks, where information (LLR)
related to the channel observation is colored in blue.

Fig. 1. SCCC encoder and transmission over a binary input AWGN (Bi-AWGN) channel model.

TT&C 2022

(reading and writing). The hardware architecture of the proposed ASSD scheme is depicted in Fig.3. Three SISOs are

employed to compute the state metrics (α, β) in parallel. The two upper SISOs correspond to the inner1 and inner2
decoders, whereas the third SISO corresponds to the shared outer decoder. Each inner SISO has its own memory for state
metrics and extrinsic memory. The shared outer SISO is equipped with two state metrics and two extrinsic memories to
accommodate the two Ping and Pong modes. Numerous multiplexers and demultiplexers (MUX, DEMUX) are employed
to drive and supply the SISOs with the appropriate information. The control unit coordinates these modes.
In the baseline implementation, a single SISO component is deployed, and resources are utilized alternatively to perform
both the inner and outer decoding. However, in the ASSD approach, three SISOs operate concurrently, each SISO
processing one trellis section per clock cycle. The control unit schedules computations and drives memory accesses based
on the decoded codeword. Resources must be sized to support the greedier case in a baseline scheme since they are shared.
In an ASSD scheme, however, each resource is dedicated to a single SISO with the bare minimum hardware requirements,
and thus the use of these resources is optimized for decoding time. However, the state metrics and extrinsic information
memories are duplicated in the ASSD, as shown in Fig.3. Due to the fact that we duplicate all extrinsic information
memories, this solution is suboptimal in terms of extrinsic memory use. However, it avoids memory access conflicts [13].

Core Operation And Decoding Time

After outlining the proposed hardware scheme for the ASSD decoding technique and highlighting its difference from the
baseline scheme, in this section, we explain its basic operation.
The ASSD BCJR computation with a replica butterfly scheme is depicted in Fig.4. with three component decoders (inner1
scheduling (a), outer scheduling (b), and inner2 scheduling (c)). The trellis sections corresponding to each associated sub-
block are depicted on the y-axis. The x-axis represents the time domain. The forward and backward recursion generation,
as well as the extrinsic information, are marked by dotted-dashed lines. We can see that each inner decoder is processing
a distinct 2 trellis section associated with the two modes' respective sub-blocks. On the other hand, the outer decoder
processes two distinct  trellis sections associated with the two modes concurrently in the time domain, one section each
clock cycle (circle-line marks symbolize the discretization). The grey area in each replica butterfly scheme symbolizes
the memory allocation of each trellis section's state metrics across time. The asymmetry between the inner and outer
decoders is expressed by the trellis length ratio.
During the ASSD iterative decoding, two SISOs play the role of two inner decoders decoding two independent sub-
blocks, and the third SISO is shared between the two inner SISOs. It plays the role of a shared outer. The sharing is done
in the time domain. As the two inner decoders need twice as much decoding time as the outer decoder (hence the term
Asymmetrical in the word ASSD), we take advantage of the free time of the outer decoder to share it between the two
inner decoders. This time-sharing is done by clock cycle, as shown in Fig.4. The outer decodes both sub-blocks,
alternately, one trellis section per clock cycle per sub-block. The term "simultaneous" in the acronym ASSD comes from
the fact that decoding the two sub-blocks is done simultaneously in a time-division manner, with two inner trellis sections
in parallel.
A complete iteration of the proposed ASSD requires an amount of time - per two decoding sub-blocks of the two modes,
as shown in Fig. 4. This means that the ASSD scheme requires a duration of -/2 per iteration to decode a received sub-
block, when the baseline implementation with a SISO butterfly scheduling runs a complete iteration within an amount of
time equal to 3-/2 as we explained in [11]. Note that a replica butterfly scheme [14] is implemented to increase the
extrinsic information exchange speed and the decoding throughput.

Memory Resources

In this research, we took into account the estimation of the state metrics and the extrinsic information memories. To
simplify the resource estimation both in terms of memory and of computing units, we assume hereafter that the LLRs and

the forward-backward metrics (/, 0) are quantized with the same bit-width. The amount of memory required to save

each state metric is given by the number of states per trellis section, i.e. 2123, times the number of sections plus one, that

is 2 + 1 for the two inner codes and  + 1 for the shared outer code. Thus, the memory words required to store / and

0 state metrics for the two inner component decoders are specified by (1). In the case of the outer decoder, the number
of memory words required to store the state metrics is given by (2). Due to the fact that we must process the decoding of
two modes concurrently, we must double the size of the outer decoder metrics memory.

2 × 621(2 + 1)7 (1)
2 × 621( + 1)7 (2)

For the baseline scheme, the largest trellis is the inner one and requires 21(2 + 1) memory words to be saved. The total
state metrics memory needed by the ASSD scheme is given by (3).

TT&C 2022

2 × 621 (2 + 1) + 21( + 1)7 = 2183(3 + 2) (3)
The amount of memory required to save extrinsic information in the inner decoder is related to the number of systematic
bits 2. In the outer decoder, it is given by the number of the coded bits, which is 2 because the extrinsic information
of both the systematic and redundant bits must be saved. Notably, the extrinsic information memory needs for the ASSD
scheme are duplicated to allow memory to be accessed concurrently by the inner and outer decoders, as illustrated in
Fig.4. The figure depicts the presence of four memories for extrinsic information. As a result, the circuit consumes a total
of 8 memory words for the extrinsic information. The total amount of memory words used in the ASSD scheme is
indicated by the variable :;<<=, which equals

:;<<= = 2183(3 + 2) + 8 (4)
Only one extrinsic memory of 2 words is required in the baseline case. The total number of memory words used in the
Baseline Decoding (BD) scheme is indicated by the variable :>= and is equal to

:>= = 21(2 + 1) + 2 (5)
Computing Resources

This section reports the estimation of the ASSD technique's overall computing resource requirements in order to compare
it to the baseline technique and calculate its efficiency. We consider the amount of resources required to compute the state

metrics (/, 0) and extrinsic information for the two inner component decoders (&'@A , &'BA) and the shared outer

component decoder &' in a single trellis section. Calculation of state metrics in a trellis section with 2123 states is

accomplished by the use of 2123 Add-Compare-Select (ACS) units for / or 0 state metrics, i.e., 2 × 21 ACS, for the
two inner decoders and 21 for the outer since we assume the same constraint length  for the three-component codes.
Extrinsic information is obtained by first adding the two state metrics to the branch metrics, which needs two ADD
(Addition operator) per branch, thus 2 × 21 = 2183 ADD per trellis section. Then, for the inner decoder (extrinsic
information on the systematic bits), the maximum sum over all branches related to a systematic bit equal to 0 must be
chosen, as well as the maximum sum over all branches related to a systematic bit equal to 1. Finding the maximum over
21/2 values requires 2123 C 1 Compare-and-Select (CS) units, resulting in a total of 21 C 2 CS. Finally, the subtraction

Fig.4. ASSD BCJR computation with replica butterfly
scheme: (a) inner1 decoder scheduling, (b) outer decoder

scheduling, (c) inner2 decoder scheduling.

Fig.3. ASSD proposed scheme

TT&C 2022

between the two preceding maximums and by subtracting the a priori information and the channel information from the
result (cost of 3 ADD), the extrinsic information for the systematic bit on the considered trellis section of the inner decoder
will be obtained. The two inner component decoders are identical, so the hardware requirements are equal. Each inner
trellis calculation requires 21ACS, 2183 + 3 ADD and 21 C 2 CS. If one uses the equivalences: an ACS is 2 additions,
a subtraction (equivalent to an addition) and a selection S (3ADD+S), a CS is an addtion and a selection S (ADD+S), we
obtain the following results

&'@A = &'BA = (3 × 2
183 + 1)DEE + (2183 C 2)F (6)

As for the shared outer decoder, the calculation is the same, except that two extrinsic information values have to be
calculated for each trellis section: one for the systematic bit and one for the redundant bit. Hence the number of operations
dedicated to the inner extrinsic information is doubled, yielding a total of

&' = (9 × 21 + 2)DEE + (3 × 21 C 4)F (7)
Finally, the overall complexity of the proposed ASSD scheme is obtained by adding the complexity of the two inner and
outer decoders, resulting in

&;<<= = &' + &'@A + &'BA = (21 × 2
1 + 4)DEE + (7 × 21 C 8)F (8)

Whereas for the baseline scheme, the complexity is the one of the outer decoder
&>= = &' = (9 × 21 + 2)DEE + (3 × 21 C 4)F (9)

ASYMMETRICAL SHUFFLED CONTINUOUS DECODING SCHEME

Architectural Description

The proposed ASCD scheme's hardware architecture is depicted in Fig.5. Three SISOs are used in parallel to compute

the state metrics (/, 0). The two upper SISOs represent the inner1 and inner2 decoders, respectively, while the third
SISO represents the shared outer decoder. Each inner SISO has its own extrinsic and state metrics memory. Compared to
the ASSD scheme, which uses two state metrics memories, the shared outer SISO scheme uses a single state metrics
memory shared (drawn in blue in the figure) between the two Ping-Pong modes. Additionally, the shared outer component
decoder includes two extrinsic memories to support the Ping and Pong modes (one extrinsic memory allocated to the
decoding time of each mode). Numerous multiplexers and demultiplexers (MUX, DEMUX) are used to drive and supply
information to the SISOs. As illustrated in Fig.5, the control unit coordinates these modes. As is the case with ASSD, the
ASCD scheme is based on shuffled decoding, appropriate scheduling, and sub-block parallelism. The extrinsic
information memories are duplicated, this technique is sub-optimal in terms of extrinsic memory consumption, but it
eliminates memory access conflicts. Unlike the ASSD scheme, the ASCD scheme is more efficient in memory savings
by using a single state metrics memory to support the two modes, Indeed, state metrics are very greedy in memory
resources, especially when the number of code states and/or the sub-block trellis length are significant (in the range of
2123 × ( + 1)).

Core Operation And Decoding Time

This section discusses the technique's essential operation. The outer decodes both sub-blocks alternately, once every half
iteration. The term "Continuous" in the word ASCD refers to the fact that the two sub-blocks are decoded sequentially in
a continuous manner, including all the trellis sections of the first sub-block of the Ping mode being decoded in the first
half iteration of the iterative decoding and then all the trellis sections of the second sub-block of the Pong mode being
decoded in the second half iteration of the iterative decoding. This method is performed continuously (Ping-> Pong-
>Ping...) until the total number of iterations of iterative decoding is reached. The ASCD BCJR computation with a replica
butterfly scheme is depicted in Fig.6, with three component decoders (inner1 scheduling (a), outer scheduling (b), and
inner2 scheduling (c)). The trellis sections corresponding to each associated sub-block are depicted on the y-axis. The x-
axis represents the time domain. The forward and backward recursion generation, as well as the extrinsic information, are
marked by dotted-dashed lines. We can see that each inner decoder is processing a distinct 2 trellis section associated
with the two modes' respective sub-blocks. On the other hand, the outer decoder processes two distinct  trellis sections
associated with the two modes sequentially in a continuous manner in the time domain. The grey area in each replica
butterfly scheme symbolizes the memory allocation of each trellis section's state metrics across time. The asymmetry
between the inner and outer decoders is expressed by the trellis size ratio. A complete iteration of the proposed ASCD
requires an amount of time - per two decoding sub-blocks, as shown in Fig.6: an amount of time of - for each inner
component decoder, an amount of time of -/2 for each sub-block of each decoding mode for the shared outer decoder.
Because of the fact that the three-component decoders are working concurrently, the total amount of time required for
decoding the two sub-blocks is -. Thus, the decoding time required per sub-block, per iteration is -/2.

TT&C 2022

Memory Resources

Equation (10) specifies the memory words required to store the / and 0 state metrics for the two inner component
decoders. Likewise, the number of memory words required by the outer decoder to store the state metrics is specified by
(11). We do not need to double the size of the outer decoder metrics memory as we did for the ASSD scheme since we
release the allocation of this memory to one of the modes every half iteration.

2 × 621 (2 + 1)7 (10)
21( + 1) (11)

The total amount of memory words used in the ASCD scheme is indicated by the variable :;<J= , which equals
:;<J= = 21(5 + 3) + 8 (12)

It is interesting to mention that it can be seen by comparing Fig.(4)(b) and Fig.6 (b) that the state metrics memory area
used by the shared outer decoder in the case of the ASCD scheme is half the one used for the ASSD scheme.

Computing Resources

This section reports the estimation of the ASCD technique's overall computing resource requirements in order to compare
it to the baseline technique and calculate its efficiency. The ASCD scheme has the same needs of computing resources
than the ASSD scheme,

 &;<J= = &;<<= = &' + &'@A + &'BA = (21 × 2
1 + 4)DEE + (7 × 21 C 8)F (13)

PERFORMANCE AND COMPARISON

In order to estimate the Bit Error Rate performance (BER) of the two proposed schemes, the received frames of  =
4320 are divided into K = 120 sub-blocks and decoded in parallel. Each sub-block requires the initialization of recursion
metrics, as only frame ends and not sub-block ends include recursion metric information either by using a circular trellis
[15] or through tail-biting [16]. The first technique entails estimating the initiation of sub-blocks' limits based on the pre-
calculations of neighboring blocks called acquisition (ACQ)-based initialization [17]. The second technique is referred to
as initialization by message forwarding or next iteration initialization (NII) [18]. Two methods (ACQ-NII) can be
combined in the third technique as proposed in [19]. In this paper, only the NII technique is considered.
We consider that each iteration of the proposed ASSD (resp.ASCD) scheme lasts for a predetermined time -. In
comparison, one iteration of the BD scheme takes 3-/2, and because the two proposed schemes process two modes
concurrently (thus, two sub-blocks are decoded), the proposed scheme's decoding time is halved. Therefore, the total
decoding time for 9 iterations is stated using (14) for the two proposed schemes and (15) for the BD scheme.

-;<<= L ;<J= =
-
2
× 9 = 4.5- (14)

->= =
3-
2
× 9 = 13.5- (15)

As expressed by the time ratio (16), the two schemes achieve a threefold increase in throughput over the BD scheme.
->=

-;<<= L ;<J=
= 3 (16)

In Fig.7 (resp. Fig.8), the ASSD (resp. ASCD) and the BD schemes are represented in terms of BER as a function of
signal-to-noise ratio, and compared to the BD and the ASSD (resp. ASCD) schemes without sub-block technique.
In this simulation, the iterative decoding is conducted utilizing a total of 9 iterations. According to the two figures, the
increase in throughput has no impact on the BER performance of the ASSD scheme and has only a slight degradation of
0.09 dB in the case of the ASCD scheme. Therefore, the BER performance of the two schemes is comparable.
Considered numerical values (with  = 3 and  = 4320) for ASD, ASSD, and ASCD schemes in comparison to the BD
scheme are summarized in Table 1. The table considers several criteria, including a fixed BER at 102M for the comparison,
the considered total number of iterations, SISO computing time, the number of memory words stored during the decoding
process, addition operations (ADD), the number of used selectors, and finally, the throughput ratio. The percentages in
green (resp. red) represent the relative improvement (resp. degradation) of hardware resources compared to the BD
scheme. The percentages are measured using the efficiency metric described in [11] to answer the question whether the
increase in throughput results in an identical increase in hardware resources
Clearly, this faster convergence and higher throughput come at the expense of additional hardware resources. However,
the table demonstrates unequivocally that the three proposed decoding techniques need reduced hardware resources for
an equivalent throughput, moreover: Both ASSD and ASCD decoding schemes offer three times higher throughput than
the BD scheme, and NO% more throughput than the ASD scheme. The ASD scheme is the best plan for conserving

TT&C 2022

memory resources, 29% compared to 12% for the ASCD scheme. Even though it offers less throughput than ASCD
scheme. Therefore, the ASD scheme may be the best choice for an architecture with limited memory resources. Both the
ASSD and the ASCD schemes are the best plans for conserving computational resources. Furthermore, the ASCD scheme
offers memory resource savings, making it the superior alternative.

CONCLUSION

In this article, we propose two different schemes that offer better computing efficiencies and triple the overall throughput
of the decoder compared to the baseline scheme. The two schemes use different types of parallelism: Shuffled decoding
and Sub-block parallelism. The ASSD scheme allows for 50% more in throughput than the ASD scheme presented in
[11] and better hardware computing efficiency. In addition, we proposed the ASCD scheme, which is based on relevant
scheduling that offers the ASSD scheme's advantages and better memory efficiency, making it the superior alternative.

REFERENCES

Fig.6.ASCD BCJR computation with replica butterfly
scheme: (a) inner1 decoder scheduling, (b) outer decoder

scheduling, (c) inner2 decoder scheduling.

Fig.5. ASCD proposed scheme

Table 1. Considered numerical values for the BD vs ASD vs ASCD vs ASSD schemes. In
green (resp. red) the saving (resp. adding) hardware resources normalized to the BD scheme.

TT&C 2022

[1] Berrou, C., & Glavieux, A. (1996). Near optimum error correcting coding and decoding: Turbo-codes. IEEE
 Transactions on communications, 44(10), 1261-1271.
[2] Benedetto, S. (1996). Serial concatenation of block and convolutional codes. Electron. Lett., 32(10), 887-888.
[3] Gallager, R. (1962). Low-density parity-check codes. IRE Transactions on information theory, 8(1), 21-28.
[4] Benedetto, S., Divsalar, D., Montorsi, G., & Pollara, F. "Serial concatenation of interleaved codes: Performance

analysis, design, and iterative decoding." IEEE Transactions on information Theory 44.3 (1998): 909-926.
[5] Amat, A. G., Montorsi, G., & Vatta, F. (2009). Design and performance analysis of a new class of rate compatible

serially concatenated convolutional codes. IEEE transactions on communications, 57(8), 2280-2289.
[6] Bertolucci, M., Falaschi, F., Cassettari, R., Davalle, D., & Fanucci, L. "A comprehensive trade-off analysis on the

CCSDS 131.2-B-1 extended modcod (SCCC-X) implementation." 2020 23rd Euromicro Conference on Digital
System Design (DSD). IEEE, 2020.

[7] Schurgers, C., Catthoor, F., & Engels, M. (2001). Memory optimization of MAP turbo decoder algorithms. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 9(2), 305-312.

[8] Martina, M., Molino, A., Vacca, F., Masera, G., & Montorsi, G. (2006). High throughput implementation of an
adaptive serial concatenation turbo decoder. Journal of Communications Software and Systems, 2(3), 252-261.

[9] Shoup, R. (2006, August). Hardware implementation of a high-throughput 64-PPM serial concatenated turbo
decoder. In Optical Information Systems IV (Vol. 6311, pp. 250-257). SPIE.

[10] Zhang, J., & Fossorier, M. P. (2005). Shuffled iterative decoding. IEEE Transactions on Communications, 53(2),
209-213.

[11] Bourenane, A., Arzel, M., Guilloud, F., & Thomas, A. (2021). Shuffled Decoding of Serial Concatenated
Convolutional Codes. In 2021 11th International Symposium on Topics in Coding (ISTC) (pp. 1-5). IEEE.

[12] Koch, W., & Baier, A. (1990, December). Optimum and sub-optimum detection of coded data disturbed by time-
varying intersymbol interference (applicable to digital mobile radio receivers). In [Proceedings] GLOBECOM'90:
IEEE Global Telecommunications Conference and Exhibition (pp. 1679-1684). IEEE.

[13] Giulietti, A., Van der Perre, L., & Strum, M. (2002). Parallel turbo coding interleavers: avoiding collisions in accesses
to storage elements. Electronics letters, 38(5), 1.

[14] Zhang, J., Wang, Y., Fossorier, M., & Yedidia, J. S. (2005, September). Replica shuffled iterative decoding.
In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005. (pp. 454-458). IEEE.

[15] Ma, H., & Wolf, J. (1986). On tail biting convolutional codes. IEEE Trans on Communications, 34(2), 104-111.
[16] C. Berrou, “Codes et turbocodes,” 2007
[17] Sun, Y., & Cavallaro, J. R. (2008, October). Unified decoder architecture for LDPC/turbo codes. In 2008 IEEE

Workshop on Signal Processing Systems (pp. 13-18). IEEE.
[18] Dielissen, J. (2000). State vector reduction for initialization of sliding windows MAP. In Proc. 23nd Int, Symp.

Turbo Codes Related Topics, 2000 (pp. 387-390).
[19] May, M., Ilnseher, T., Wehn, N., & Raab, W. (2010, March). A 150Mbit/s 3GPP LTE turbo code decoder. In 2010

Design, Automation & Test in Europe Conference & Exhibition (DATE 2010) (pp. 1420-1425). IEEE.

Fig.7. BER performance comparison of the ASSD
and baseline schemes as a function of QR/S.

Fig.8. BER performance comparison of the ASCD
and baseline schemes as a function of QR/S.

View publication stats

https://www.researchgate.net/publication/366990341

