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ABSTRACT

We present a dense and metric 3D mapping pipeline designed for embedded operation on-board
UAVs, by loosely coupling deep neural networks trained to infer dense depth single images with
a SLAM system that restores metric scale from sparse depth. In contrast to computationally
restrictive approaches that leverage multiple views, we propose a highly efficient, single-view
approach without sacrificing 3D mapping performance. This enables real-time construction of
a global 3D voxel map by iterative fusion of the rescaled dense depth maps obtained via ray-
casting from the estimated camera poses. Quantitative and qualitative experimentations of our
framework in challenging environmental conditions show comparable or superior performance
with respect to state-of-the-art approaches via a better effectiveness-efficiency trade-off.

KEYWORDS
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1. Introduction

The use of robots in recent years is becoming of strategic importance in safety, security, and
rescue operations allowing first responders to more easily reach inaccessible areas, handle ob-
jects with precision, and collect information [30J31]. In the particular case of Urban Search And
Rescue (USAR), autonomous navigation and 3D mapping help to reduce the cognitive load of pi-
lots, allowing them to focus on analyzing images, and facilitating victim localization, rather than
avoiding obstacles and planning optimal routes [49]. Towards this goal, localization and environ-
ment mapping are critical functionalities that allow obstacle avoidance on the basis of a dense
and metric 3D map that should be constructed in real time. A monocular camera coupled with
an Inertial Measurement Unit (IMU) is an ideal sensor set for embedding such tasks onto UAVs
thanks to their reduced Size, Weight, Power, and Cost (SWaP-C) properties [3/I5]. However, the
lack of direct depth sensing brings about the additional problem of estimating depth.

In this context, while Simultaneous Localization And Mapping (SLAM) may provide accu-
rate maps in real-time, most state-of-the-art methods build and maintain a sparse map to reduce
computational complexity [9]. While their robustness has been demonstrated on different bench-
marks [8/48], dealing with challenging drone flying conditions (aggressive motion, high illumina-
tion changes) is relatively understudied. In recent years, certain works have addressed monocular
SLAM densification by leveraging Deep Neural Network (DNN) capabilities to directly infer a
dense depth map from a monocular image. These works achieved promising results in obtaining
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precise dense 3D reconstruction. Yet, they typically do not address indoor navigation tasks that
require the map to be metric and to be constructed in real-time on an embedded system.

This work builds upon and extends our previous developments [25],[26] where we presented
a loosely-coupled framework for monocular SLAM densification building a voxel map for indoor
drone navigation and tailored for use on embedded systems, as well as a lightweight scale recov-
ery leveraging Monocular Depth Estimation (MDE). In comparison to our previous works, this
paper introduces novel elements that reinforce our methodology, and presents new experimental
results obtained using a more recent MDE solution that significantly enhances both metric depth
estimation and voxel map reconstruction. On this basis, the contributions of this paper are as
follows :

(i) A comprehensive description of the entire pipeline which includes the chosen multi-view
volumetric fusion approach.

(ii) A broader and more thorough quantitative as well as qualitative evaluation of the complete
voxel mapping framework.

The remainder of this paper begins by reviewing related works in monocular SLAM densi-
fication and MDE in Section [2| highlighting their limitations for the scenario of indoor drone
mapping. Subsequently, in Section |3} we present our proposed framework for densifying monoc-
ular SLAM, focusing on the metric scale recovery procedure and the voxel mapping solution.
We evaluate our single-view method in Section [4] against state-of-the-art approaches of different
mapping paradigms, namely, against sparse and multi-view mapping approaches, showing com-
parable mapping performance yet without the need to rely on ground-truth scale while running
at commendable frame rate. Finally, we conclude and discuss future perspectives in Section

2. Background

Visual SLAM research has long been focused on achieving accurate and robust localization in
real-time, leading to a preference for sparse map representations to simplify graph optimization.
Recent reviews have highlighted the effective use of SLAM on embedded platforms [1I28], where
the whole system is typically parallelized on the CPU only. State-of-the-art methods have also
shown excellent robustness on standard benchmarks [S[33|48], in both stereo-inertial [T0[45/52]
and monocular-inertial configurations [10J32/42]. Furthermore, the robustness of visual SLAM
and VIO has been investigated under a variety of conditions [7/T6/41].

Current advances in monocular SLAM enable robust localization and accurate sparse map-
ping, leading to a resurgence of efforts in dense 3D reconstruction. Section therefore reviews
recent developments in densifying monocular SLAM using DNNs while section [2.2] reports on the
advances in the closely related field of MDE.

2.1. Monocular SLAM Densification

In recent years, the advent of deep learning has revived interest in monocular SLAM densification,
enabling the prediction of dense depth maps. These depth maps, when combined using estimated
camera poses, facilitate high-quality 3D reconstruction. A selection of notable developments in
this field is presented in Table

Early efforts fused conventional monocular SLAM with deep learning, in particular with Con-
volutional Neural Networks (CNNs) [34I50], to enhance dense depth estimation. In later works,
the use of Conditional Variational Auto-Encoders (CVAE) to learn a compact and dense depth
representation was introduced by CodeSLAM [6], a technique further developed by DeepFactors
[14] for dense multi-view refinement within a Bundle Adjustment (BA) framework. Building on
a monocular-inertial SLAM baseline, CodeMapping [35] and CodeVIO [58] additionally incorpo-
rated sparse depth into their CVAE models to improve depth accuracy and perform metric 3D
mesh reconstruction. Despite achieving the best accuracy, the implementation details of CodeVIO
and CodeMapping have not been released. Meanwhile, DROID-SLAM [51] adopted a Recurrent



Method Year Metric Sensors Localiza?:ion l\'lappipg Computing dee
evaluation evaluation resources available
NERF-SLAM [46] 2023  No Mono No Depth map RTX 2080 Ti Yes
Rosinol et al. [47] 2023  No Mono No Point cloud RTX 2080 Ti No
CodeMapping [35] 2021  Yes Mono-IMU No Depth map RTX 3080 No
DROID-SLAM [51] 2021 No Mono Yes N/A 2x RTX 3090 Yes
TANDEM [29] 2021 No Mono Yes Depth map RTX 2080 Yes
CodeVIO [58] 2021 Yes Mono-IMU Yes Depth map GTX 1080 Ti No
DeepRelativeFusion [34] | 2021 No Mono Yes Depth map GTX 1070 No
DeepFactors [14] 2020  No Mono Yes Depth map GTX 1080 Yes
CodeSLAM [6] 2018  No Mono No N/A N/A Yes
CNN-SLAM [50] 2017 No Mono Yes Depth map Quadro K5200 Yes

Table 1.: Comparative overview of the main monocular SLAM densification methods.

Neural Network (RNN) for dense optical flow prediction that was integrated into a dense BA
layer. Its mapping process was subsequently enhanced by probabilistic volumetric fusion [47] or
with Neural Radiance Fields (NeRF) [46].

Many of these studies rely on pure monocular SLAM, requiring the use of ground-truth
depth measurements for scale adjustment. Furthermore, they rely on different depth estimation
metrics to evaluate their accuracy since no universal standard for mapping evaluation has been
established. Finally, these methods often require significant computational resources and face
challenges in generalization due to their over-reliance on supervised learning techniques.

2.2. Monocular Depth Estimation

Conventional approaches rely on supervised learning, which requires a large amount of data with
accurate depth ground truth, which may be difficult to collect. Eigen et al. [I7] pioneered DNN-
based depth estimation, enhancing resolution with a multi-scale CNN approach, while DORN
[19] addressed depth estimation as an ordinal regression problem to increase prediction stability
and accuracy. MiDaS [44] improved generalizability across diverse datasets through a scale and
shift-invariant loss function. Recently, methods such as DPT [43], AdaBins [I§], or ZoeDepth
[5] have integrated Vision Transformers (ViT) to maintain high resolution throughout the DNN
and predict more detailed depth maps. Building on Transformers, ZeroDepth [24] introduced a
zero-shot approach for scale-aware depth estimation that uses variational inference to account
for uncertainty and integrates camera intrinsics for improved scale accuracy, positioning it as a
leading method.

Self-supervised depth estimation methods, which were popularized by Garg et al. [20], use
epipolar geometry constraints for image reconstruction, eliminating the need for ground truth
depth data. Monodepth [22] improves upon this approach by utilizing a fully differentiable loss and
ensuring depth consistency across stereo images. SfMLearner [56] and Monodepth2 [21] further
extend this paradigm to monocular video sequences, resulting in improved occlusion handling
and the introduction of multi-scale supervision. PackNet-StM [23] introduces a 3D convolutional
architecture and velocity supervision for scale-aware depth estimation. Recent advancements like
DIFFNet [55] and MonoFormer [4] integrate semantic segmentation and hybrid CNN-Transformer
architectures, enhancing generalization and performance, whereas MonoViT [54] achieves superior
accuracy with significantly reduced complexity.

Research in MDE has been largely centered around autonomous vehicle applications, demon-
strating effectiveness on benchmarks built in outdoor urban environments. Although self-
supervised methods tend to exhibit enhanced generalization capabilities, the recent integration of
Transformers into supervised methods has significantly increased their learning capacity, thereby
improving generalization. This aspect remains challenging for MDE, in addition to achieving
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Figure 1.: Proposed loosely coupled pipeline which recovers the scale of the predicted dense depth
from the sparse depth estimated by SLAM. The final voxel map is built and maintained by multi-
view fusion from estimated camera poses and the scaled dense depth maps.

accurate absolute scale estimation.

To overcome these constraints, we opt for a loosely coupled approach designed for real-time
drone operation in indoor environments. We alleviate the computational load of the densifica-
tion process by decoupling it from SLAM using the GPU, and focusing primarily on voxel map
reconstruction. Our solution builds on a sparse monocular-inertial SLAM baseline that provides
metric scale information, which is then combined with state-of-the-art MDE models selected for
their optimal accuracy and generalization performance.

3. Proposed framework

Figure [1] illustrates our proposed pipeline for densifying monocular SLAM that employs a sparse
SLAM baseline alongside a baseline, DNN-based, dense depth map prediction for each keyframe.
Depth map prediction DNNs solutions such as Packnet-StM [23] or ZeroDepth [24] which we
tested claim to be scale-aware and exhibit reasonable generalization capabilities. However, due
to the significant domain shift in our target environments which include large indoor spaces and
variable lighting conditions, we take a slightly different, more realistic standpoint. In particular,
we assume that depth values are at least scale-consistent. i.e. they are predicted up to a global,
relative scale factor. This leads us to propose a scale recovery step, which we detail in Section
leveraging the SLAM sparse depth to adjust the dense depth maps and ensure metric scale.
Finally, we detail the voxel mapping module in Section [3.2] which utilizes the resulting dense,
metric-scaled depth map and the corresponding camera pose estimated by SLAM to incrementally
construct a voxel map by raycasting, thereby achieving multi-view volumetric refinement.

3.1. Loosely coupled dense and metric depth estimation

Our scale recovery procedure relies on the assumption of scale consistency. For any pixel p of
a frame I, the scale factor ay relates the ground truth depth Z]’j to the predicted depth D’;
according to the equation:

Joy €RVp € I, — ZF = oy Db (1)

This is in line with related works that typically estimate dense depth maps up to a global
scale factor, which is then recovered in post-processing using ground truth depth measurements
collected from a LiDAR. The scale is typically calculated by dividing the median values of the
estimated depths by the ground truth depths, as defined by the following equation:
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The use of medians to estimate scale is less prone to outliers than the use of means, but it
is still less reliable for smaller datasets where the variance can be high and outliers can have a
greater impact.

In contrast, our approach uses sparse depth points triangulated by SLAM, which are less
numerous than ground truth LiDAR points but are available in real-time. Typically, LiDAR
points account for about 5% of the image density [27]. In Figure [2| we report the number of
points triangulated per keyframe as measured during our experiments. Their number tends to be
high during initialization and may drop at the end due to texture-less images for instance during
landing. Here, the sparse depth retrieved from SLAM points of keyframes represented around
0.1% of the image density on EuRoC/ V101 and only 0.02% on HILTI/Basement_1.

Therefore, as empirically suggested in [26], we propose to recover the global scale factor oy
by minimizing the square relative error between SLAM-estimated points of depth D;f and those

predicted by the DNN and denoted as 151’; , as described by the following equation:

. 2
ay = m&n% Z w (3)

peﬂk p

Here, Qi C I represents the subset of pixels that could be triangulated by SLAM to determine
depth. This strategy is efficient and takes into account the sparse nature of SLAM points and
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Figure 2.: Evolution of the landmarks density (top) and reprojection error (bottom) per keyframe
on EuRoC V101 (left) and HILTI Basement_1 (right) sequences.



— —

Depth § 3D mapping
B <stimation [ : B (G0t fusion) [
—- -

Figure 3.: Diagram of multi-view approaches for depth estimation (left) and 3D mapping (right),
where the latter requires depth maps with corresponding camera poses.

their inherent variability, by a higher penalization of large errors at closer ranges. As we will
show in the experiments section, this allows our system to recover the scale at an accuracy that
is equivalent to using the ground-truth scale.

Our motivation in using sparse SLAM points as a source for recovering scale can be based
on the evolution of the reprojection error per keyframe, as shown in Figure [2l In particular,
ORB-SLAM 3 employs Bundle Adjustment to triangulate points by minimizing the reprojection
error, making this metric a good indicator of the confidence level in landmark estimation. As can
be seen, an average reprojection error below 1 pixel was measured, with only occasional spikes
reaching up to 5 pixels which reinforces the notion that the sparse points estimated by SLAM
are indeed a reliable source for scale recovery.

3.2. Voxel map construction

In the proposed pipeline, we rely on a single keyframe for dense depth estimation. However,
unlike MDE, multi-view approaches enforce both temporal and geometric consistency, which are
essential in Visual SLAM. These two paradigms are depicted in Figure

One common approach applied to monocular SLAM densification is to leverage multiple views
to improve depth estimation. This can be achieved through various methods such as integrating
keyframe depth codes into a factor graph [I4J35/58], implementing multi-view stereo networks
[29], or employing recurrent neural networks [51]. These methods improve accuracy but tend to
be computationally expensive due to the joint optimization of a larger set of variables, which may
become intractable as the map grows in size.

An alternative approach, commonly applied for 3D reconstruction, consists in leveraging mul-
tiple views in the mapping task, instead of the depth estimation task, by fusing previously es-
timated dense depth maps. For instance, the integration of NeRF into SLAM [12J4657] enables
high-quality 3D mapping but is computationally complex due to the necessity of real-time NeRF
model learning from SLAM data. More conventional methods often utilize volumetric fusion of
depth maps derived from RGB-D sensors or stereo matching [I3I38H40l45], constructing the fusion
scheme based on the depth model of the sensor.

Along this line, we integrate Voxblox [40] in the mapping task similarly to the Kimera [45]
pipeline. Yet, instead of relying on stereo vision, we build on the procedure presented earlier to
obtain dense and metric depth maps from single views. Thus, given an estimated camera pose,
Voxblox uses raycasting to update a Truncated Signed Distance Function (TSDF) iteratively
from each depth map. Performing this operation for multiple viewpoints allows for a volumetric
fusion. The selection of voxel map representation for navigation is beneficial due to its scalability,
geometric reasoning, and inherent suitability for path planning with TSDF and Euclidean Signed
Distance Function (ESDF) that can generate occupancy grids and metric distances to obstacles
[11U37]. Additionally, voxel hashing may enable further optimization in map usage and storage
[37]. The overall process is already relatively efficient and can be even further optimized by
parallelizing it on a GPU [36].

Voxblox provides some alternative construction strategies, specifically merged and fast inte-
grators. Unlike the canonical raycasting procedure, the merged integrator uses bundled raycasting,
which groups together all pixels that end in the same voxel and casts a single ray, merging their
values. This process is illustrated in Figure [} Otherwise, the fast integrator proposes casting
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Figure 4.: Diagram of simple (left) and bundled (right) raycasting technique.

rays from the point cloud towards the sensor origin, optimized by early termination of rays that
intersect a sequence of voxels that have already been updated. This process can be accelerated
by limiting the number of raycasts per voxel, resulting in up to tenfold speed improvements
compared to other techniques, particularly for small voxels.

4. Experiments

This section presents the results of densifying monocular SLAM. First, we evaluate our scale
recovery process and compare it to related works. Then, we present qualitative outcomes from
our complete 3D mapping pipeline and discuss their implications for indoor drone navigation. For
brevity, we only provide a subset of qualitative experiments within the text and refer the readers
to the complete video recordings available on-line (link provided in page 10). The experiments
were conducted on a laptop equipped with an Intel i7-8750H CPU, 16 GB of memory, and a
NVIDIA RTX 2080 Mobile GPU.

4.1. Metric dense depth estimation

The evaluation of our scale recovery process requires a dataset with monocular-inertial data for
SLAM and structural ground truth for depth evaluation. The EuRoC dataset [8] provides accurate
structural ground truth. Specifically, we used the V101 sequence, which contains a 3D LiDAR
scan of the environment. Using the ground truth 6D poses, we back-projected the point cloud to
generate the corresponding depth maps.

The results are summarized in Table [2, where we present the results from related works as
reported in their corresponding publications. We used standard depth estimation metrics [17],
including Absolute Difference (abs_diff ), Absolute Relative Difference (abs_rel), Squared Relative
Difference (sqr_rel), and Root Mean Squared Error (rmse) with and without log scale, to assess
the accuracy of predicted depths compared to ground truth values. The Accuracy Rate §; is
calculated as the ratio of depth predictions falling within 1.25% of the true depth, where i ranges
from 1 to 3, offering a gradual measure of prediction accuracy.

First, we report ORB-SLAM 3 [10] sparse depth evaluation. Since fewer points are consid-
ered, the measurements are more affected by high error values. However, it still achieves great
performance, with a d; accuracy of almost 90% of valid points, which supports our hypothesis
that the sparse depth estimated by ORB-SLAM 3 is a reliable source for scale recovery.

Subsequently, we present the outcomes of some related works that rely on a multi-view ap-
proach. DeepFactors [I4] and TANDEM [29] are not metric and require depth ground truth for
scale alignment. Nevertheless, TANDEM gets an excellent d; accuracy of 94.25% of valid points.
On the other hand, CodeVIO [58] and CodeMapping [35] are metric techniques that achieve the
best results, with a Root Mean Square Error (rmse) below 0.5 meters.

Finally, we discuss the results of our approach without multi-view processing. The original
predictions of PackNet-SfM [23] show a significant scale error, with a rmse exceeding 7 meters.
After applying scale adjustment, both the GT-scale and SR-scale methods yield very similar
results, confirming the effectiveness of our approach for metric scale recovery.



Category | Method abs diff absrel sqrel rmse rmselog 01 0o 03
Sparse ORB-SLAM 3 [10] 0.284 0.156  0.266  0.572 0.222 89.8% 94.6%  96.5%

DeepFactors [14] (GT-scale) | 0.842 1.050

Multioview TANDEM [29] (GT-scale) 94.25%
CodeVIO [58] 0.468 87.0% 95.2% 97.9%
CodeMapping [35] 0.192 0.381
PackNet-StM 6.309 2.720  22.945 7.267 1.258 1.3% 4.4% 12.0%
PackNet-SfM (GT-scale) 0.807 0.331 0.530  1.145 0.396 48.2% 76.0%  89.6%

Single-view PackNet-SfM (SR-scale) 0.792 0.318  0.443 1.063 0.418 43.2% 72.7%  87.9%
ZeroDepth 0.791 0.285  0.326  0.953 0.392 38.8% 70.6%  88.8%
ZeroDepth (GT-scale) 0.386 0.167  0.152  0.545 0.217 81.3% 92.5%  96.6%
ZeroDepth (SR-scale) 0.412  0.167 0.145 0.569  0.222 77.0%  925%  96.6%

Table 2.: Evaluation of depth estimation performance in the EuRoC V101 scene, with measure-
ments in meters except for the J; metrics. The best value for each metric is denoted in bold for
dense evaluations, excluding the initial row.

input image PackNet-SfM ZeroDepth

original GT-scale SR-scale

Figure 5.: Monocular depth estimation results on the V101 scene from EuRoC. The first row shows
the predicted dense depth maps. Subsequent rows show 3D visualizations comparing PackNet-
StM (middle) and ZeroDepth (bottom) predictions to the ground truth using the §; metric. Depth
maps, with and without scaling, are projected onto a 3D point cloud. Ground truth points are
shown in white, correct predictions in green, and incorrect ones in red.

Additional experimentation of this procedure with ZeroDepth [24], which inherently provides
more accurate predictions, attains a rmse below 1 meter before scale correction. Our scale recov-
ery method demonstrates effective scale recovery compared to the ground truth, despite relying
on significantly fewer points. Although our solution has a larger error than CodeMapping and
CodeVIO, it has lower computational requirements by operating on single frames.

On the other hand, ZeroDepth uses a variational approach to sample depth maps from a



PackNet-SfM | ZD01 ZD02 ZD03 ZD04 ZD05 ZD06 ZD07 ZD08 ZD09 ZD10
Inference (ms) 9.2 13.9 19.7 225 248 291 1446 456.0 804.9 11529 1501.1

Table 3.: Average inference time in milliseconds for PackNet-SfM and ZeroDepth (ZD) on the
V101 sequence of EuRoC, measured using 1 to 10 samples.

latent space. The authors generate 10 samples to derive the final depth map from the mean and
its uncertainty from the standard deviation. Predictions with low confidence can then be excluded
using the uncertainty. As shown in Table [3] increasing the number of samples significantly affects
the inference time. However, our experiments on the EuRoC dataset revealed only negligible
differences in uncertainty and accuracy when we varied the number of samples. This suggests
that it is possible to use fewer samples to improve speed without compromising performance.

The effectiveness of our scale recovery procedure is showcased in Figure |5| through 3D visual-
izations, highlighting the improvement over initial deep learning model predictions in relation to
the d; metric. This example also demonstrates the superiority of ZeroDepth over PackNet-SfM
as its predictions are more accurate and much smoother. As showcased in Figure [5] PackNet-SfM
can struggle to accurately infer depth for certain structures, resulting in noisy predictions along
edges. However, it generally performs well in distinguishing surfaces. Originally trained on out-
door datasets, its predictions for upper areas in indoor scenes, as shown in Figure [6] tend to be
inaccurate due to its correlation with the sky during training. In contrast, ZeroDepth produces
smoother and less noisy predictions overall, although in grayscale or poorly illuminated images,
the performance of the algorithm becomes inconsistent, resulting in flat depth maps and inac-
curate capture of planar structures such as floors and walls. Finally, when employed to a scene
explored in a similar environment, PackNet-SfM yielded unsatisfactory results while ZeroDepth
demonstrated improved performance, accurately estimating planar structures and providing more
consistent predictions. It is important to note that this particular scene is better illuminated and
that the most distant points were often flattened.

Figure 6.: (a)-(b) Visualization of depth prediction from Basement_1 scene of HILTI dataset and
(c) from a sequence collected for an office corridor in IMT Atlantique University. The first and
second rows depict the obtained dense point clouds from different viewpoints. Column (a) was
predicted by PackNet-SfM, (b) and (c) by ZeroDepth.



4.2. Voxel mapping

Despite the existence of different voxel map evaluation methods [2/37], to our knowledge, these
have not been employed in the context of SLAM or MDE performance assessment. Therefore, we
present qualitative results from our complete dense and metric 3D mapping pipeline on the V101
sequence of EuRoC [§]. The map is constructed by raycasting the depth maps scaled using our
approach for each keyframe from its corresponding camera pose estimated by SLAM. Using the
3D visualization tool RViz, we present in Figure [7] a sample of the resulting voxel map. All the
results can be visualized through multiple videos on a dedicated web-page websiteﬂ

We employ two distinct integration techniques, namely merged (bundled raycasting) and fast,
as introduced in Section [3.2] To facilitate qualitative comparison, the ground truth 3D LiDAR
scan of the room is shown in white. Ideally, all ground truth points should fall within the surface
voxels. However, due to an average Absolute Trajectory Error (ATE) of 49 mm on this sequence,
a slight misalignment can be observed. For comparison, we ran a Voxblox example specifically
tuned for this sequence, where the map was constructed from the camera’s ground truth poses
and depth maps estimated using stereo vision. The stereo-based approach processed 1,151 frames,
while we used only 529 keyframes.

In our initial experiments, using a voxel size of 100 mm, we were able to generate a dense
3D map of the room at the metric scale without having to rely on the ground truth, as shown
in Figure [7] Compared to the stereo method, our approach captured a wider area and tends to
perform better on regions with uniform textures. However, the reconstructed map is coarse. It
can be noticed that some details were not correctly mapped, especially around edges and thin

(a) merged (b) fast

Figure 7.: Voxel mapping EuRoC V101 sequence using voxel size of 100 mm. The first row
presents our results, while the second row shows those of the stereo-based reference.

Yhttps://yhabib29.github.io/monocular_slam_densification
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Figure 8.: Visualization of ZeroDepth prediction showing noise around edges and discontinuities.

objects. Nevertheless, since our method relies on fewer images, some places tend to be less covered.
Mapping errors can also be seen in the upper part of the map (ceiling), resulting from initial
predictions that were not subsequently captured by the camera and thus remain uncorrected.
These phenomena can be seen in the videos available on the provided website.

Limitations

The example presented in Figure [§| shows the negative impact that erroneous DNN depth predic-
tion may have on our approach. The noisy depth output around the edges of the ladder, where
there are important depth discontinuities, results in inaccurate mapping, particularly when using
the merged integrator, which only partially reconstructs the object. The limited coverage of this
area in only a few keyframes restricted further refinement through multi-view methods.

In contrast, the fast integrator yields finer results compared to the merged one. It preserves
the original estimates while limiting voxel updates during raycasting whereas when using bundled
raycasting, groups of points are actually grouped together, producing a coarser result. The runtime
analysis provided in Table 4| confirms the efficiency of the fast approach, which is on average 3.65
times faster than the merged one.

Integrator merged fast
Voxel size (m) | 0.10 0.20 | 0.10 0.20
Stereo 48.6 9.5 | 35.0 8.0
Our 86.4 25.5|69.4 227

Table 4.: Average integration time in milliseconds with Voxblox using merged and fast integrators,
different voxel sizes, and methods on the V101 sequence of the EuRoC dataset.

5. Conclusion

This work provides a comprehensive presentation of a pipeline for monocular SLAM densifica-
tion, tailored for real-time drone operation. In support of the proposed scale recovery procedure,
we provide additional experiments in which we leverage geometrically-obtained sparse depth and
demonstrate its effectiveness by employing state-of-the-art, deep-learning based monocular depth
estimation. In addition, we conducted a qualitative analysis of the complete mapping framework
by reconstruction of dense and metric voxel maps. Despite the use of iterative multi-view volu-
metric refinement, the provided experiments further shed light on the influence of the quality of
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the underlying SLAM and MDE techniques.

In view of these results, certain directions for further developments can be identified. Firstly,
to pursue a more comprehensive quantitative evaluation would require datasets with precise pose
as well as 3D structural ground truth. Such data could be obtained through simulations like
TartanAir [53] or extracted from datasets containing laser scans using state-of-the-art LiDAR-
based SLAM techniques. Furthermore, a more systematic evaluation of the voxel mapping could be
improved by using standardized metrics. Finally, to improve accuracy, transitioning to a tightly-
coupled approach would allow leveraging DNN capabilities to infer dense and metric depth from
monocular images and SLAM sparse depth simultaneously.
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