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INTRODUCTION 
 
As an alternative for turbo-codes [1], S. Benedetto and G. Montesi have proposed Serial Concatenated Convolutional 
Codes (SCCC) [2]. While demonstrating a better error floor performance, their error-correcting performance is equivalent 
to its parallel counterpart and LDPC codes [3]. Additionally, SCCC encoders are appropriate for onboard satellite 
implementations thanks to their low complexity [4,5]. SCCC encoding comprises a serial concatenation of two 
convolutional encoders connected by an interleaver, the first corresponding to the outer code and the second to the inner 
code [2].  Hence, the iterative decoding technique employs Soft-Input Soft-Output (SISO) algorithms to iteratively decode 
the inner and the outer codewords while exchanging extrinsic information. Several efforts have been conducted to achieve 
high throughput turbo-code decoders in the literature using multiple parallelism techniques. Handful contributions are 
devoted to SCCC decoders, even though their efficient implementation is a prime concern for satellite telemetry systems 
[6]. Based on the sliding windows parallelism approach [7], [8] suggested a parallel SCCC decoder architecture with 16 
concurrent SISO decoders. A high throughput Max-Log-Map SCCC turbo-decoder for an optical channel was presented 
in [9] for hardware implementation. Parallelism was implemented in both the calculation of state metrics inside SISO 
decoders and the use of sub-block parallelism. In these prior contributions, the parallelism incorporated in SCCC decoders 
was intended to accelerate the metric computations but not the exchange of extrinsic information, which is essential for 
increasing the decoder's throughput. In a previous paper, we introduced a new technique called Asymmetrical Shuffled 
decoding (ASD) that uses the shuffled decoding technique [10] to speed up and increase the exchange of extrinsic 
information [11]. The ASD technique uses the idle time of the hardware resources of the outer decoder to improve 
efficiency without adding any additional hardware resources by executing the outer component decoder twice in the same 
iteration. We are considering whether there is more parallelism or scheduling that we should explore to improve efficiency 
even more. A sub-block parallelism degree is applied to the ASD technique in this article to improve efficiency through 
the use of various scheduling techniques. This article offers two solutions that triple the decoder's overall throughput 
while preserving excellent efficiency. These designs use various parallelism techniques and proper scheduling.  
The remaining sections are organized as follows. In Section 2, we describe the notations used throughout the study, as 
well as the encoding and decoding schemes of SCCC. In sections three and four, we suggest two high-efficiency ASD for 
systematic SCCC. The fifth section compares the various schemes based on their hardware and time resource usage, 
throughput, and performance. Finally, in section 6, we come to an end with a conclusion. 
 
MODEL AND NOTATIONS 
 
For clarity, we will refer throughout the study to the communication channel depicted in Fig.1, as a systematic SCCC 
encoder, a binary input memoryless additive white Gaussian noise (Bi-AWGN) channel, and an SCCC decoder. 
The SCCC encoder has an outer convolutional recursive systematic code (RSC) with rate  = 1/2, an interleaver Π,  

and an inner RSC  with rate  = 1/2. We assume that both component codes share the same constraint length  to 
simplify the notations without incurring generality. The superscripts  and  represent, respectively, the inner and outer 
codes.  denotes the    information bit at the input of the SCCC encoder, for  ∈  1  . .  , which is encoded first by 
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the outer encoder.   for  ∈  0 . . 2 represents the outer coded bits that are interleaved into bits   and sent into 

the inner encoder. Let    for ! ∈  0 . . 4 represent the inner coded bits modulated and sent through a Bi-AWGN 

channel. Let #   represent the channel output proportional to the log-likelihood ratios (LLRs) of   , and let % represent 
the estimated information bit. Assuming that the outer (respectively inner) encoder is systematic, the output  
(respectively   ) is alternately equal to the systematic bit   (respectively ) and the redundant bit  & (respectively &). 
Fig. 2. illustrates the functional block diagram of the SCCC decoder for two received sub-blocks. It is composed of three 
SISO decoders referred to as outer SISO, inner1 SISO, and inner2 SISO, as well as an interleaver and a deinterleaver. 
Serial concatenation of the two inner SISOs to the shared outer SISO is performed. Notably, even though the two inner 
SISOs share the same outer SISO but decode separately, the decoding process is similar to two serial turbo-decoders 
operating in tandem on two received sub-blocks without exchanging any pieces of information. The injection of channel 
information relative to the LLRs (1'() and 2'()) is highlighted in blue. This information is received at the receiver's 
input and is transmitted to the outer decoder through the blue wires. Using the same code rate as in the previous paper, 
we remind readers that the size of the frames to be decoded is inevitably different for the two component decoders (hence 
the decoding time is different). For example, at a code rate of ½  for the outer encoder, the inner decoder needs to decode 
twice the trellis length decoded by the outer decoder. The max-log-MAP algorithm [12] will be implemented as a SISO 
component to decrease computational complexity. Two decoding schemes are proposed based on the same decoding 
functional block of Fig. 2, except with two unique scheduling strategies to maximize decoder efficiency. In the following 
sections, these two decoding schemes are referred to as Asymmetrical Shuffled Simultaneous Decoding (ASSD), and 
Asymmetrical Shuffled Continuous Decoding (ASCD). 
 
ASYMMETRICAL SHUFFLED SIMULTANEOUS DECODING SCHEME 
 
Architectural Description 
 
Since two inners are implemented, two sub-blocks can be decoded simultaneously, namely  sub-block1 and sub-block2. 
Therefore, let us define two modes corresponding to their respective decoding: the Ping and the Pong modes. 
The Ping (resp. Pong) mode: We associate this mode with the decoding of sub-block1 (resp. sub-block2). The inner1 
(resp. inner2) decoder and the shared outer decoder are both decoding simultaneously. During this mode, the two SISOs 
are computing and exchanging the extrinsic information for the current trellis section through the two extrinsic memories 

Fig. 2. Functional block diagram of the SCCC decoder for two received sub-blocks, where information (LLR) 
related to the channel observation is colored in blue. 

Fig. 1. SCCC encoder and transmission over a binary input AWGN (Bi-AWGN) channel model. 
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(reading and writing). The hardware architecture of the proposed ASSD scheme is depicted in Fig.3. Three SISOs are 

employed to compute the state metrics (α, β ) in parallel. The two upper SISOs correspond to the inner1 and inner2 
decoders, whereas the third SISO corresponds to the shared outer decoder. Each inner SISO has its own memory for state 
metrics and extrinsic memory. The shared outer SISO is equipped with two state metrics and two extrinsic memories to 
accommodate the two Ping and Pong modes. Numerous multiplexers and demultiplexers (MUX, DEMUX) are employed 
to drive and supply the SISOs with the appropriate information. The control unit coordinates these modes. 
In the baseline implementation, a single SISO component is deployed, and resources are utilized alternatively to perform 
both the inner and outer decoding. However, in the ASSD approach, three SISOs operate concurrently, each SISO 
processing one trellis section per clock cycle. The control unit schedules computations and drives memory accesses based 
on the decoded codeword. Resources must be sized to support the greedier case in a baseline scheme since they are shared. 
In an ASSD scheme, however, each resource is dedicated to a single SISO with the bare minimum hardware requirements, 
and thus the use of these resources is optimized for decoding time. However, the state metrics and extrinsic information 
memories are duplicated in the ASSD, as shown in Fig.3. Due to the fact that we duplicate all extrinsic information 
memories, this solution is suboptimal in terms of extrinsic memory use. However, it avoids memory access conflicts [13]. 
 
Core Operation And Decoding Time  
 
After outlining the proposed hardware scheme for the ASSD decoding technique and highlighting its difference from the 
baseline scheme, in this section, we explain its basic operation.  
The ASSD BCJR computation with a replica butterfly scheme is depicted in Fig.4. with three component decoders (inner1 
scheduling (a), outer scheduling (b), and inner2 scheduling (c)). The trellis sections corresponding to each associated sub-
block are depicted on the y-axis. The x-axis represents the time domain. The forward and backward recursion generation, 
as well as the extrinsic information, are marked by dotted-dashed lines. We can see that each inner decoder is processing 
a distinct 2 trellis section associated with the two modes' respective sub-blocks. On the other hand, the outer decoder 
processes two distinct  trellis sections associated with the two modes concurrently in the time domain, one section each 
clock cycle (circle-line marks symbolize the discretization). The grey area in each replica butterfly scheme symbolizes 
the memory allocation of each trellis section's state metrics across time. The asymmetry between the inner and outer 
decoders is expressed by the trellis length ratio. 
During the ASSD iterative decoding, two SISOs play the role of two inner decoders decoding two independent sub-
blocks, and the third SISO is shared between the two inner SISOs. It plays the role of a shared outer. The sharing is done 
in the time domain. As the two inner decoders need twice as much decoding time as the outer decoder (hence the term 
Asymmetrical in the word ASSD), we take advantage of the free time of the outer decoder to share it between the two 
inner decoders. This time-sharing is done by clock cycle, as shown in Fig.4. The outer decodes both sub-blocks, 
alternately, one trellis section per clock cycle per sub-block. The term "simultaneous" in the acronym ASSD comes from 
the fact that decoding the two sub-blocks is done simultaneously in a time-division manner, with two inner trellis sections 
in parallel. 
A complete iteration of the proposed ASSD requires an amount of time - per two decoding sub-blocks of the two modes, 
as shown in Fig. 4. This means that the ASSD scheme requires a duration of -/2 per iteration to decode a received sub-
block, when the baseline implementation with a SISO butterfly scheduling runs a complete iteration within an amount of 
time equal to 3-/2 as we explained in [11]. Note that a replica butterfly scheme [14] is implemented to increase the 
extrinsic information exchange speed and the decoding throughput. 
 
Memory Resources  
 
In this research, we took into account the estimation of the state metrics and the extrinsic information memories. To 
simplify the resource estimation both in terms of memory and of computing units, we assume hereafter that the LLRs and 

the forward-backward metrics (/, 0) are quantized with the same bit-width. The amount of memory required to save 

each state metric is given by the number of states per trellis section, i.e. 2123, times the number of sections plus one, that 

is 2 + 1 for the two inner codes and  + 1 for the shared outer code. Thus, the memory words required to store / and 

0 state metrics for the two inner component decoders are specified by (1). In the case of the outer decoder, the number 
of memory words required to store the state metrics is given by (2). Due to the fact that we must process the decoding of 
two modes concurrently, we must double the size of the outer decoder metrics memory. 

2 × 621(2 + 1)7 (1) 
2 × 621( + 1)7 (2) 

For the baseline scheme, the largest trellis is the inner one and requires 21(2 + 1) memory words to be saved. The total 
state metrics memory needed by the ASSD scheme is given by (3). 
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2 × 621 (2 + 1) + 21( + 1)7 =  2183(3 + 2) (3) 
The amount of memory required to save extrinsic information in the inner decoder is related to the number of systematic 
bits 2. In the outer decoder, it is given by the number of  the  coded bits, which is 2  because the extrinsic information 
of both the systematic and redundant bits must be saved. Notably, the extrinsic information memory needs for the ASSD 
scheme are duplicated to allow memory to be accessed concurrently by the inner and outer decoders, as illustrated in 
Fig.4. The figure depicts the presence of four memories for extrinsic information. As a result, the circuit consumes a total 
of 8 memory words for the extrinsic information. The total amount of memory words used in the ASSD scheme is 
indicated by the variable :;<<=, which equals  

:;<<= = 2183(3 + 2) + 8 (4) 
Only one extrinsic memory of 2 words is required in the baseline case. The total number of memory words used in the 
Baseline Decoding (BD) scheme is indicated by the variable :>= and is equal to  

:>= = 21(2 + 1) + 2 (5) 
Computing Resources  
 
This section reports the estimation of the ASSD technique's overall computing resource requirements in order to compare  
it to the baseline technique and calculate its efficiency. We consider the amount of resources required to compute the state 

metrics (/, 0) and extrinsic information for the two inner component decoders (&'@A , &'BA ) and the shared outer 

component decoder &' in a single trellis section. Calculation of state metrics in a trellis section with 2123 states is 

accomplished by the use of 2123 Add-Compare-Select (ACS) units for / or 0 state metrics, i.e., 2 × 21 ACS, for the 
two inner decoders and 21 for the outer since we assume the same constraint length  for the three-component codes.  
Extrinsic information is obtained by first adding the two state metrics to the branch metrics, which needs two ADD 
(Addition operator) per branch, thus 2 × 21 = 2183 ADD per trellis section. Then, for the inner decoder (extrinsic 
information on the systematic bits), the maximum sum over all branches related to a systematic bit equal to 0 must be 
chosen, as well as the maximum sum over all branches related to a systematic bit equal to 1. Finding the maximum over 
21/2 values requires 2123 C 1 Compare-and-Select (CS) units, resulting in a total of 21 C 2 CS. Finally, the subtraction 

Fig.4. ASSD BCJR computation with replica butterfly 
scheme: (a) inner1 decoder scheduling, (b) outer decoder 

scheduling, (c) inner2 decoder scheduling. 
 

Fig.3. ASSD proposed scheme 
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between the two preceding maximums and by subtracting the a priori information and the channel information from the 
result (cost of 3 ADD), the extrinsic information for the systematic bit on the considered trellis section of the inner decoder 
will be obtained. The two inner component decoders are identical, so the hardware requirements are equal. Each inner 
trellis calculation requires 21ACS, 2183 + 3 ADD and 21 C 2 CS. If one uses the equivalences: an ACS is 2 additions, 
a subtraction (equivalent to an addition) and a selection S (3ADD+S), a CS is an addtion and a selection S (ADD+S), we 
obtain the following results 

&'@A = &'BA  =  (3 × 2
183 + 1)DEE + (2183 C 2)F (6) 

As for the shared outer decoder, the calculation is the same, except that two extrinsic information values have to be 
calculated for each trellis section: one for the systematic bit and one for the redundant bit. Hence the number of operations 
dedicated to the inner extrinsic information is doubled, yielding a total of  

&'  =  (9 × 21 + 2)DEE + (3 × 21 C 4)F (7) 
Finally, the overall complexity of the proposed ASSD scheme is obtained by adding the complexity of the two inner and 
outer decoders, resulting in 

&;<<= =  &' + &'@A  + &'BA = (21 × 2
1 + 4)DEE + (7 × 21 C 8)F (8) 

Whereas for the baseline scheme, the complexity is the one of the outer decoder 
&>= = &' =  (9 × 21 + 2)DEE + (3 × 21 C 4)F (9) 

 
ASYMMETRICAL SHUFFLED CONTINUOUS DECODING SCHEME 

 
Architectural Description 
 
The proposed ASCD scheme's hardware architecture is depicted in Fig.5. Three SISOs are used in parallel to compute 

the state metrics (/, 0). The two upper SISOs represent the inner1 and inner2 decoders, respectively, while the third 
SISO represents the shared outer decoder. Each inner SISO has its own extrinsic and state metrics memory. Compared to 
the ASSD scheme, which uses two state metrics memories, the shared outer SISO scheme uses a single state metrics 
memory shared (drawn in blue in the figure) between the two Ping-Pong modes. Additionally, the shared outer component 
decoder includes two extrinsic memories to support the Ping and Pong modes (one extrinsic memory allocated to the 
decoding time of each mode). Numerous multiplexers and demultiplexers (MUX, DEMUX) are used to drive and supply 
information to the SISOs. As illustrated in Fig.5, the control unit coordinates these modes. As is the case with ASSD, the 
ASCD scheme is based on shuffled decoding, appropriate scheduling, and sub-block parallelism. The extrinsic 
information memories are duplicated, this technique is sub-optimal in terms of extrinsic memory consumption, but it 
eliminates memory access conflicts. Unlike the ASSD scheme, the ASCD scheme is more efficient in memory savings 
by using a single state metrics memory to support the two modes, Indeed, state metrics are very greedy in memory 
resources, especially when the number of code states and/or the sub-block trellis length are significant (in the range of 
2123 × ( + 1) ). 
 
Core Operation And Decoding Time  
 
This section discusses the technique's essential operation. The outer decodes both sub-blocks alternately, once every half 
iteration. The term "Continuous" in the word ASCD refers to the fact that the two sub-blocks are decoded sequentially in 
a continuous manner, including all the trellis sections of the first sub-block of the Ping mode being decoded in the first 
half iteration of the iterative decoding and then all the trellis sections of the second sub-block of the  Pong mode being 
decoded in the second half iteration of the iterative decoding. This method is performed continuously (Ping-> Pong-
>Ping...) until the total number of iterations of iterative decoding is reached. The ASCD BCJR computation with a replica 
butterfly scheme is depicted in Fig.6, with three component decoders (inner1 scheduling (a), outer scheduling (b), and 
inner2 scheduling (c)). The trellis sections corresponding to each associated sub-block are depicted on the y-axis. The x-
axis represents the time domain. The forward and backward recursion generation, as well as the extrinsic information, are 
marked by dotted-dashed lines. We can see that each inner decoder is processing a distinct 2 trellis section associated 
with the two modes' respective sub-blocks. On the other hand, the outer decoder processes two distinct  trellis sections 
associated with the two modes sequentially in a continuous manner in the time domain. The grey area in each replica 
butterfly scheme symbolizes the memory allocation of each trellis section's state metrics across time. The asymmetry 
between the inner and outer decoders is expressed by the trellis size ratio. A complete iteration of the proposed ASCD 
requires an amount of time - per two decoding sub-blocks, as shown in Fig.6: an amount of time of - for each inner 
component decoder, an amount of time of -/2 for each sub-block of each decoding mode for the shared outer decoder. 
Because of the fact that the three-component decoders are working concurrently, the total amount of time required for 
decoding the two sub-blocks is -. Thus, the decoding time required per sub-block, per iteration is -/2. 
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Memory Resources 
 
Equation (10) specifies the memory words required to store the / and 0 state metrics for the two inner component 
decoders. Likewise, the number of memory words required by the outer decoder to store the state metrics is specified by 
(11). We do not need to double the size of the outer decoder metrics memory as we did for the ASSD scheme since we 
release the allocation of this memory to one of the modes every half iteration.    

2 × 621 (2 + 1)7 (10) 
21( + 1) (11) 

The total amount of memory words used in the ASCD scheme is indicated by the variable :;<J= , which equals  
:;<J= = 21(5 + 3) + 8 (12)

It is interesting to mention that it can be seen by comparing Fig.(4)(b) and Fig.6 (b) that the state metrics memory area 
used by the shared outer decoder in the case of the ASCD scheme is half the one used for the ASSD scheme. 
 
Computing Resources  
 
This section reports the estimation of the ASCD technique's overall computing resource requirements in order to compare 
it to the baseline technique and calculate its efficiency. The ASCD scheme has the same needs of computing resources 
than the ASSD scheme, 

 &;<J= =  &;<<= = &' + &'@A + &'BA = (21 × 2
1 + 4)DEE + (7 × 21 C 8)F (13) 

 
PERFORMANCE AND COMPARISON 
 
In order to estimate the Bit Error Rate performance (BER) of the two proposed schemes, the received frames of  =
4320 are divided into K = 120 sub-blocks and decoded in parallel. Each sub-block requires the initialization of recursion 
metrics, as only frame ends and not sub-block ends include recursion metric information either by using a circular trellis 
[15] or through tail-biting [16]. The first technique entails estimating the initiation of sub-blocks' limits based on the pre-
calculations of neighboring blocks called acquisition (ACQ)-based initialization [17]. The second technique is referred to 
as initialization by message forwarding or next iteration initialization (NII) [18]. Two methods (ACQ-NII) can be 
combined in the third technique as proposed in [19]. In this paper, only the NII technique is considered.  
We consider that each iteration of the proposed ASSD (resp.ASCD) scheme lasts for a predetermined time -. In 
comparison, one iteration of the BD scheme takes 3-/2, and because the two proposed schemes process two modes 
concurrently (thus, two sub-blocks are decoded), the proposed scheme's decoding time is halved. Therefore, the total 
decoding time for 9 iterations is stated using (14) for the two proposed schemes and (15) for the BD scheme.  

-;<<= L ;<J=  =
-
2
× 9 = 4.5- (14) 

->= =
3-
2
× 9 =  13.5- (15) 

As expressed by the time ratio (16), the two schemes achieve a threefold increase in throughput over the BD scheme. 
->=

-;<<= L ;<J= 
= 3 (16) 

In Fig.7 (resp. Fig.8), the ASSD (resp. ASCD ) and the BD schemes are represented in terms of BER as a function of 
signal-to-noise ratio, and compared to the BD and the ASSD (resp. ASCD) schemes without sub-block technique.  
In this simulation, the iterative decoding is conducted utilizing a total of 9 iterations.  According to the two figures, the 
increase in throughput has no impact on the BER performance of the ASSD scheme and has only a slight degradation of 
0.09 dB in the case of the ASCD scheme. Therefore, the BER performance of the two schemes is comparable.  
Considered numerical values (with  = 3 and  = 4320) for ASD, ASSD, and ASCD schemes in comparison to the BD 
scheme are summarized in Table 1. The table considers several criteria, including a fixed BER at 102M for the comparison, 
the considered total number of iterations, SISO computing time, the number of memory words stored during the decoding 
process, addition operations (ADD), the number of used selectors, and finally, the throughput ratio. The percentages in 
green (resp. red) represent the relative improvement (resp. degradation) of hardware resources compared to the BD 
scheme. The percentages are measured using the efficiency metric described in [11] to answer the question  whether the 
increase in throughput results in an identical increase in hardware resources  
Clearly, this faster convergence and higher throughput come at the expense of additional hardware resources. However, 
the table demonstrates unequivocally that the three proposed decoding techniques need reduced hardware resources for 
an equivalent throughput, moreover: Both ASSD and ASCD decoding schemes offer three times higher throughput than 
the BD scheme, and NO% more throughput than the ASD scheme. The ASD scheme is the best plan for conserving 
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memory resources, 29% compared to 12% for the ASCD scheme. Even though it offers less throughput than ASCD 
scheme. Therefore, the ASD scheme may be the best choice for an architecture with limited memory resources. Both the 
ASSD and the ASCD schemes are the best plans for conserving computational resources. Furthermore, the ASCD scheme 
offers memory resource savings, making it the superior alternative. 
 
CONCLUSION   
 
In this article, we propose two different schemes that offer better computing efficiencies and triple the overall throughput 
of the decoder compared to the baseline scheme. The two schemes use different types of parallelism: Shuffled decoding 
and Sub-block parallelism. The ASSD scheme allows for 50% more in throughput than the ASD scheme presented in 
[11] and better hardware computing efficiency. In addition, we proposed the ASCD scheme, which is based on relevant 
scheduling that offers the ASSD scheme's advantages and better memory efficiency, making it the superior alternative. 
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Fig.7. BER performance comparison of the ASSD 
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