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ABSTRACT

We present a dense and metric 3D mapping pipeline designed for embedded operation on-board
UAVs, by loosely coupling deep neural networks trained to infer dense depth single images with
a SLAM system that restores metric scale from sparse depth. In contrast to computationally
restrictive approaches that leverage multiple views, we propose a highly efficient, single-view
approach without sacrificing 3D mapping performance. This enables real-time construction of
a global 3D voxel map by iterative fusion of the rescaled dense depth maps obtained via ray-
casting from the estimated camera poses. Quantitative and qualitative experimentations of our
framework in challenging environmental conditions show comparable or superior performance
with respect to state-of-the-art approaches via a better effectiveness-efficiency trade-off.
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1. Introduction

The use of robots in recent years is becoming of strategic importance in safety, security, and
rescue operations allowing first responders to more easily reach inaccessible areas, handle objects
with precision, and collect information [25]. In the particular case of Urban Search And Rescue
(USAR), autonomous navigation and 3D mapping help to reduce the cognitive load of pilots,
allowing them to focus on analyzing images, and facilitating victim localization, rather than
avoiding obstacles and planning optimal routes.Towards this goal, localization and environment
mapping are critical functionalities that allow obstacle avoidance on the basis of a dense and
metric 3D map that should be constructed in real-time. A monocular camera coupled with an
Inertial Measurement Unit (IMU) is an ideal sensor set for embedding such tasks onto UAVs
thanks to their reduced Size, Weight, Power, and Cost (SWaP-C) properties [2]. However, the
lack of direct depth sensing brings about the additional problem of estimating depth.

In this context, while Simultaneous Localization And Mapping (SLAM) may provide accu-
rate maps in real-time, most state-of-the-art methods build and maintain a sparse map to reduce
computational complexity [7]. While their robustness has been demonstrated on different bench-
marks [6,36], dealing with challenging drone flying conditions (aggressive motion, high illumina-
tion changes) is relatively understudied. In recent years, certain works have addressed monocular
SLAM densification by leveraging Deep Neural Network (DNN) capabilities to directly infer a
dense depth map from a monocular image. These works achieved promising results in obtaining
precise dense 3D reconstruction. Yet, they typically do not address indoor navigation tasks that
require the map to be metric and to be constructed in real-time on an embedded system.

Email: panagiotis.papadakis@imt-atlantique.fr, ORCID: https://orcid.org/0000-0002-2193-8087



This work builds upon and extends our previous developments [21],[22] where we presented
the first results of a loosely-coupled framework for monocular SLAM densification tailored for use
on embedded systems, as well as a lightweight scale recovery leveraging Monocular Depth Esti-
mation (MDE). In particular, we go beyond our previous work by employing a significantly more
accurate monocular depth prediction method, namely, ZeroDepth [19]. This leads in recovering
both the metric scale as well as more precise depth/3D estimates, hence, allowing to generate a
3D voxel map that is exploitable for drone navigation. Furthermore, comparing the results of our
entire pipeline using two alternative monocular depth estimation methods (PackNet-SfM [18] and
ZeroDepth) highlights that the overall approach can be customized and that the scale recovery
is general purpose. In summary, the contributions of this paper are as follows :

(i) A comprehensive description of the entire pipeline which includes the chosen multi-view
volumetric mapping and fusion approach.

(ii) A broader quantitative as well as qualitative evaluation of the complete framework.

The remainder of this paper begins by reviewing related works in monocular SLAM densi-
fication and MDE in Section 2, highlighting their limitations for the scenario of indoor drone
mapping. Subsequently, in Section 3, we present our proposed framework for densifying monoc-
ular SLAM, focusing on the metric scale recovery procedure and the voxel mapping solution.
We evaluate our single-view method in Section 4 against state-of-the-art approaches of different
mapping paradigms, namely, against sparse and multi-view mapping approaches, showing com-
parable mapping performance yet without the need to rely on ground-truth scale while running
at commendable frame rate. Finally, we conclude and discuss future perspectives in Section 5.

2. Background

Current advances in monocular SLAM enable robust localization and accurate sparse mapping,
leading to a resurgence of efforts in dense 3D reconstruction. Section 2.1 therefore reviews re-
cent developments in densifying monocular SLAM using DNNs while section 2.2 reports on the
advances in the closely related field of MDE.

2.1. Monocular SLAM Densification

In recent years, the advent of deep learning has revived interest in monocular SLAM densification,
enabling the prediction of dense depth maps. These depth maps, when combined using estimated
camera poses, facilitate high-quality 3D reconstruction. A selection of notable developments in
this field is presented in Table 1.

Method Year Metric Sensors
Localization
evaluation

Mapping
evaluation

Computing
resources

Code
available

NERF-SLAM [34] 2023 No Mono No Depth map RTX 2080 Ti Yes

Rosinol et al. [35] 2023 No Mono No Point cloud RTX 2080 Ti No

CodeMapping [27] 2021 Yes Mono-IMU No Depth map RTX 3080 No

DROID-SLAM [38] 2021 No Mono Yes N/A 2x RTX 3090 Yes

TANDEM [24] 2021 No Mono Yes Depth map RTX 2080 Yes

CodeVIO [45] 2021 Yes Mono-IMU Yes Depth map GTX 1080 Ti No

DeepRelativeFusion [26] 2021 No Mono Yes Depth map GTX 1070 No

DeepFactors [11] 2020 No Mono Yes Depth map GTX 1080 Yes

CodeSLAM [5] 2018 No Mono No N/A N/A Yes

CNN-SLAM [37] 2017 No Mono Yes Depth map Quadro K5200 Yes

Table 1.: Comparative overview of the main monocular SLAM densification methods.

Early efforts fused conventional monocular SLAM with deep learning, in particular with Con-
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volutional Neural Networks (CNNs) [26,37], to enhance dense depth estimation. In later works,
the use of Conditional Variational Auto-Encoders (CVAE) to learn a compact and dense depth
representation was introduced by CodeSLAM [5], a technique further developed by DeepFactors
[11] for dense multi-view refinement within a Bundle Adjustment (BA) framework. Building on
a monocular-inertial SLAM baseline, CodeMapping [27] and CodeVIO [45] additionally incorpo-
rated sparse depth into their CVAE models to improve depth accuracy and perform metric 3D
mesh reconstruction. Despite achieving the best accuracy, the implementation details of CodeVIO
and CodeMapping have not been released. Meanwhile, DROID-SLAM [38] adopted a Recurrent
Neural Network for dense optical flow prediction that was integrated into a dense BA layer. Its
mapping process was subsequently enhanced by probabilistic volumetric fusion [35] or with Neural
Radiance Fields (NeRF) [34].

Many of these studies rely on pure monocular SLAM, requiring the use of ground-truth
depth measurements for scale adjustment. Furthermore, they rely on different depth estimation
metrics to evaluate their accuracy since no universal standard for mapping evaluation has been
established. Finally, these methods often require significant computational resources and face
challenges in generalization due to their over-reliance on supervised learning techniques.

2.2. Monocular Depth Estimation

Conventional approaches rely on supervised learning, which requires a large amount of data with
accurate depth ground truth, which may be difficult to collect. Eigen et al. [12] pioneered DNN-
based depth estimation, enhancing resolution with a multi-scale CNN approach, while DORN [14]
addressed depth estimation as an ordinal regression problem to increase prediction stability and
accuracy. MiDaS [32] improved generalizability across diverse datasets through a scale and shift-
invariant loss function. Recently, methods such as DPT [31], AdaBins [13], or ZoeDepth [4] have
integrated Vision Transformers to maintain high resolution throughout the DNN and predict more
detailed depth maps. Building on Transformers, ZeroDepth [19] introduced a zero-shot approach
for scale-aware depth estimation that uses variational inference to account for uncertainty and
integrates camera intrinsics for improved scale accuracy, positioning it as a leading method.

Self-supervised depth estimation methods, which were popularized by Garg et al. [15], use
epipolar geometry constraints for image reconstruction, eliminating the need for ground truth
depth data. Monodepth [17] improves upon this approach by utilizing a fully differentiable loss and
ensuring depth consistency across stereo images. SfMLearner [43] and Monodepth2 [16] further
extend this paradigm to monocular video sequences, resulting in improved occlusion handling
and the introduction of multi-scale supervision. PackNet-SfM [18] introduces a 3D convolutional
architecture and velocity supervision for scale-aware depth estimation. Recent advancements like
DIFFNet [42] and MonoFormer [3] integrate semantic segmentation and hybrid CNN-Transformer
architectures, enhancing generalization and performance, whereas MonoViT [41] achieves superior
accuracy with significantly reduced complexity.

Research in MDE has been largely centered around autonomous vehicle applications, demon-
strating effectiveness on benchmarks built in outdoor urban environments. Although self-
supervised methods tend to exhibit enhanced generalization capabilities, the recent integration of
Transformers into supervised methods has significantly increased their learning capacity, thereby
improving generalization. This aspect remains challenging for MDE, in addition to achieving
accurate absolute scale estimation.

To overcome these constraints, we opt for a loosely coupled approach designed for real-time
drone operation in indoor environments. We alleviate the computational load of the densifica-
tion process by decoupling it from SLAM using the GPU, and focusing primarily on voxel map
reconstruction. Our solution builds on a sparse monocular-inertial SLAM baseline that provides
metric scale information, which is then combined with state-of-the-art MDE.
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Figure 1.: Proposed loosely coupled pipeline which recovers the scale of the predicted dense depth
from the sparse depth estimated by SLAM. The final voxel map is built and maintained by multi-
view fusion from estimated camera poses and the scaled dense depth maps.

3. Proposed framework

Figure 1 illustrates our proposed pipeline for densifying monocular SLAM that employs a sparse
SLAM baseline alongside a baseline, DNN-based, dense depth map prediction for each keyframe.
Depth map prediction DNNs solutions such as Packnet-SfM [18] or ZeroDepth [19] which we
tested claim to be scale-aware and exhibit reasonable generalization capabilities. However, due
to the significant domain shift in our target environments which include large indoor spaces and
variable lighting conditions, we take a slightly different, more realistic standpoint. In particular,
we assume that depth values are at least scale-consistent. i.e. they are predicted up to a global,
relative scale factor. This leads us to propose a scale recovery step, which we detail in Section
3.1, leveraging the SLAM sparse depth to adjust the dense depth maps and ensure metric scale.
Finally, we detail the voxel mapping module in Section 3.2, which utilizes the resulting dense,
metric-scaled depth map and the corresponding camera pose estimated by SLAM to incrementally
construct a voxel map by raycasting, thereby achieving multi-view volumetric refinement.

3.1. Loosely coupled dense and metric depth estimation

Our scale recovery procedure relies on the assumption of scale consistency. For any pixel p of
a frame Ik, the scale factor αk relates the ground truth depth Zk

p to the predicted depth D̂k
p

according to the equation:

∃αk ∈ R, ∀p ∈ Ik → Zk
p = αkD̂k

p (1)

This is in line with related works that typically estimate dense depth maps up to a global
scale factor, which is then recovered in post-processing using ground truth depth measurements
collected from a LiDAR. The scale is typically calculated by dividing the median values of the
estimated depths by the ground truth depths, as defined by the following equation:

αk =
med({Zk

p , p ∈ Ik})

med({D̂k
p , p ∈ Ik})

(2)

The use of medians to estimate scale is less prone to outliers than the use of means, but it
is still less reliable for smaller datasets where the variance can be high and outliers can have a
greater impact.

In contrast, our approach uses sparse depth points triangulated by SLAM, which are less
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numerous than ground truth LiDAR points but are available in real time. Typically, LiDAR
points account for about 5% of the image density [23]. In Figure 2, we report the number of
points triangulated per keyframe as measured during our experiments. Their number tends to be
high during initialization and may drop at the end due to texture-less images for instance during
landing. Here, the sparse depth retrieved from SLAM points of keyframes represented around
0.1% of the image density on EuRoC/V101 and only 0.02% on HILTI/Basement 1.

Therefore, as empirically suggested in [22], we propose to recover the global scale factor αk

by minimizing the square relative error between SLAM-estimated points of depth Dk
p and those

predicted by the DNN and denoted as D̂k
p , as described by the following equation:

α̂k = min
α

1

N

∑

p∈Ωk

∥

∥

∥
αD̂k

p − Dk
p

∥

∥

∥

2

Dk
p

(3)

Here, Ωk ⊂ Ik represents the subset of pixels that could be triangulated by SLAM to determine
depth. This strategy is efficient and takes into account the sparse nature of SLAM points and
their inherent variability, by a higher penalization of large errors at closer ranges. As we will
show in the experiments section, this allows our system to recover the scale at an accuracy that
is equivalent to using the ground-truth scale.

Our motivation in using sparse SLAM points as a source for recovering scale can be based on
the evolution of the reprojection error per keyframe, as shown in Figure 2. This raises the question
of which SLAM algorithm would be better suited for the task of sparse but highly precise point
estimation, rather than denser and more erroneous 3D point estimation, as a means for firstly
accurately recovering metric scale and secondly densely estimating depth by loosely coupling
with monocular depth prediction. In addition, increasing the number of initial 3D points would

Figure 2.: Evolution of the landmarks density (top) and reprojection error (bottom) per keyframe
on EuRoC V101 (left) and HILTI Basement 1 (right) sequences.
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Figure 3.: Diagram of multi-view approaches for depth estimation (left) and 3D mapping (right),
where the latter requires depth maps with corresponding camera poses.

increase the computational overhead of the overall pipeline and impact real-time performance.
Following extensive experimentation (see [20] and [21]) of the state-of-the-art monocular ap-

proaches Kimera [33], ORB-SLAM 3 [8] and Basalt [39] in different environments in terms of
trajectory error and scene coverage, we have opted for using ORBSLAM 3 as it attained an over-
all superior performance. In particular, ORB-SLAM 3 employs Bundle Adjustment to triangulate
points by minimizing the reprojection error, making this metric a good indicator of the confidence
level in landmark estimation. As can be seen, an average reprojection error below 1 pixel was
measured, with only occasional spikes reaching up to 5 pixels which reinforces the notion that
the sparse points estimated by SLAM are indeed a reliable source for scale recovery.

3.2. Voxel map construction

In the proposed pipeline, we rely on a single keyframe for dense depth estimation. However,
unlike MDE, multi-view approaches enforce both temporal and geometric consistency, which are
essential in Visual SLAM. These two paradigms are depicted in Figure 3.

One common approach applied to monocular SLAM densification is to leverage multiple views
to improve depth estimation. This can be achieved through various methods such as integrating
keyframe depth codes into a factor graph [11,27,45], implementing multi-view stereo networks
[24], or employing recurrent neural networks [38]. These methods improve accuracy but tend to
be computationally expensive due to the joint optimization of a larger set of variables, which may
become intractable as the map grows in size.

An alternative approach, commonly applied for 3D reconstruction, consists in leveraging mul-
tiple views in the mapping task, instead of the depth estimation task, by fusing previously es-
timated dense depth maps. For instance, the integration of NeRF into SLAM [10,34,44] enables
high-quality 3D mapping but is computationally complex due to the necessity of real-time NeRF
model learning from SLAM data. More conventional methods often utilize volumetric fusion of
depth maps derived from RGB-D sensors or stereo matching [30,33], constructing the fusion
scheme based on the depth model of the sensor.

Along this line, we integrate Voxblox [30] in the mapping task similarly to the Kimera [33]
pipeline. Yet, instead of relying on stereo vision, we build on the procedure presented earlier to
obtain dense and metric depth maps from single views. Thus, given an estimated camera pose,
Voxblox uses raycasting to update a Truncated Signed Distance Function (TSDF) iteratively
from each depth map. Performing this operation for multiple viewpoints allows for a volumetric
fusion. The selection of voxel map representation for navigation is beneficial due to its scalability,
geometric reasoning, and inherent suitability for path planning with TSDF and Euclidean Signed
Distance Function (ESDF) that can generate occupancy grids and metric distances to obstacles
[9,29]. Additionally, voxel hashing may enable further optimization in map usage and storage [29].
The overall process is already relatively efficient and can be even further optimized by parallelizing
it on a GPU [28].

Voxblox provides some alternative construction strategies, specifically merged and fast inte-
grators. Unlike the canonical raycasting procedure, the merged integrator uses bundled raycasting,
which groups together all pixels that end in the same voxel and casts a single ray, merging their
values. This process is illustrated in Figure 4. Otherwise, the fast integrator proposes casting
rays from the point cloud towards the sensor origin, optimized by early termination of rays that

6



Figure 4.: Diagram of simple (left) and bundled (right) raycasting technique.

intersect a sequence of voxels that have already been updated. This process can be accelerated
by limiting the number of ray-casts per voxel, resulting in up to tenfold speed improvements
compared to other techniques, particularly for small voxels.

4. Experiments

This section presents the results of densifying monocular SLAM. First, we evaluate our scale
recovery process and compare it to related works. Then, we present qualitative outcomes from
our complete 3D mapping pipeline and discuss their implications for indoor drone navigation. For
brevity, we only provide a subset of qualitative experiments within the text and refer the readers
to the complete video recordings available on-line (link provided in page 10). The experiments
were conducted on a laptop equipped with an Intel i7-8750H CPU, 16 GB of memory, and a
NVIDIA RTX 2080 Mobile GPU.

4.1. Metric dense depth estimation

The evaluation of our scale recovery process requires a dataset with monocular-inertial data for
SLAM and structural ground truth for depth evaluation. The EuRoC dataset [6] provides accurate
structural ground truth. Specifically, we used the V101 sequence, which contains a 3D LiDAR
scan of the environment. Using the ground truth 6D poses, we back-projected the point cloud to
generate the corresponding depth maps.

The results are summarized in Table 2, where we present the results from related works as
reported in their corresponding publications. We used standard depth estimation metrics [12],
including Absolute Difference (abs diff ), Absolute Relative Difference (abs rel), Squared Relative
Difference (sqr rel), and Root Mean Squared Error (rmse) with and without log scale, to assess
the accuracy of predicted depths compared to ground truth values. The Accuracy Rate δi is
calculated as the ratio of depth predictions falling within 1.25i of the true depth, where i ranges
from 1 to 3, offering a gradual measure of prediction accuracy.

First, we report ORB-SLAM 3 [8] sparse depth evaluation. Since fewer points are considered,
the measurements are more affected by high error values. However, it still achieves great perfor-
mance, with a δ1 accuracy of almost 90% of valid points, which supports our hypothesis that the
sparse depth estimated by ORB-SLAM 3 is a reliable source for scale recovery.

Subsequently, we present the outcomes of some related works that rely on a multi-view ap-
proach. DeepFactors [11] and TANDEM [24] are not metric and require depth ground truth for
scale alignment. Nevertheless, TANDEM gets an excellent δ1 accuracy of 94.25% of valid points.
On the other hand, CodeVIO [45] and CodeMapping [27] are metric techniques that achieve the
best results, with a Root Mean Square Error (rmse) below 0.5 meters.

Finally, we discuss the results of our approach without multi-view processing. The original
predictions of PackNet-SfM [18] show a significant scale error, with a rmse exceeding 7 meters.
After applying scale adjustment, both the GT-scale and SR-scale methods yield very similar
results, confirming the effectiveness of our approach for metric scale recovery.

Additional experimentation of this procedure with ZeroDepth [19], which inherently provides
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Category Method abs diff abs rel sq rel rmse rmse log δ1 δ2 δ3

Sparse ORB-SLAM 3 [8] 0.284 0.156 0.266 0.572 0.222 89.8% 94.6% 96.5%

Multi-view

DeepFactors [11] (GT-scale) 0.842 1.050
TANDEM [24] (GT-scale) 94.25%
CodeVIO [45] 0.468 87.0% 95.2% 97.9%
CodeMapping [27] 0.192 0.381

Single-view

PackNet-SfM 6.309 2.720 22.945 7.267 1.258 1.3% 4.4% 12.0%
PackNet-SfM (GT-scale) 0.807 0.331 0.530 1.145 0.396 48.2% 76.0% 89.6%
PackNet-SfM (SR-scale) 0.792 0.318 0.443 1.063 0.418 43.2% 72.7% 87.9%
ZeroDepth 0.791 0.285 0.326 0.953 0.392 38.8% 70.6% 88.8%
ZeroDepth (GT-scale) 0.386 0.167 0.152 0.545 0.217 81.3% 92.5% 96.6%
ZeroDepth (SR-scale) 0.412 0.167 0.145 0.569 0.222 77.0% 92.5% 96.6%

Table 2.: Evaluation of depth estimation performance in the EuRoC V101 scene, with measure-
ments in meters except for the δi metrics. The best value for each metric is denoted in bold for
dense evaluations, excluding the initial row.

input image PackNet-SfM ZeroDepth

original GT-scale SR-scale

Figure 5.: Monocular depth estimation results on the V101 scene from EuRoC. The first row shows
the predicted dense depth maps. Subsequent rows show 3D visualizations comparing PackNet-
SfM (middle) and ZeroDepth (bottom) predictions to the ground truth using the δ1 metric. Depth
maps, with and without scaling, are projected onto a 3D point cloud. Ground truth points are
shown in white, correct predictions in green, and incorrect ones in red.

more accurate predictions, attains a rmse below 1 meter before scale correction. Our scale recov-
ery method demonstrates effective scale recovery compared to the ground truth, despite relying
on significantly fewer points. Although our solution has a larger error than CodeMapping and
CodeVIO, it has lower computational requirements by operating on single frames.

On the other hand, ZeroDepth uses a variational approach to sample depth maps from a
latent space. The authors generate 10 samples to derive the final depth map from the mean and
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PackNet-SfM ZD01 ZD02 ZD03 ZD04 ZD05 ZD06 ZD07 ZD08 ZD09 ZD10
Inference (ms) 9.2 13.9 19.7 22.5 24.8 29.1 144.6 456.0 804.9 1152.9 1501.1

Table 3.: Average inference time in milliseconds for PackNet-SfM and ZeroDepth (ZD) on the
V101 sequence of EuRoC, measured using 1 to 10 samples.

its uncertainty from the standard deviation. Predictions with low confidence can then be excluded
using the uncertainty. As shown in Table 3, increasing the number of samples significantly affects
the inference time. However, our experiments on the EuRoC dataset revealed only negligible
differences in uncertainty and accuracy when we varied the number of samples. This suggests
that it is possible to use fewer samples to improve speed without compromising performance.

The effectiveness of our scale recovery procedure is showcased in Figure 5 through 3D visual-
izations, highlighting the improvement over initial deep learning model predictions in relation to
the δ1 metric. This example also demonstrates the superiority of ZeroDepth over PackNet-SfM
as its predictions are more accurate and much smoother. As showcased in Figure 5, PackNet-SfM
can struggle to accurately infer depth for certain structures, resulting in noisy predictions along
edges. However, it generally performs well in distinguishing surfaces. Originally trained on out-
door datasets, its predictions for upper areas in indoor scenes, as shown in Figure 6, tend to be
inaccurate due to its correlation with the sky during training. In contrast, ZeroDepth produces
smoother and less noisy predictions overall, although in grayscale or poorly illuminated images,
the performance of the algorithm becomes inconsistent, resulting in flat depth maps and inac-
curate capture of planar structures such as floors and walls. Finally, when employed to a scene
explored in a similar environment, PackNet-SfM yielded unsatisfactory results while ZeroDepth
demonstrated improved performance, accurately estimating planar structures and providing more
consistent predictions. It is important to note that this particular scene is better illuminated and
that the most distant points were often flattened.

(a) (b) (c)

Figure 6.: (a)-(b) Visualization of depth prediction from Basement 1 scene of HILTI dataset and
(c) from a sequence collected for an office corridor in IMT Atlantique University. The first and
second rows depict the obtained dense point clouds from different viewpoints. Column (a) was
predicted by PackNet-SfM, (b) and (c) by ZeroDepth.
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4.2. Voxel mapping

Despite the existence of different voxel map evaluation methods [1,29], to our knowledge, these
have not been employed in the context of SLAM or MDE performance assessment. Therefore, we
present qualitative results from our complete dense and metric 3D mapping pipeline on the V101

sequence of EuRoC [6]. The map is constructed by raycasting the depth maps scaled using our
approach for each keyframe from its corresponding camera pose estimated by SLAM. Using the
3D visualization tool RViz, we present in Figure 7 a sample of the resulting voxel map. All the
results can be visualized through multiple videos on a dedicated web-page1.

We employ two distinct integration techniques, namely merged (bundled raycasting) and fast,
as introduced in Section 3.2. To facilitate qualitative comparison, the ground truth 3D LiDAR
scan of the room is shown in white. Ideally, all ground truth points should fall within the surface
voxels. However, due to an average Absolute Trajectory Error (ATE) of 49 mm on this sequence,
a slight misalignment can be observed. For comparison, we ran a Voxblox example specifically
tuned for this sequence, where the map was constructed from the camera’s ground truth poses
and depth maps estimated using stereo vision. The stereo-based approach processed 1,151 frames,
while we used only 529 keyframes.

In our initial experiments, using a voxel size of 100 mm, we were able to generate a dense
3D map of the room at the metric scale without having to rely on the ground truth, as shown
in Figure 7. Compared to the stereo method, our approach captured a wider area and tends to
perform better on regions with uniform textures. However, the reconstructed map is coarse. It
can be noticed that some details were not correctly mapped, especially around edges and thin
objects. Nevertheless, since our method relies on fewer images, some places tend to be less covered.
Mapping errors can also be seen in the upper part of the map (ceiling), resulting from initial
predictions that were not subsequently captured by the camera and thus remain uncorrected.
These phenomena can be seen in the videos available on the provided website.

Limitations

The example presented in Figure 8 shows the negative impact that erroneous DNN depth predic-
tion may have on our approach. The noisy depth output around the edges of the ladder, where
there are important depth discontinuities, results in inaccurate mapping, particularly when using
the merged integrator, which only partially reconstructs the object. The limited coverage of this
area in only a few keyframes restricted further refinement through multi-view methods. On the
other hand, we believe these limitations to be less intrinsic to the SLAM system and more related
to the drone trajectory and 3D scene layout that may accentuate or attenuate such effects.

In contrast, the fast integrator yields finer results compared to the merged one. It preserves
the original estimates while limiting voxel updates during raycasting whereas when using bundled
raycasting, groups of points are actually grouped together, producing a coarser result. The runtime
analysis provided in Table 4 confirms the efficiency of the fast approach, which is on average 3.65
times faster than the merged one.

Integrator merged fast

Voxel size (m) 0.10 0.20 0.10 0.20

Stereo 48.6 9.5 35.0 8.0

Our 86.4 25.5 69.4 22.7

Table 4.: Average integration time in milliseconds with Voxblox using merged and fast integrators,
different voxel sizes, and methods on the V101 sequence of the EuRoC dataset.

Finally, it should be noted that the assumption that dense depth maps from DNNs are scale-
consistent varies according to the degree to which the encountered environments during testing

1https://yhabib29.github.io/monocular slam densification
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(a) merged (b) fast

Figure 7.: Voxel mapping EuRoC V101 sequence using voxel size of 100 mm. The first row
presents our results, while the second row shows those of the stereo-based reference.

correspond to scene layouts that are similar to those encountered in training.
Characteristically, if a DNN was trained outdoors but tested indoors, then the scale consis-

tency assumption may only be partially valid because the network will tend to estimate large
depths at the top of an indoor scene since this area mostly corresponded to the sky or high
structures encountered in training time, whereas in indoor environments the upper part corre-
sponds to a ceiling. In such cases, a global scale factor may not be sufficiently representative and
scale recovery may negatively impact the results. Nevertheless, in this particular situation, the
global scale factor will be estimated using triangulated points on textured surfaces, thus excluding
sky-like regions or the ceiling. To reinforce the scale consistency assumption, our current work
employs ZeroDepth which has been trained in both indoor and outdoor environments, as opposed
to PackNet-SfM which has been trained only outdoors.

5. Conclusion

This work provides a comprehensive presentation of a pipeline for monocular SLAM densifica-
tion, tailored for real-time drone operation. In support of the proposed scale recovery procedure,
we provide additional experiments in which we leverage geometrically-obtained sparse depth and
demonstrate its effectiveness by employing state-of-the-art, deep-learning-based monocular depth
estimation. In addition, we conducted a qualitative analysis of the complete mapping framework
by reconstruction of dense and metric voxel maps. Despite the use of iterative multi-view volu-
metric refinement, the provided experiments further shed light on the influence of the quality of
the underlying SLAM and MDE techniques.
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Figure 8.: Visualization of ZeroDepth prediction showing noise around edges and discontinuities.

In view of these results, certain directions for further development can be identified. Firstly,
pursuing a more comprehensive quantitative evaluation would require datasets with precise pose
and 3D structural ground truth. Such data could be obtained through simulations like TartanAir
[40] or extracted from datasets containing laser scans using state-of-the-art LiDAR-based SLAM
techniques. Furthermore, a more systematic evaluation of the voxel mapping could be improved
by using standardized metrics. To improve accuracy, transitioning to a tightly coupled approach
would allow leveraging DNN capabilities to infer dense and metric depth from monocular images
and SLAM sparse depth simultaneously. To improve efficiency, we could opt for hardware accel-
eration using field programmable gate arrays (FPGA), neural processing units (NPU), and deep
learning accelerators (DLA) as well as porting SLAM and/or ray casting used in voxel mapping
to a GPU.
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