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Abstract. We address the problem of learning imitation policies that
generalize across environments sharing the same underlying causal struc-
ture between the system dynamics and the task. We introduce a novel loss
for learning invariant state representations that draws inspiration from ad-
versarial robustness. Our approach is algorithm-agnostic and does not re-
quire knowledge of domain labels. Yet, evaluation in visual and non-visual
environments reveals improved zero-shot generalization in the presence of
spurious features compared to previous works.

1 Introduction

Imitation Learning (IL) has emerged as a promising approach for sequential
decision-making, leveraging expert demonstrations to reduce the need for explo-
ration and reward engineering in Reinforcement Learning (RL). However, de-
ploying learned policies in real world presents challenges in generalizing across
diverse environments, making most works prioritize RL over IL.

Among such methods, bisimulation-based approaches have shown promise
in achieving better generalization [1, 2, 3]. They, however, depend on reward
information, unavailable in IL settings. Other techniques aim to remove task-
irrelevant features without relying on reward signals. Works like [4, 5] employ
domain labels to unlearn domain-dependent features using techniques like gra-
dient reversal layers or increasing a domain discriminator entropy. Meanwhile,
approaches like [6, 7] eschew domain labels relying instead on task-specific as-
sumptions like time irrelevance or goal proximity as inductive bias to regularize
the learned representations. Similarly, data augmentation methods like [8, 9]
improve generalization but are only suited for visual inputs. In all these ap-
proaches, dependence on reward information, domain labels, or specialization to
specific tasks or data modalities limits their broader applicability.

A standout among generalization approaches is Mixreg [10], being task and
modality-agnostic and requiring neither reward nor domain labels. Mixreg en-
courages linear behavior between training examples, leading to smoother poli-
cies and improved generalization. We aim to match such a versatility level while
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improving the zero-shot generalization performance. To this end, we generate
adversarial data that breaks invariance properties and use it to formulate an
adversarial invariance loss to regularize the learned representations.

In essence, our work bears similarities with PAADA [11] in viewing the en-
vironment irrelevant changes as adversaries. However, a drawback of PAADA
lies in its objective for adversarial data generation, which revolves around min-
imizing the estimated advantage function. This is not suitable for IL settings
where rewards are not given but estimated. In contrast, our work introduces
a novel adversarial invariance loss aimed at learning invariant state represen-
tations devoid of reward or domain labels, leveraging adversarial data general-
ization. Furthermore, our method does not require explicit domain information
yet achieves superior zero-shot generalization performance in both visual and
non-visual environments with simulated spurious features.

2 Proposed Method

Fig. 1: Causal graph under op-
timal policy: Green denotes in-
variance across environments and
red environment-specific mecha-
nism. Actions are based on in-
variant states.

We focus on generalization in online IL
where environments are sampled from a dis-
tribution p(E) sharing a common causal
structure, yet presenting domain-dependent
differences. The agent is provided with a set
of demonstrations collected in a set of en-
vironments Edemo and denoted DEdemo , then
interacts with a distinct set of environments
Einter. We aim to learn a policy π that emu-
lates the demonstrator behavior in unseen
environments Etest, maximizing the zero-
shot cumulative reward E

τ∼DEtest
π

∑T
t=0 γ

trt

where τ is a trajectory, DEtest
π are trajecto-

ries generated under π, and rt is the true
reward only available at test time.

2.1 Disentangling the Causal State
and the Noise Representations

We seek to learn a causal state encoder ϕ : X → S that maps observation
space X to a latent representation space S, such that a policy with support
on S maintains consistent performance across environments following p(E). We
denote as s = ϕ(x) the causal state of observation x and consider a noise encoder
µ : X → H to capture environment-dependent observation noise, with η = µ(x)
denoting the noise representation of x. We also introduce a decoder dec : S×H →
X to reconstruct observations from their state and noise latent representations.
ϕ, µ, and dec, are parameterized by the vectors θϕ, θµ, and θdec, respectively.
An optimal policy is based on the causal state as shown in Fig. 1.

To learn the desired state and noise representations, the encoders must satisfy
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Fig. 2: Adversarial data generation pipeline

three conditions: (1) the state and noise representations need to be independent
to capture distinct information; (2) the observation decoder must be able to
restore the original, ensuring full information capture; (3) the learned causal
state should be invariant across environments in p(E).

To satisfy Condition 1, Mutual Information Neural Estimation (MINE) [12]
is first employed to estimate the Mutual Information (MI) between the learned
causal state and noise representations. MINE provides a way to estimate the MI
of two random variables from their empirical distributions by iterative gradient
ascent on some loss function. The estimated MI between the state variable s
and the noise η is then minimized, giving the following independence loss:

Lind(θϕ, θµ) = E
τ∼DEdemo∪DEinter

π
I(ϕ(x; θϕ), µ(x; θµ); θI) (1)

For Condition 2, a reconstruction loss is minimized:

Lrec(θϕ, θµ, θdec) = E
τ∼DEdemo∪DEinter

π
||dec(ϕ(x; θϕ), µ(x; θµ))− x|| (2)

Finally, to enforce Condition 3, we propose a novel adversarial loss that does
not require knowledge of domain indexes as explained in the following.

2.2 State Representation Invariance via Adversarial Observations

Similarly to [11], policy generalization can be viewed as robustness against ad-
versarial environments which act as adversaries by adding noise to observations.
The noise is the source of the adversarial vulnerability, as it distracts the policy.
A natural approach to address this problem is adversarial training, wherein gen-
erated adversarial observations are used as training data. Alternatively, one can
explicitly impose the invariance condition on the state representation by mini-
mizing the discrepancy between the representations of the original observations
and their adversarial counterparts. This lays the ground for our invariance loss.

A natural choice for adversarial observations is observations whose noise com-
ponent has been altered in a way that alters their learned causal states. Recall



that each observation is split into a supposedly invariant state and a noise using ϕ
and η, and can be reconstructed using dec. We generate adversarial examples by
iteratively decomposing and reconstructing the observations while adversarially
perturbing the noise component to alter the causal state representation.

Fig. 2 explains in detail the steps involved in the generation of an adversarial
version of observation x, which we denote as x̃. At each iteration k of the pro-
cess, and (a) upon the decomposition the observation using the state and noise
encoders, (b) the noise term is perturbed in the direction of the gradient of the
distance between the causal state of the adversarial observation and the original
causal state of the previous iteration, (c) then projected back onto a constraint
set to ensure the alteration is minimal. This operation is defined by a function
Proj(η,ϵ) that projects the obtained noise onto the l2 ball of radius ϵ centered on
the original noise η. At step (d) the next adversarial sample is then generated
by the decoder via x̃(k+1) = dec(ϕ(x̃(k)), η̃(k+1)), and the process goes on. Note
that in the first iteration, the noise term is perturbed through random sampling
from the same constraint set, and that as we train the decoder, random noise is
added to its input to ensure the reconstructed adversarial observations do not
leave the original manifold. (e) After N iterations, the adversarial observation
is defined as x̃ = x̃(N) and the invariance loss is given as follows:

Linv(θϕ, θµ) = E
τ∼DEdemo∪DEinter

π
||ϕ(x; θϕ)− ϕ(x̃; θϕ)||22 (3)

where x̃ can be thought as the observation yielding the worst case divergence of
the learning state from the original one, under minimal noise perturbation.

2.3 Learning the Imitation Policy with Invariant Representation

Our representation loss is the combination of the three previously defined losses:
Lrep = Lind +Lrec +Linv. We pick GAIL [13] as an imitation baseline wherein
a discriminator D is trained to discriminate expert trajectories from agent’s
ones and its output is used as reward to train the policy via RL. The policy is
conditioned on the causal state: π : S → A where A denotes the action space,
as well as the discriminator: D : S ×A → [0, 1]. GAIL objective then becomes:

min
π

max
D

E
τ∼DEinter

π
[logD(ϕ(x; θϕ), a)] +Eτ∼DEdemo [log(1−D(ϕ(x; θϕ), a))] (4)

While GAIL alternates between iteratively updating π and D, we further update
the state and noise encoders along with the decoder. At interaction time, a target
state encoder ϕ̂ whose weights are exponentially averaged over time is utilized
to reduce the variance of the learned state and stabilize the training.

3 Results

We conduct experiments in various generalization scenarios with deliberate in-
jection of spurious correlations and visual distractions. In the first set, inspired
by [14, 15], we augment observations in MuJoCo tasks (”Inverted Pendulum”,
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Fig. 3: Evaluation of generalization performance on different tasks.

”Inverted Double Pendulum”, ”Hopper”) with nspur independent noise compo-
nents simulating spurious correlations, obtained by multiplying the last nspur

dimensions in the original observation by a full-rank random matrix defining a
unique domain. Gaussian noise is also added to the last nspur original dimen-
sions to incentivize the agent to focus on spurious features. We also exclude
domain labels from observations. In the second setting presented by an Atari
game (”BeamRider”), domains are simulated and uniquely defined by random
frame rotations. In all settings, demonstrations are obtained using pretrained
RL policies on original observations.

We compare our approach with (1) Mixreg [10], similar in applicability and
orthogonality to our method; (2) PAADA [11], treating changing environments
as adversaries; (3) DARL [4], using Gradient Reversal Layer to unlearn domain-
specific features; and (4) adv env disc, maximizing the entropy of a domain
discriminator. (3),(4) have access to domain labels, (2) uses learned rewards
instead of true ones, and all methods are based on GAIL [13].
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Fig. 4: Robustness to an increasing
number of spurious dimensions.

The approaches are evaluated on
average return in unseen test envi-
ronments, scaled between 0 and 1,
with 1 representing the expert’s re-
turn. Varying numbers of demonstra-
tions are given to the agent across
5 domains, and in each episode, the
agent interacts with a random do-
main. At test time, results represent
the average return of the learned pol-
icy across 10 runs, 2 in each of 5 un-
seen domains, averaged over 5 random

seeds. For MuJoCo environments, nspur = 3. As shown in Fig. 3, our method
outperforms others in train and test environments, even compared to methods
using domain labels. Concerning robustness to increasing number of spurious
dimensions, tests are performed on two MuJoCo environments, the Double In-
verted Pendulum and Hopper, with 10 demonstrations. We increase the difficulty
by adding more spurious dimensions to the observations. Results in Fig. 4 show
our method’s superior robustness against these added complexities.



4 Conclusion

We tackled the generalization challenge in environments with spurious changes
affecting policy decisions. Our approach performs invariant representation learn-
ing, inspired by adversarial robustness. The introduced invariance loss, incor-
porated into online IL, exhibited superior generalization capabilities without
requiring true rewards or domain labels. This versatility makes our method
valuable across diverse decision-making scenarios. Nevertheless, our approach
relies on the presumption that causal features remain invariant across environ-
ments. Future work will explore scenarios where this condition does not hold.
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