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Power Optimization of Cell-Free Massive MIMO
With Full-Duplex and Low-Resolution ADCs

Prince Anokye, Member, IEEE, Derek K. P. Asiedu, Member, IEEE, and Kyoung-Jae Lee, Senior Member, IEEE

Abstract—This paper analyzes the spectral/energy efficiency
(SE/EE) of a full-duplex (FD) cell-free (CF) massive multiple-
input multiple-output (mMIMO) over Rician fading channels.
Due to the FD radios, the access points (APs) suffer from
self-interference (SI) and inter-AP interference (IAI) while the
downlink (DL) users’ signals are corrupted by the uplink (UL)
users’ transmissions. We consider the case, where low-resolution
analog-to-digital converters (ADCs) are utilized at the APs and
DL users, which introduces the quantization noise (QN). The
combined effects of Rician κ-factor, residual SI/IAI, UL-to-DL
interference, multi-user interference, and QN on the UL/DL SEs
are characterized. The UL SE is degraded by the increase in DL
power, whereas the growth in UL power deteriorates the DL SE.
The effects of the residual SI/IAI and UL-to-DL interference are
worsened by the low-resolution ADCs. We optimize the UL/DL
transmit powers to maximize the overall sum SE of the network.
It is observed that the proposed power allocation algorithm
brings substantial sum SE gain. A trade-off analysis between the
EE and SE, as a function of the ADCs’ resolution, shows that
the entire envelope of the operating region of FD CF mMIMO
is enhanced in Rician channels.

Index Terms—Full-duplex, cell-free massive multiple-input
multiple-output, low-resolution analog-to-digital converters, sum
spectral efficiency maximization.

I. INTRODUCTION

THE cell-free (CF) massive multiple-input multiple-output
(mMIMO), which is a scalable implementation of the

distributed antenna system (DAS), has received significant
attention in the literature as enabling technology for beyond
fifth-generation (5G) and 6G communication systems. In
CF mMIMO, a large number of access points (APs) are
distributed over a wide geographical area and connected
to central processing units (CPUs) via backhaul links to
serve fewer users jointly. The CF mMIMO inherits the
benefits of both DASs (i.e., to provide macro-diversity against
shadow fading [1]) and cellular mMIMO (i.e., to exploit
favorable propagation and channel hardening [2]). Since the
APs are closer to the users, the CF mMIMO promises a
higher coverage probability compared to the cellular mMIMO.
Furthermore, there are no cell boundaries, hence, handovers
are avoided and users achieve uniformly good quality-of-
service (QoS). The authors of [3] study the CF mMIMO,
where it is shown that the CF mMIMO offers a five-fold
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improvement in the 95%-likely per-user throughput than the
small-cell system. The energy efficiency (EE) maximization
problem is investigated by assuming the maximum ratio
transmission (MRT) in [4] and zero-forcing (ZF) precoding in
[5]. Considering phase-shifts in Rician channels, [6] derives
uplink/downlink (UL/DL) SE expressions for phase-aware
minimum mean square error (MMSE), linear MMSE, and least
square estimators. The work [7] extends [6] by considering the
element-wise MMSE channel estimator. The deduction made
from [3]–[7] is that CF mMIMO provides SE/EE improvement
over conventional cellular systems.

Another major technology earmarked for next-generation
systems is the in-band full-duplex (FD). By allowing the UL
and DL transmissions to occur simultaneously on the same
time-frequency resources, FD has the capability to recover
the bandwidth loss inherent in traditional half-duplex (HD)
systems. The major problem inhibiting the implementation of
FD is the self-interference (SI) which occurs due to the signal
leakage from the transmit to the receive radio frequency (RF)
chains of the same terminal [8]. Considering recent advances
in SI cancellation methods [9], i.e., bringing the SI power to
the background noise level, incorporating FD in the modern
wireless infrastructure is a practical solution to enhance the
SE. Thus, combining the FD and CF mMIMO with the aim
of exploiting the full benefits of the two technologies is only
a natural consequence. Nonetheless, only a few papers have
investigated the FD and CF mMIMO [10]–[12]. The work
[10] derives the closed-form solutions for the UL/DL SE
by assuming imperfect channel state information (CSI) and
maximum ratio combining (MRC)/MRT. Here, it is shown
that residual SI and inter-AP interference (IAI) remain key
constraints. In [11], the network-assisted FD CF mMIMO
is considered such that an AP performs either transmission,
reception or simultaneous transmission and reception based
on the network load. To suppress the SI/IAI and UL-to-
DL interference, the MMSE and regularized ZF are used.
The SE/EE maximization problem of the FD CF mMIMO
is considered in [12], where the power control, AP-user
association, and AP selection are jointly optimized. The
optimization problem is solved based on the instantaneous
CSI. Therefore, the optimal solutions have to be re-calculated
during every coherence interval which is computationally
intensive and increases the backhaul traffic. The works [10]–
[12] confirm that the FD CF mMIMO offers substantial gains
in terms of SE/EE relative to the HD mode. The common
assumption in [10]–[12] is that the FD CF mMIMO operates
over Rayleigh distributed channels and perfect hardware is
used at the APs and users.
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The FD CF mMIMO increases the power consumed in
the network since additional APs and by extension more
RF chains are deployed. This poses major challenges to the
global climate and electricity cost for network operators.
For MIMO systems, the analog-to-digital converters (ADCs)
remain key power consumption impediment [13]. A typical
receive antenna has a pair of ADCs to quantize the real
and quadrature components of a signal. To elaborate, an
ADC with resolution b and sampling frequency fs performs
2bfs computations per second, i.e., the power dissipation
increases linearly with fs and exponentially with b [14].1

Furthermore, the financial cost of the ADC fabrication grows
with the resolution. Thus, for practical implementation of
FD CF mMIMO, the ADCs power consumption must be
scaled down. A promising solution is to use low-resolution
ADCs. For example, in a network, power-constrained mobile
users could consider combining with low-resolution ADCs
in the DL, to reduce power. However, coarse quantization
with low-resolution ADCs leads to the quantization noise
(QN) whose strength grows proportionally with the received
signal power. Therefore, to use low-resolution ADCs in FD
CF mMIMO, proper investigation to ascertain its feasibility
must be conducted.

Recently, CF mMIMO with low-resolution ADCs has been
studied by [15], [17]–[20]. With low-resolution ADCs at
the APs and DL users over Rayleigh channels, [15] derives
the closed-form solution for the DL rate and proposes a
max-min algorithm to ensure uniformly good QoS. Zhang
et al. [19] assume Rician channels and derive approximate
rate expressions for the CF mMIMO with low-resolution
ADCs at the APs only. An UL SE expression for the CF
mMIMO with mixed-ADCs is derived in [20]. The works
[15], [19], [20] model the low-resolution ADC receiver via
the additive quantization noise model (AQNM). Using the
Bussgang Theorem, [17] jointly optimizes the pilot sequence
and analog filters with one-bit ADCs at the APs while [18]
analyzes the one-bit ADCs impact on the CSI quality. The
aforementioned works are based on the HD setting and are not
directly applicable to the FD mode since the FD CF mMIMO
is more complicated due to the residual SI/IAI and UL-to-
DL interference. Moreover, as observed in the co-located FD
mMIMO [21], [22], the SI effect is worsened by the use of
low-resolution ADCs. The article [16] investigates the SE/EE
of an FD CF mMIMO with low-resolution ADCs but [16] is
limited to Rayleigh channels and the power allocation problem
is not considered.

Motivated by the above, this article studies the performance
of the FD CF mMIMO over Rician fading channels. Each AP
possesses FD radios, where transmission and reception occurs
simultaneously on the same time-frequency resources. This
results in the SI and IAI phenomenon at the APs and the
UL-to-DL interference at the DL users. To reduce the power
consumption of the network, low-resolution ADCs are utilized

1For FD systems with separate antenna configuration, ADCs are required
at both the receive and transmit antenna chains for quantizing the received
UL pilots during the channel estimation phase. It is noted in [14] that digital-
to-analog converters (DACs) consume less power. Hence, this article only
focuses on the receiver structures with ADCs as it is done in [15], [16].

not only at the APs but also at the DL users. This leads to
the QN at both the APs and DL users. To alleviate the SE
degradation due to residual SI/IAI, UL-to-DL interference, and
QN, we propose an efficient power allocation algorithm to
improve the total sum SE. The main contributions of this paper
are summarized as follows:
• Considering FD APs and HD users, we characterize

the joint impact of QN, residual SI/IAI, and UL-to-
DL interference by deriving closed-form expressions for
the achievable UL/DL SEs. The closed-form solutions
enable us to study the influence of the APs, Rician
κ-factor, ADCs resolution, residual SI/IAI, and UL-to-
DL interference. It is shown that the UL SE loss as a
result of the QN can be compensated by increasing APs.
However, in the DL, the desired signal and QN have
equal order in the number of APs. Thus, the DL SE
saturates rapidly as the APs increase. We show that in
pure line-of-sight (LoS) environments, the UL and DL
SEs converge to fixed values, irrespective of the channel
estimation quality.

• We consider the sum SE maximization subject to the
per AP and UL user power constraints. Due to the non-
convexity of the problem, the equivalent relationship
between the sum SE maximization and the weighted
MMSE (WMMSE) minimization problems is exploited
to develop iterative algorithm based on the alternating
optimization framework. From the results, the proposed
power allocation algorithm provides significant gains in
the sum SE (of the FD CF mMIMO with low-resolution
ADCs) relative to the setup with uniform power.

• A trade-off analysis between the EE and SE as a function
of the ADCs’ resolution, is performed. The EE grows
initially as the quantization bits increase but EE declines
beyond a certain threshold. The optimal resolution that
maximizes the EE can be numerically obtained.

The rest of the paper is organized as follows: Section II
discusses the system model. In Section III, we present SE
expressions and derive closed-form solutions for the UL/DL
SEs. Section IV studies the UL/DL power allocation problem.
EE and numerical results are discussed in Section V. Section
VI concludes the paper.

Notations: Bold face lower case and upper case letters
represent vectors and matrices, respectively. E{·}, Var(·),
and (·)H denote the expectation, variance and Hermitian
operators, respectively. a ∼ CN(0,A) indicates a circularly
symmetric complex Gaussian random variable with mean 0
and covariance A. diag(A) returns the diagonal entries of A.
[A]mn denotes an element on the m-th row and n-th column
of A.

II. SYSTEM MODEL

Consider an FD CF mMIMO system in Fig. 1, where M
multi-antenna APs serve single antenna Lu UL users and Ld
DL users. The APs are connected together to a CPU via error-
free and limitless-capacity backhaul links. Each FD AP has
Nrx receive and Ntx transmit antennas. The users operate
in HD mode. Since the APs transmit and receive on the
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Fig. 1: FD CF mMIMO network, where there are M APs, Lu
UL users and Ld DL users.

same frequency, the APs suffer from the SI and IAI. Because
the DL users receive on the same frequency on which the
UL users transmit, the signals received at the DL users are
corrupted by UL transmissions which results in the UL-to-
DL interference. Also, the receive antennas at each AP and
DL user are equipped with low-resolution ADCs to reduce
power consumption. Because of the low-resolution ADCs, QN
is introduced into the received signals. We assume the standard
block fading, where the channel response is flat for a given
coherence interval τc. For each τc, τp time slot are reserved
for UL piloting while the remaining slot, i.e., τs = τc−τp, are
for useful data. Assuming the time division duplex protocol,
the CSI acquired via UL pilot signaling are used to precode
the DL signal, i.e., we assume perfect hardware calibration
such that reciprocity holds [23]. Further, we follow the general
assumption that the input signals are Gaussian distributed.

A. Channel Model

Let the channels from the l-th UL and k-th DL users to the
m-th AP as hml ∈ CNrx×1 and gmk ∈ CNtx×1, respectively.
We assume uncorrelated Rician fading channels since it covers
more scenarios than the Rayleigh such as conditions where
line-of-sight (LoS) exists between the APs and users. A typical
example is millimeter wave applications. Future work will
consider the impact of channel correlation. Thus, the channels
are modeled as [24],

gmk = gL,mkκ
1/2
mk κ̄

−1/2
mk + gw,mkκ̄

−1/2
mk ,

hml = hL,mlκ
1/2
ml κ̄

−1/2
ml + hw,mlκ̄

−1/2
ml ,

where gL,mk = β
1/2
mk ḡL,mk and gw,mk = β

1/2
mk ḡw,mk denote

the deterministic LoS and random Rayleigh components
of gmk, respectively; βmk indicates the large-scale fading
coefficient between the m-th AP and k-th DL user which
comprises the pathloss and shadow fading effects. The large-
scale fading coefficients remain unchanged over several
coherence intervals. ḡw,mk describes the small-scale fading

whose elements are modeled as CN(0, 1). κmk indicate
Rician κ-factor and κ̄mk

∆
= κmk + 1.2 Also, [ḡL,mk]n =

e−j(n−1)(2πd/λ) sin(ψdmk), where d, λ, and ψdmk denote the
antenna spacing, wavelength, and angle of arrival (AoA)
from the k-th DL user to the m-th AP, respectively.
Similarly, for the UL channel, hL,ml = ζ

1/2
ml h̄L,ml and

hw,ml = ζ
1/2
ml h̄w,ml represent the deterministic LoS and

random Rayleigh components, respectively. ζml indicates the
large-scale fading coefficient from the m-th AP to the l-th
UL user and h̄w,ml denotes the small-scale fading vector
whose elements are distributed as CN(0, 1). κml is the
Rician κ-factor and κ̄ml = κml + 1. We have [h̄L,ml]n =
e−j(n−1)(2πd/λ) sin(ψuml), where ψuml is the AoA from the l-th
UL user to m-th AP. Without loss of generality, let d = λ/2.

B. Channel Estimation

To precode the DL signal and decode the UL data, the
APs need to acquire local CSI. In this paper, we assume that
only imperfect CSI is available. The estimates of gmk and
hml are obtained at the APs via the linear MMSE (LMMSE)
method. For the Rician channel, we consider that the LoS
parts are known a priori and we only estimate the Rayleigh
component. Since the LoS components change much slowly,
classical estimation methods such as MUSIC [25] which uses
the signal subspace and ESPRIT [26] which exploits the
rotational invariance among signal subspaces can be employed
to accurately estimate the LoS parameters. The common
assumption in the literature is that the LoS is perfectly known
[22], [24], [27]. That notwithstanding, the LoS estimation may
be imperfect and a lower bound on the achievable SE of the
system can be derived under the assumption that the LoS parts
are completely unknown— we do not pursue this analysis
herein because of space limitations. Thus, the estimates of
the k-th DL and l-th UL users’ true channels are given,
respectively, as

ĝmk = gL,mkκ
1/2
mk κ̄

−1/2
mk + ĝw,mkκ̄

−1/2
mk , (1)

ĥml = hL,mlκ
1/2
ml κ̄

−1/2
ml + ĥw,mlκ̄

−1/2
ml , (2)

where ĝw,mk and ĥw,ml denote the estimated Rayleigh
components.

To estimate the random components, the DL users transmit
their pilot sequences to the APs while the UL users remain
silent. After that, the UL users send their pilots to the APs
while the DL users keep silent. We assume that mutually
orthogonal pilot sequences are employed to avoid pilot
contamination3 and low-resolution ADCs are used at the APs
for channel estimation. Without loss of generality, we assume
that the same resolution ADCs are used at the m-th AP’s
receive and transmit arrays for quantizing the received pilot
signals. The estimates ĝw,mk and ĥw,ml are obtained by
following [16]. Defining g̃mk and h̃ml as the estimation errors,
the true channels can be decomposed as gmk = ĝmk+g̃mk and

2The Rician κ-factor measures the ratio of the power of the deterministic
LoS component to the scattered components [24].

3To achieve mutual orthogonality, the DL pilot length τd ≥ Ld and for the
UL pilot length τu ≥ Lu. Therefore, τp = τd + τu.
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hml = ĥml+h̃ml. From the properties of LMMSE estimation,
ĝmk ∼ CN(E{ĝmk}, β̂mkINtx) and g̃mk ∼ CN(0, β̃mkINtx)
are mutually independent [27], where β̂mk = βmkνmkκ̄

−1
mk

and νmk = pττdαmβmk/(1 + pττdβmk) with β̃mk =
βmkκ̄

−1
mk − β̂mk. Similarly, ĥml ∼ CN(E{ĥml}, ζ̂mlINrx)

and h̃ml ∼ CN(0, ζ̃mkINrx), where ζ̂ml = ζmlµmlκ̄
−1
ml ,

µml = pττuαmζml/(1 + pττuζml), and ζ̃ml = ζmlκ̄
−1
ml − ζ̂ml.

pτ denotes the pilot power and αm describes the ADCs
resolution at the APs’ transmit/receive antennas.

C. Uplink Data Transmission

The Lu UL users send data to the APs. Simultaneously,
each AP sends data to the DL users. This leads to the SI and
IAI at the m-th AP. The signal received at the m-th AP is
given by

yum =

Lu∑
l=1

hml
√
pu,ls

u
l +

M∑
n=1

Qmnx
d
n + zm,

where pu,l denotes the l-th UL user power and 0 ≤ pu,l ≤
PMAX
u,l ; PMAX

u,l is the maximum power available at the l-th
UL user. sul ∼ CN(0, 1) represents the l-th UL user data. Also,
zm ∈ CNrx×1 and xn ∈ CNtx×1 denote the noise at the m-th
AP and n-th AP transmit signal, respectively. The elements of
zm are modeled by CN(0, 1). Qmn ∈ CNrx×Ntx represents
the residual SI/IAI channel from the n-th AP to the m-th AP
whose elements are CN(0, ρmn), where ρmn = ρ2

SIσAP,mn;
σAP,mn denote the large-scale fading from the n-th AP to m-
th AP and ρ2

SI is the residual interference after SI suppression
[10]. Considering a CF mMIMO, thanks to the fact that the UL
and DL signals are centrally processed, some form of digital
interference cancellation can be realized [11]. Moreover, the SI
is canceled at the local AP such that any residual interference
originating from the imperfect cancellation is regarded as
additional noise. Again, by properly separating the transmit
and receive antenna arrays, natural isolation occurs such that
the surrounding buildings or shielding plates are exploited to
suppress the LoS component. The common assumption is to
model this as Rayleigh [8], [10], [28].

The m-th AP quantizes the received signal before digital
processing. The low-resolution ADC receiver is modeled by
considering the non-uniform quantizer, where the quantization
error is approximated as a linear gain with the AQNM. We
note that the AQNM has been shown in [29], [30] to be
accurate enough for MIMO channels, especially at the low
and medium signal-to-noise ratio (SNR) regimes, where our
system is expected to operate. Further, the AQNM has been
extensively employed in the quantized MIMO systems for
performance analysis and power optimization [15], [20], [31],
[32]. Thus, the quantizer output at the m-th AP is written as

ỹum = αmyum + z̃m,

where αm = 1 − ξ and ξ relates to the ADC resolution
bAPm . Approximate values of ξ for bAPm ≤ 5 are shown in
[22, Table I]. For bAPm > 5, ξ = π

√
3

2 · 2−2bAPm . Also,
z̃m ∼ CN(0,Rz̃m) denotes the additive QN whose covariance
is defined by Rz̃m = (αm − α2

m)diag(E{yu(yu)H}). After

quantization, the m-th AP applies the receive filter before
forwarding the signal to the CPU. We assume the MRC/MRT
due to its computational simplicity and can be implemented
in a distributed fashion [3].4 Thus, the l-th UL user’s signal
“seen” by the CPU is expressed by

ỹul =

M∑
m=1

ĥHmlỹ
u
m. (3)

D. Downlink Data Transmission

For the DL, the APs precode the signals intended for the
Ld DL users.5 The signal received at the k-th DL user is
corrupted by the signals transmitted by the UL users. The
m-th AP transmits the signal xdm =

∑Ld
k=1

√
ηmkĝmks

d
k,

where sdk ∼ CN(0, 1) and ηmk are the k-th DL data and
power allocation coefficient from the m-th AP to the k-th
DL user, respectively. For the per AP power constraint to be
met, Ntx

∑Ld
k=1 ηmka

d
mk ≤ PMAX

d,m , where PMAX
d,m denotes

the available power and admk
∆
= βmkκ̄

−1
mk(κmk + νmk). The

received signal at the k-th DL user is written as

ydk =

Ld∑
k′=1

M∑
m=1

√
ηmk′g

H
mkĝmk′s

d
k′ +

Lu∑
l=1

√
pu,lqkls

u
l + zdk ,

where zdk ∼ CN(0, 1) and qkl ∼ CN(0, γ2
kl) indicates the noise

and UL-to-DL interference channel from the l-th UL user to
the k-th DL user, respectively. Similarly, γ2

kl = σUE,klρ
2
SI ,

where σUE,kl indicates the large-scale fading between the l-th
UL user and the k-th DL user. The k-th DL user quantizes
the received signal and the quantizer output is expressed as
ỹdk = εky

d
k + z̃dk , where εk = 1 − ξ and z̃dk ∼ CN(0, Z̃dk)

describe the ADC resolution and additive QN, respectively.
Also, Z̃dk = (εk − ε2

k)E{|ydk|2}. For the ADCs resolution bUEk
at the k-th DL user, ξ is obtained as in Section II-C. The next
section analyzes the UL/DL SE of the system.

III. SPECTRAL EFFICIENCY ANALYSIS

To derive the SE, we employ the “use-and-then-forget"
(UaTF) method, where the received signal is rewritten as a
known mean gain plus an uncorrelated additive noise [3].

4ZF and MMSE are other linear processing methods which may improve the
system performance by suppressing multi-user interference (MUI) and residual
SI/IAI [33]. Recently, the nonlinear method named ZF-group successive
interference cancellation (GSIC) has also been proposed in [34] to improve
the EE of the HD co-located mMIMO with low-resolution ADCs. Considering
the intensive deployment of APs in the FD CF mMIMO, this potential
improvement due to fully centralized processing methods such as ZF, MMSE,
ZF-GSIC, and MMSE-GSIC may come at the cost of higher computational
complexity and backhaul traffic. A future work will analyze the trade-off
between the system performance and complexity.

5The CPU connecting all the APs controls the information exchange such
as data payload and power control coefficients while the APs are responsible
for locally acquiring the CSI and precoding.
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Specifically, the signal for the l-th UL user, i.e., (3) is rewritten
as

ỹul =
√
pu,lE

{ M∑
m=1

αmĥHmlhml

}
sul +

√
pu,l

( M∑
m=1

αmĥHmlhml

− E
{ M∑
m=1

αmĥHmlhml

})
sul +

Lu∑
l′ 6=l

M∑
m=1

√
pu,l′αmĥHmlhml′s

u
l′

+

M∑
m=1

M∑
n=1

αmĥHmlQmnxn +

M∑
m=1

αmĥHmlzm +

M∑
m=1

ĥHmlz̃m,

where the first term denotes the desired signal and the
remaining terms represent the effective noise which are
uncorrelated. The lower bound on the achievable SE is
acquired by adopting the concept that the additive Gaussian
noise is the worst-case uncorrelated noise. Thus, the achievable
SE for the l-th UL user is given by

Rul =
τs
τc

log2

(
1 +

pu,l|E{
∑M
m=1 αmĥHmlhml}|2

Bul + Cull′ +Du
l + Eul + Ful

)
, (4)

where Bul , Cul , Du
l , Eul , and Ful denote the power of

beamforming uncertainty gain (BUG), MUI, residual SI/IAI,
noise, and QN, respectively. We define

Bul
∆
= pu,lVar

( M∑
m=1

αmĥHmlhml

)
,

Cll′
∆
=

Lu∑
l′ 6=l

pu,l′E
{∣∣∣ M∑

m=1

αmĥHmlhml′
∣∣∣2},

Dl
∆
=

Ld∑
k′=1

E
{∣∣∣ M∑

m=1

M∑
n=1

αm
√
ηnkĥ

H
mlQmnĝnk

∣∣∣2},
Eul

∆
= E

{∣∣∣ M∑
m=1

αmĥHml

∣∣∣2}, Ful ∆
= E

{∣∣∣ M∑
m=1

ĥHmlz̃m

∣∣∣2}.
Following similar approach as above, the SE of the k-th DL

user is expressed by

Rdk =
τs
τc

log2

(
1 +

ε2
k|E{

∑M
m=1

√
ηmkg

H
mkĝmk}|2

Bdk + Cdkk′ +Dd
k + Z̃dk + ε2

k

)
, (5)

where Bdk , Cdkk′ , and Dd
k denote the BUG, MUI, and UL-

to-DL interference at the k-th DL user, respectively; Bdk
∆
=

ε2
kVar(

∑M
m=1

√
ηmkg

H
mkĝmk), Dd

k
∆
= ε2

k

∑Lu
l=1 pu,lE{|qkl|2},

and Ckk′
∆
= ε2

k

∑Ld
k′ 6=k E{|

∑M
m=1

√
ηmk′g

H
mkĝmk′ |

2}.

A. Closed-Form Solutions of Spectral Efficiency

To understand the influence of the various system
parameters, we rigorously derive the closed-form expressions
for the UL/DL SEs in the following Theorems: 6

6Different from [19], where the authors derived the UL rate of HD system
by approximating the QN under the assumption of large receive antenna arrays
per AP, we derive the exact closed-form solution for the SE under FD settings
and further consider the influence of QN at the k-th DL user. Thus our results
are valid for arbitrary number of receive antenna arrays thereby aiding the
system designer to predict the system performance with high certainty.

Theorem 1: Considering the MRC receiver under imperfect
CSI and low-resolution ADCs at the APs, the l-th UL user’s
achievable SE in the FD CF mMIMO over Rician channels is

Rul =
τs
τc

log2

(
1 +

pu,lNrx(
∑M
m=1 αma

u
ml)

2

Υu
l

)
, (6)

where

Υu
l

∆
= Ntx

Ld∑
k=1

M∑
m=1

M∑
n=1

α2
mηnkσ

2
mna

u
mla

d
nk +

M∑
m=1

α2
ma

u
ml

+

Lu∑
l′=1

M∑
m=1

pu,l′α
2
mc

u
mll′ +

M∑
m=1

ᾱm

(
auml +

Lu∑
l′=1

pu,l′f
u
mll′

+Ntx

Ld∑
k=1

M∑
n=1

ηnkσ
2
mna

u
mla

d
nk

)
,

auml = ζmlκ̄
−1
ml(κml + µml), c

u
mll′ = ζmlζml′ κ̄

−1
ml κ̄

−1
ml′(κml

+ κml′µml + µml +
κmlκml′

Nrx
φ2
mll′), ᾱm = (αm − α2

m),

fumll = ζ2
mlκ̄
−2
ml(κ

2
ml + µ2

ml + κml + µml + 3κmlµml),

fumll′ = ζmlζml′ κ̄
−1
ml κ̄

−1
ml′(µml + κml + κml′µml + κmlκml′),

and φmll′ =


sin(Nrxπ2 sin(ψumll)−sin(ψu

mll′ ))

sin(π2 sin(ψumll)−sin(ψu
mll′ ))

, for l′ 6= l

0, for l′ = l.

Proof: Please refer to Appendix A.
Theorem 2: If the m-th AP employs the MRT precoding

over Rician channel and low-resolution ADCs at the k-th DL
user, the achievable DL SE in the FD CF mMIMO is written
as

Rdk =
τs
τc

log2

(
1 +

εkN
2
tx(
∑M
m=1 η

1/2
mka

d
mk)2

Υd
k

)
, (7)

where Υd
k

∆
= Ntx

∑Ld
k′=1

∑M
m=1 c

d
mkk′ηmk′ +

∑Lu
l=1 pu,lγ

2
kl +

1 + (1 − εk)N2
tx(
∑M
m=1 η

1/2
mka

d
mk)2, cdmkk′ =

βmkβmk′ κ̄
−1
mkκ̄

−1
mk′(νmk′+κmk′+νmk′κmk+

κmkκmk′φ
2
mkk′

Ntx
),

and

φmkk′ =


sin(

Ntxπ
2 sin(ψdmkk)−sin(ψd

mkk′ ))

sin(π2 sin(ψdmkk)−sin(ψd
mkk′ ))

, for k′ 6= k

0, for k′ = k.
Proof: Please see the Appendix B.
Using (6) and (7), the total sum SE of the FD CF mMIMO

with low-resolution ADCs is given by RSE({pu,l}, {ηmk}) =∑Lu
l=1R

u
l +

∑Ld
k=1R

d
k. The sum SE is a function of various

parameters including the large-scale fading coefficients,
residual SI/IAI, UL-to-DL interference, number of RF chains
(i.e., Nrx, Ntx, and M ), UL/DL powers, ADCs resolution bAPm
(and bUEk ).

Remarks: From Theorem 1, we observe that the desired
signal increases linearly with the AP receive antennas Nrx
and quadratic in M . The QN grows proportionally with the
received signal, i.e., noise, MUI, and residual SI/IAI. Thus,
the FD CF mMIMO with low-resolution ADCs is more
susceptible to the QN than the HD. Since the desired signal has
a higher order (in terms of Nrx and M ) than the QN, we can
compensate for the UL SE loss as a result of the QN, simply
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by increasing the RF chains. However, considering Theorem
2, it is noted that both the desired signal and QN at the k-th
DL user grow at the same rate with Ntx and M . Therefore, it
is inefficient to compensate for the DL SE due to the QN at
the DL users by increasing the transmit antenna arrays. This
conclusion is consistent with the Rayleigh fading case [16].

For a fixed DL power, as the UL power increases, the
UL SE grows until saturation, i.e., becomes interference-
limited while the DL SE decays towards zero since the UL-
to-DL interference at the DL users increases with the UL
powers. Also, as the DL power increases, for a fixed UL
power, the DL SE improves until saturation whereas the
UL SE declines towards zero because the residual SI/IAI
are enhanced with the increasing DL power. Consider that
pu,l = pu,∀l, PMAX

d,m = PMAX
d = pd,∀m and pu = pd = p.

Further, let us consider equal power allocation in the DL, i.e.,
ηmk = pη̌mkN

−1
tx , where η̌mk = 1/

∑Ld
k=1 a

d
mk. As p → ∞,

the achievable SEs for the l-th UL user and the k-th DL user,
respectively, converge to

Řul =
τs
τc

log2

(
1 +

Nrx(
∑M
m=1 αma

u
ml)

2

Υ̌u
l

)
, (8)

Řdk =
τs
τd

log2

(
1 +

εkNtx(
∑M
m=1 η̌

1/2
mka

d
mk)2

Υ̌d
k

)
, (9)

where Υ̌u
l

∆
=

∑Ld
k=1

∑M
m=1

∑M
n=1 αmη̌nkσ

2
mna

u
mla

d
nk +∑Lu

l′=1

∑M
m=1 α

2
mc

u
mll′ +

∑M
m=1

∑Lu
l′=1 ᾱmf

u
mll′ and

Υ̌d
k =

∑Ld
k′=1

∑M
m=1 c

d
mkk′ η̌mk +

∑Lu
l=1 γ

2
kl + (1 −

εk)Ntx(
∑M
m=1 η̌mka

d
mk)2. (8) and (9) demonstrate that

the SE loss due to MUI, QN, residual SI/IAI, and UL-to-DL
interference cannot be compensated by simply increasing
the available transmit powers. Therefore, an efficient power
allocation strategy to improve the total sum SE of the FD CF
mMIMO with low-resolution ADCs is needed.

To evaluate the impact of the Rician κ-factor, let κmk =
κml = κ,∀m, k, l. As κ→∞, the l-th UL and k-th DL users’
SEs converge to constants given by (10) and (11), respectively.

R̄ul =
τs
τc

log2

(
1 +

pu,lNrx(
∑M
m=1 αmζml)

2

Ῡu
l

)
, (10)

where Ῡu
l

∆
= Ntx

∑Ld
k=1

∑M
m=1

∑M
n=1 αmζmlσ

2
mnηnkβnk +∑Lu

l 6=l′
∑M
m=1

pu,l′

Nrx
α2
mζmlζml′φ

2
mll′ +

∑M
m=1 αmζml +∑Lu

l′=1

∑M
m=1 ᾱmpu,l′ζmlζml′ .

R̄dk =
τs
τc

log2

(
1 +

N2
txεk(

∑M
m=1 η

1/2
mkβmk)2

Ῡd
k

)
, (11)

where Ῡd
k = (1−εk)N2

tx(
∑M
m=1 βmkη

1/2
mk )2 +

∑Lu
l=1 pu,lγ

2
kl+∑Ld

k′ 6=k
∑M
m=1 ηmk′βmkβmk′φ

2
mkk′+1; Ntx

∑Ld
k=1 βmkηmk ≤

PMAX
d,m .
Proof: The expressions (10) and (11) are proved by setting

the Rician κ-factor in (6) and (7) as κ and taking the limit
as κ → ∞. From (10) and (11), we note that as the Rician
κ-factors increase, the UL/DL SEs saturate irrespective of the
channel estimation quality, which is independent of the Rician
κ-factor— exposing there exists an SE limit in strong LoS
environments.

B. Co-located FD Massive MIMO with Low-Resolution ADCs

For comparison, we derive the SE of the FD co-located
mMIMO with low-resolution ADCs. The FD co-located
mMIMO is a special case of the FD CF mMIMO, where all
the antennas are concentrated at a single BS with βmk = βk,
κmk = κk, ψdmk = ψdk , ζml = ζl, κml = κl, ψuml = ψul ,
∀m, k, l and σAP,mn = σAP ,∀m. For simplicity, the BS
receive antennas have equal resolution ADCs, i.e., αm =
α,∀m. Corollaries 1 and 2, respectively, provide the UL and
DL SEs.

Corollary 1: For the co-located FD mMIMO case, the l-th
UL user SE is given by (12) shown at the top of next page.
Note that auml = aul , ∀m, fumll′ = full′ , ∀m, admk = adk, ∀m,
cull′ = ζlζl′ κ̄

−1
l κ̄−1

l′ (κl + µl + κl′µl + κlκl′ φ̃
2
ll′/MNrx), and

φ̃ll′ =


sin(MNrxπ2 sin(ψul )−sin(ψu

l′ ))

sin(π2 sin(ψul )−sin(ψu
l′ ))

, for l′ 6= l

0, for l′ = l.

Corollary 2: With low-resolution ADCs at the k-th DL
user, the k-th DL user SE in the co-located FD mMIMO
is written as (13) shown at the top of next page, where
cdkk′ = βkβk′ κ̄

−1
k κ̄−1

k′ (νk′ +κk′ +νk′κk +κkκk′φ
2
kk′/MNtx),

and η̃k = Mηmk. Also, we have

φ̃kk′ =


sin(

MNtxπ
2 sin(ψdk)−sin(ψd

k′ ))

sin(π2 sin(ψdk)−sin(ψd
k′ ))

, for k′ 6= k

0, for k′ = k.
Proof : The proof is omitted for brevity.

IV. SUM SPECTRAL EFFICIENCY MAXIMIZATION

In this section, we investigate how to allocate the DL data
powers {ηmk} and UL powers {pu,l} to maximize the sum
SE of the FD CF mMIMO with low-resolution ADCs. First,
based on the analytic results from the previous sections, the
sum SE optimization problem is formulated. Then, we propose
an iterative algorithm via alternating convex optimization.

A. Problem Formulation

The sum SE maximization problem is formulated as

Maximize
{pu,l≥0},{ηmk≥0}

RSE({pu,l}, {ηmk}),

subject to pu,l ≤ PMAX
u,l , ∀l,

Ntx

Ld∑
k=1

ηmka
d
mk ≤ PMAX

d,m , ∀m, (14)

where the pre-log factor τs
τc

is removed since it does not affect
the optimization variables. The first and second constraints
indicate that the l-th UL user and m-th AP are limited
by their maximum transmit powers PMAX

u,l and PMAX
d,m ,

respectively.7 The sum SE maximization problem is a well-
known non-convex problem and the global optimum is
generally unavailable. Therefore, we exploit the equivalence
between the sum SE maximization and the weighted MMSE
(WMMSE) minimization problems [35]–[37] to obtain a local
optimum. When the WMMSE method is employed in different

7The optimization problem does not depend on the instantaneous CSI but
only on the large-scale fading coefficients which changes much slowly and
thus enables the solution to be used for several coherence intervals.
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R̃ul =
τs
τc

log2

(
1 +

pu,lNrxMα(aul )2

aul +NtxM
∑Ld
k=1 η̃kσ

2
ma

u
l a
d
k +

∑Lu
l′=1 pu,l′(αc

u
ll′ + (1− α)full′)

)
, (12)

R̃dk =
τs
τc

log2

(
1 +

εkη̃k(MNtxa
d
k)2

(1− εk)η̃k(MNtxadk)2 +MNtx
∑Ld
k′=1 η̃k′c

d
kk′ +

∑Lu
l=1 pu,lγ

2
kl + 1

)
, (13)

systems, the resulting subproblems are unique. Thus, we
emphasize that the solutions obtained in this section are novel.

To reformulate problem (14) as WMMSE, we first set p̄u,l =√
pu,l, ∀l and η̄mk =

√
ηmk, ∀m, k. Then, the mean square

errors of the l-th UL, i.e., eul = E{|sul − rul ỹul |2} and k-th DL
users, i.e., edk = E{|sdk − rdkỹdk|2}, after detection are written,
respectively, as (15) and (16).

eul = 1 + |rul |2Nrx
[ M∑
m=1

αma
u
ml + p̄2

u,lNrx(

M∑
m=1

αma
u
ml)

2+

M∑
m=1

Lu∑
l′=1

p̄2
u,l′α

2
mc

u
mll′ +Ntx

Ld∑
k=1

M∑
m=1

M∑
n=1

αma
d
mkσ

2
mna

u
mlη̄

2
nk

+

M∑
m=1

Lu∑
l′=1

ᾱmp̄
2
u,l′f

u
mll′

]
− 2p̄u,lr

u
l Nrx

M∑
m=1

αma
u
ml, (15)

edk = εk|rdk|2
[
N2
tx(

M∑
m=1

admkη̄mk)2 +Ntx

Ld∑
k′=1

M∑
m=1

cdmkk′ η̄
2
mk′

+

Lu∑
l=1

p̄2
u,lγ

2
kl + 1

]
+ 1− 2εkr

d
kNtx

M∑
m=1

admkη̄mk, (16)

where rul and rdk (newly introduced optimization variables) are
the l-th UL and k-th DL users receive filters, respectively.

Proof : The proof follows similar approach as Appendix A.
Subsequently, the WMMSE problem is formulated as

Minimize
{p̄u,l≥0},{ωul ≥0},{rul },
{η̄mk≥0},{ωdk≥0},{rdk}

Γ({ωul , rul , p̄u,l}, {ωdk, rdk, η̄mk})

subject to p̄2
u,l ≤ PMAX

u,l , ∀l,

Ntx

Ld∑
k=1

η̄2
mka

d
mk ≤ PMAX

d,m ,∀m, (17)

where Γ({ωul , rul , p̄u,l}, {ωdk, rdk, η̄mk})
∆
=

∑Lu
l=1[ωul e

u
l −

ln(ωul )]+
∑Ld
k=1[ωdke

d
k−ln(ωdk)]; ωul and ωdk denote the positive

weights associated with the l-th UL user and the k-th DL user,
respectively, for the WMMSE equivalent problem.8

B. Iterative Algorithm

Here, we develop an iterative algorithm based on the
alternating convex optimization, where one variable is
optimized while the others are fixed. For constant {ωul },

8The WMMSE problem is concave, and the global optimum can be
achieved. Its convexity can be proved from the second derivative of the
objective function. However, this is straightforward to establish and is omitted
from the paper for brevity.

{p̄u,l}, {ωdk}, {rdk}, and {η̄mk}, the optimal rul that minimizes
the objective function of (17) is achieved by taking the first-
order derivative with respect to (wrt) rul , equating to zero and
solving for rul . Thus, we have

rul

[
p̄2
u,lNrx(

M∑
m=1

αma
u
ml)

2 +

Lu∑
l′=1

M∑
m=1

α2
mp̄

2
u,l′c

u
mll′

+

M∑
m=1

αma
u
ml +Ntx

Ld∑
k=1

M∑
m=1

M∑
n=1

αma
d
mkσ

2
mna

u
mlη̄

2
nk

+

Lu∑
l′=1

M∑
m=1

ᾱmp̄
2
u,l′f

u
mll′

]
− p̄u,l

M∑
m=1

αma
u
ml = 0. (18)

From (18), the optimal filter ru?l of the l-th UL user is ru?l =

p̄u,l
∑M
m=1 αma

u
ml(r̃

u
l )−1, where

r̃ul
∆
= p̄2

u,lNrx(

M∑
m=1

αma
u
ml)

2 +

Lu∑
l′=1

M∑
m=1

α2
mp̄

2
u,l′c

u
mll′

+Ntx

Ld∑
k=1

M∑
m=1

M∑
n=1

αma
d
mkσ

2
mna

u
mlη̄

2
nk +

M∑
m=1

αma
u
ml

+

Lu∑
l′=1

M∑
m=1

ᾱmp̄
2
u,l′f

u
mll′ .

Next, we derive the l-th UL user weight that minimizes
the objective function of (17) by keeping {rul }, {rdk}, {ωdk},
{p̄u,l}, and {η̄mk} constant, solving the first-order derivative
wrt ωul , setting the gradient to zero and solving for ωul . Thus,
the optimal weight ωu?l = (eul )−1 is attained.

Using similar approach, the k-th DL user’s optimal filter is
expressed as rd?k = Ntx

∑M
m=1 a

d
mkη̄mk(r̃dk)−1, where r̃dk =

1 +N2
tx(
∑M
m=1 a

d
mkη̄mk)2 +Ntx

∑Ld
k′=1

∑M
m=1 c

d
mkk′ η̄

2
mk′ +∑Lu

l=1 γ
2
klp̄

2
u,l. The optimal weight of the k-th DL user is given

by ωd?k = (edk)−1.
For a given set of variables {ωul }, {rul }, {ωdk}, and {rdk},

we now need to solve for the optimal data powers {p̄u,l} and
{η̄mk} that minimize the objective function. Expanding the
objective function of (17), grouping like terms and removing
known terms, the problem (17) reduces to

Minimize
{p̄u,l≥0},{η̄mk≥0},

Γ̄u({p̄u,l}) + Γ̄d({η̄mk})

subject to p̄2
u,l ≤ PMAX

u,l , ∀l,

Ntx

Ld∑
k=1

η̄2
mka

d
mk ≤ PMAX

d,m , ∀m, (19)



8

where

Γ̄u({p̄u,l}) =

Lu∑
l=1

ωul |rul |2Nrx
[
p̄2
u,lNrx(

M∑
m=1

αma
u
ml)

2+

M∑
m=1

Lu∑
l′=1

p̄2
u,l′α

2
mc

u
mll′ +

Lu∑
l′=1

M∑
m=1

ᾱmp̄
2
u,l′f

u
mll′

]
− 2

Lu∑
l=1

ωul ×

p̄u,lr
u
l Nrx

M∑
m=1

αma
u
ml +

Ld∑
k=1

ωdk|rdk|2
Lu∑
l=1

γ2
klp̄

2
u,l,

Γ̄d({η̄mk}) =

Ld∑
k=1

ωdk|rdk|2εk
[
N2
tx(

M∑
m=1

admkη̄mk)2+

Ntx

Ld∑
k′=1

M∑
m=1

cdmkk′ η̄
2
mk′

]
− 2

Ld∑
k=1

ωdkεkr
d
kNtx

M∑
m=1

admkη̄mk+

Lu∑
l=1

ωul |rul |2NrxNtx
Ld∑
k=1

M∑
m=1

M∑
n=1

αma
d
mkσ

2
mna

u
mlη̄

2
nk.

It is noted that the problem (19) can be decomposed and
the power allocation problem at the UL users and the APs can
be solved separately. Considering the UL, we obtain

Minimize
{p̄u,l≥0},

Γ̄u({p̄u,l}), subject to p̄2
u,l ≤ PMAX

u,l ,∀l, (20)

while for the DL, i.e., AP power allocation problem, we have

Minimize
{η̄mk≥0},

Γ̄d({η̄mk}),

subject to Ntx

Ld∑
k=1

η̄2
mka

d
mk ≤ PMAX

d,m , ∀m. (21)

1) Solving UL User Power Control Problem (20): The
problem (20) is a convex quadratic program wrt p̄u,l and
therefore its optimal solution can easily be achieved in closed-
form by using the Lagrange multiplier method. Specifically,
the Lagrangian of the problem (20) is written as

L({λl}, {p̄u,l}) = Γ̄u({p̄u,l}) +

Lu∑
l=1

λl(p̄
2
u,l − PMAX

u,l ),

(22)

where λl ≥ 0 is the Lagrange multiplier. By taking the first
derivative of (22) wrt p̄u,l, we have

∂L
∂p̄u,l

= 2p̄u,lN
2
rxω

u
l |rul |2(

M∑
m=1

αma
u
ml)

2 + 2p̄u,lNrx×

Lu∑
l′=1

M∑
m=1

ωul′ |rul′ |2α2
mc

u
mll′ − rul ωul Nrx

M∑
m=1

αma
u
ml+

2p̄u,lNrx

Lu∑
l′=1

M∑
m=1

ωul′ |rul′ |2ᾱmfumll′ + 2p̄u,l

Ld∑
k=1

ωdk|rdk|2γ2
kl+

2p̄u,lλl.

Equating the derivative to zero and solving for p̄u,l, we obtain
p̄u,l = rul ω

u
l Nrx

∑M
m=1 αma

u
ml/(ψu,l + λl), where

ψu,l = N2
rxω

u
l |rul |2(

M∑
m=1

αma
u
ml)

2 +

Ld∑
k=1

ωdk|rdk|2γ2
kl +Nrx×

Lu∑
l′=1

M∑
m=1

ωul′ |rul′ |2α2
mc

u
mll′ +Nrx

Lu∑
l′=1

M∑
m=1

ωul′ |rul′ |2ᾱmfumll′ .

The Lagrange multiplier λl has to satisfy the complementary
slackness condition [36], i.e., λl(p̄

2
u,l − PMAX

u ) = 0.
Therefore, the solution of p̄u,l is

p̄u,l =

min(p̂u,l,
√
PMAX
u,l ), for λl = 0√

PMAX
u,l , for λl 6= 0,

(23)

where p̂u,l = rul ω
u
l Nrx

∑M
m=1 αma

u
ml(ψu,l)

−1.
2) Solving DL Power Allocation Problem (21):

The problem (21) is a quadratic constraint quadratic
program hence convex optimization problem. However, the
optimization variables in the objective function are coupled
together via the per AP power constraints. To decouple the
problem, we leverage the alternating direction method of
multipliers (ADMM) [38]. Let η̄ηηk = [η̄1k, · · · , η̄Mk] ∈ RM×1,
η̄ηη = [η̄ηηT1 , · · · , η̄ηηTLd ]T ∈ RMLd×1, adk = [ad1k, · · · , adMk]T ∈
RM×1, cdkk′ = [cd1kk′ , c

d
2kk′ , · · · , cdMkk′ ] ∈ RM×1,

Cd
kk′ = diag(cdkk′) ∈ RM×M , and Dd

k =

diag
(∑Lu

l=1

∑M
m=1 ω

u
l |rul |2αmaumlσ2

m1a
d
1k, · · · ,∑Lu

l=1

∑M
m=1 ω

u
l |rul |2αmaumlσ2

mMa
d
Mk

)
∈ RM×M .

Therefore, the objective function of (21) is rewritten
by

Γ̄d(η̄ηη) = Ntx

[ Ld∑
k=1

ωdk|rdk|2εk
(
Ntx|η̄ηηTk adk|2+

Ld∑
k′=1

η̄ηηTk′C
d
kk′η̄ηηk′

)
− 2

Ld∑
k=1

ωdkεkr
d
k|η̄ηηTk adk|+Nrx

Ld∑
k=1

η̄ηηTkD
d
kη̄ηηk

]
.

Also, let F define the feasible region of the constraint in
(21) and gF (z) as an indicator function which is given by

gF (z) =

{
0, if Ntx

∑Ld
k=1 z

2
mka

d
mk ≤ pMAX

d,m

+∞, otherwise
.

where z = [zT1 , · · · , zTLd ] ∈ RMLd×1 and zk =
[z1k, · · · , zMk]T ∈ RM×1. The optimization problem (21) is
recast in ADMM form as [38]

Minimize
η̄ηη, z

Γ̄d(η̄ηη) + gF (z), subject to η̄ηη = z . (24)

The scaled form augmented Lagrangian is written by [38]

L%(η̄ηη, z,u) = Γ̄(η̄ηη) + gF (z) +
%

2

Ld∑
k=1

‖η̄ηηk − zk + uk‖2,

where % > 0 and u = [uT1 , · · · ,uTLd ] ∈ RMLd×1 denote
the penalty parameter and scaled dual variable, respectively;
uk = [u1k, u2k, · · · , uMk]T ∈ RM×1. The ADMM for
minimizing the augmented Lagrangian L%(η̄ηη, z,u) is carried
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Algorithm 1 ADMM Technique for Finding Solution to (21)

Input: Initialize the primal variables z(0)
mk,∀m, k and the dual

variable u(0)
mk,∀m, k and set the penalty % > 0. Set s = 1.

1. Iteration s:
1.1. Update the first primal variables as

η̄ηηs := argmin
η̄ηη

L%(η̄ηη, zs−1,us−1). (25)

1.2. Update the second primal variables z
(s)
m ,∀m as

zs := argmin
z

L%(η̄ηηs, z,us−1). (26)

1.3. Update the dual variables u

us := us−1 + η̄ηηs − zs. (27)

2. If stopping criteria is met → Stop. Else go to Step 3.
3. Store the current best solution η̄(s)

mk, z(s)
mk, and u(s)

mk, ∀m, k.
Set s = s+ 1 and go to Step 1.

Output: The optimal solution: η̄?mk = η̄
(s)
mk,∀m, k.

out by alternatively updating the two blocks of primal variables
η̄ηη and z as summarized by Algorithm 1.

Below, we will detail the procedure to update η̄ηη and z
with closed-form expressions. For ease of notation, we omit
the superscripts that represent the iteration counter. The first
block of primal update in (25) is obtained by solving the
unconstrained convex quadratic problem given by

Minimize
η̄ηη

Γ̄d(η̄ηη) +
%

2

Ld∑
k=1

‖η̄ηηk − zk + uk‖2. (28)

The objective function of (28) is expanded as

Ld∑
k=1

η̄ηηTk

(
ωdk|rdk|2εkN2

txa
d
k(adk)T +Ntx

Ld∑
k′=1

ωdk′ |rdk′ |2εkCkk′+

NrxNtxDk +
%

2
IM

)
η̄ηηk − 2

Ld∑
k=1

ηηηTk

(
ωkεkr

d
kNtxa

d
k +

%

2
(zk−

uk)
)

+
%

2

Ld∑
k=1

(zTk zk + uTk uk − 2zTk uk). (29)

The optimal η̄ηη?k,∀k is achieved by setting the first derivative
of (29) wrt η̄ηηk to zero and solving for η̄ηηk. Thus, we have

η̄ηη?k = W−1
k (ωkεkr

d
kNtxa

d
k +

%

2
(zk − uk)), ∀k, (30)

where Wk
∆
= ωdk|rdk|2εkN2

txa
d
k(adk)T +

Ntx
∑Ld
k′=1 ω

d
k′ |rdk′ |2εkCd

kk′ +NrxNtxD
d
k + %

2IM .
Next, the second block of primal variables z are updated by

solving the optimization problem

Minimizez
%

2

Ld∑
k=1

‖η̄ηηk − zk + uk‖2,

subject to Ntx

Ld∑
k=1

z2
mka

d
mk ≤ PMAX

d,m ,∀m. (31)

From observation, the problem (31) can be separated into M
subproblems with the m-th subproblem corresponding to the
m-th AP. Specifically, ∀m = 1, · · · ,M , we have

Minimizezm
%

2

Ld∑
k=1

(η̄mk − zmk + umk)2,

subject to Ntx

Ld∑
k=1

z2
mka

d
mk ≤ PMAX

d,m , (32)

where zm = [zm1, · · · , zmLd ]T ∈ RLd×1, η̄ηηm =
[η̄m1, · · · , η̄mLd ]T ∈ RLd×1, um = [um1, · · · , umLd ]T ∈
RLd×1, and ādm = [

√
adm1, · · · ,

√
admLd ]T ∈ RLd×1. Problem

(31) is rewritten as

Minimizezm
‖η̄ηηm − zm + um‖2,

subject to Ntx‖zTmādm‖2≤ PMAX
d,m , (33)

The optimal solution to (33) is obtained by using the KKT
conditions. Thus, for each subproblem, we have the solution
z?m = min

(
1,
√
pMAX
d,m /Ntx‖ādm‖2‖ξξξm‖2

)
ξξξm, ∀m =

1, · · · ,M , where ξξξm = η̄ηηm+um. The dual variable u updates
are done by a simple addition of the two primal variables.

Until now, the closed-form expressions for the variable
updates have been derived. In terms of computational
complexity, the only expensive process is the matrix inversion
in (30). However, this computation is carried out once for any
large-scale fading realization. The primal variables zmk,∀m, k
in Algorithm 1 can be initialized to any values within the
feasible region. In this paper, zmk,∀m, k is initialized as
zmk = η̄mk,∀m, k and the dual variables are initialized by
umk = 0,∀m, k. The ADMM algorithm is guaranteed to
converge to a global optimum as noted in [38] and references
therein. The stopping criteria which is proposed by [38] is used
to terminate Algorithm 1, where the εrel = 10−3. Finally,
the iterative algorithm based on the alternating optimization
technique for finding solution to (14) is summarized in
Algorithm 2. Algorithm 2 is initialized with any data power
values in the feasible set and it is terminated when the
difference between two successive iterations (i.e., ϑ ≥ 0)
is small. We define a stopping criterion for Algorithm 2 as
|R(t)
SE −R

(t−1)
SE |≤ ϑ.

3) Computational Complexity: The complexity
for implementing Algorithms 1 and 2 are
O(I1[M3L3

d + log(1 + φ1)]) and O(I2{I1[M3L3
d +

log(1 + φ1)] + L5
uL

5
d + log(1 + φ2)}), respectively. Note that

Algorithm 1 is embedded in Algorithm 2. Here, log(1 + φ1)
and log(1 + φ2) represent the complexity for implementing
the convergence criteria of Algorithms 1 and 2, respectively.
The computation of variables η̄ηη, zs and us in Algorithm 1
is M3L3

d. The computation of {p̄u,l}Lul=1, {rul }
Lu
l=1, {ωul }

Lu
l=1,

{eul }
Lu
l=1, {rdk}

Ld
k=1, {ωdk}

Ld
k=1, {edk}

Ld
k=1, and the sum SE is

given as L5
uL

4
d. The computation of the iterations within
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Algorithm 2 Alternating Optimization for (17)
Input: Maximum data powers per UL user PMAX

u,l and AP
PMAX
d,m . Initialize powers p̄(0)

u,l ,∀l and η̄(0)
mk,∀m, k. Set t = 1.1. Iteration t:

1.1. Update r
u(t)
l , ∀l as r

u(t)
l =

p̄
(t−1)
u,l

∑M
m=1 αma

u
ml

r̃
u(t−1)
l

where r̃u(t−1)
l is written as (34).

1.2. Update ω
u(t)
l , ∀l as ω

u(t)
l =

(
e
u(t)
l

)−1

, where

e
u(t)
l = 1 − 2Nrxr

u(t)
l p̄

(t−1)
u,l

∑M
m=1 αma

u
ml +

|ru(t)
l |2Nrxr̃u(t−1)

l .

1.3. Update r
d(t)
k , ∀k as r

d(t)
k =

Ntx
∑M
m=1 a

d
mkη̄

(t−1)
mk

r̃
d(t−1)
k

,

where r̃d(t−1)
k is given by (35).

1.4. Update the variables ωd(t)
k , ∀k as ωd(t)

k =
(
e
d(t)
k

)−1

,

where e
d(t)
k = 1 − 2εkr

d(t)
k Ntx

M∑
m=1

admkη̄
(t−1)
mk +

|rd(t)
k |2εkr̃d(t−1)

k .
1.5. Update p̄

(t)
u,l,∀l as p̄

(t)
u,l = min

(
p̂u,l,

√
PMAX
u,l

)
,

where p̂u,l is given by (36).
1.6. Update η̄

(t)
mk,∀m, k using Algorithm 1 with the

inputs {ru(t)
l , ω

u(t)
l }, and {rd(t)

k , ω
d(t)
k }.

2. If stopping criterion is met → Stop. Else go to Step 3.
3. Save the current solution, i.e., p̄(t)

u,l,∀l and η̄
(t)
mk,∀m, k.

Set t = t+ 1 and go to Step 1.
Output: The optimal solutions: p̄(t)

u,l,∀l and η̄(t)
m,k,∀m, k.

Algorithms 1 and 2 are defined as I1 and I2, respectively.

r̃
u(t−1)
l =

M∑
m=1

αma
u
ml + (p̄

(t−1)
u,l )2Nrx

( M∑
m=1

αma
u
ml

)2

+

Lu∑
l′=1

M∑
m=1

(p̄
(t−1)
u,l′ )2(α2

mc
u
mll′ + ᾱmf

u
mll′)+

Ntx

Ld∑
k=1

M∑
m=1

M∑
n=1

αma
d
mkσ

2
mna

u
ml(η̄

(t−1)
nk )2. (34)

r̃
d(t−1)
k = 1 +

Lu∑
l=1

γ2
kl(p̄

(t−1)
u,l )2 +N2

tx

( M∑
m=1

admkη̄
(t−1)
mk

)2

+

Ntx

Ld∑
k′=1

M∑
m=1

cdmkk′(η̄
(t−1)
mk′ )2. (35)

p̂ul = r
u(t)
l ω

u(t)
l Nrx

M∑
m=1

αma
u
ml

(
N2
rxω

u(t)
l |ru(t)

l |2×

( M∑
m=1

αma
u
ml

)2

+Nrx

Lu∑
l′=1

M∑
m=1

ω
u(t)
l′ |r

u(t)
l′ |

2(α2
mc

u
mll′+

ᾱmf
u
mll′) +

Ld∑
k=1

ω
d(t)
k |rd(t)

k |2γ2
kl

)−1

. (36)

V. NUMERICAL RESULTS

This section presents results of the paper. Analytic results
are validated through Monte Carlo simulations over 500

-40 -30 -20 -10 0 10 20 30
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100
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Fig. 2: Total sum SE vs power (dBm) (Lu = Ld = 20, bAPm =
bUEk = 3, Nrx = Ntx = 5).

channel realizations and 103 AP-user random locations. The
M APs, Lu UL, and Ld DL users are uniformly distributed
within a 1 km2 cell which is wrapped-around at the edges
similar to [3]. The large-scale fading coefficient between any
two nodes i and j is given by 10PLij , where PLij is the
pathloss. The pathloss between the m-th AP and the k-th DL
user (l-th UL user) is calculated using the COST 231 Walfish-
Ikegami model for micro-cells, where the AP height is 12.5
m with the user height 1.5 m and an LoS exists between
any AP-user link. Specifically, the AP-user pathloss is written
as PLij = −30.18 − 26 log10(dij) + Sij , where Sij is the
lognormal shadow fading with the standard deviation 4 dB and
dij is the distance between nodes i and j in meters [39]. For
the inter-AP and UL-to-DL user pathloss, we use the COST
231 Walfish-Ikegami model for non-LoS which is expressed
as PLij = −34.53 − 38 log10 (dij). The Rician κ-factor κij
is computed as κij = 101.3−0.003dij [39].

Communication occurs over 20 MHz bandwidth with a
total receiver noise power No = −94 dBm. Each coherence
interval comprises τc = 200, where τu = Lu and τd = Ld.
Also, pτ = p̃τ/No, PMAX

d,m = P̃MAX
d,m /No, and PMAX

u,l =

P̃MAX
u,l /No, where p̃τ , P̃MAX

d,m , and P̃MAX
u,l is the pilot power,

maximum powers available per AP and UL user, respectively.
For simplicity, we assume all the APs use equal resolution
ADCs, i.e., bAPm = bAP ,∀m. Similar settings are made for the
DL users, i.e., bUEk = bUE ,∀k. To obtain αm and εk for any
bUEk and bAPm , see [22, Table I]. Unless otherwise stated, the
following parameters are used: M = 80, Nrx = Ntx = 5,
Lu = Ld = 20, and ρ2SI

No
= 40 dB. The powers are set as

p̃τ = P̃MAX
u,l = 100 mW and P̃MAX

d,m = 200 mW.

A. Achievable Spectral Efficiency

The achievable SE as a function of the APs M , UL/DL
transmit powers, quantization bits, and residual SI/IAI is
investigated. Here, we assume the l-th UL user transmit at
full power, i.e., pu,l = PMAX

u,l ,∀l and the APs use equal
power allocation, i.e., ηmk = PMAX

d,m /(Ntx
∑Ld
k=1 a

d
mk). The

analytical SE of the l-th UL user and k-th DL user are obtained
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Fig. 3: Sum SE vs number of APs M (Lu = Ld = 10, Nrx =
Ntx = 2).

according to (6) and (7), respectively. The simulated UL and
DL results are achieved by (4) and (5), respectively. The results
are then aggregated over the Lu and Ld users to obtain the
UL sum SE and DL sum SE, respectively. The total sum SE
is then achieved by adding the UL sum SE and the DL sum
SE.

Fig. 2 shows plots of the simulated total sum SE and
analytical results versus the transmit power, for different M .9

The UL/DL powers are jointly varied from -40 dBm to 30
dBm. From Fig. 2, it is noted that the analytical results match
tightly with the Monte-Carlo simulations which confirms the
validity of Theorems 1 and 2. The total sum SE of the FD CF
mMIMO generally increases with the increase in the number
of APs M and improves as the transmit powers increase until
saturation. This saturation is caused by the growth in the MUI,
residual SI/IAI, UL-to-DL, and influence of the QN whose
effects are increasing functions of power (see (8) and (9)). We
also observe that for any given transmit power and M , the
total sum SE is higher in the Rician fading environments than
the Rayleigh case.

In Fig. 3, we plot the simulated achievable UL/DL sum
SE, analytical UL results, and analytical DL results against
the number of APs M , for different ADC resolutions bAPm
and bUEk , where Lu = Ld = 10 and Nrx = Ntx = 2. It is
obvious from Fig. 3 that the analytical results are again exact.
The UL and DL sum SEs increase with the growth in M
and reduces as the ADCs’ resolution declines. In the low-bit
regime, the DL sum SE saturates rapidly as the APs increase
since both the desired signal and QN of the k-th DL user grow
at the same speed with M (see Theorem 2). However, the
UL shows monotonic growth with M for any ADC resolution
since the desired signal has a higher order than the QN (i.e.,
with respect to the receive arrays) as shown in Theorem 1.
Since the analytical results are tight, from here on, the figures
are generated with the closed-form solutions instead of the

9For comparison, we include the achievable SE in Rayleigh fading scenarios
which are obtained by setting the Rician κ-factors in the AP-user links to zero,
i.e., κmk = κml = 0,∀m, k, l.
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Fig. 4: Sum SE vs ADCs’ resolution (bits) (Lu = Ld = 30,
Nrx = Ntx = 5).

time-consuming Monte Carlo simulations.
Fig. 4 shows a plot of the UL/DL sum SE versus the

quantization bits bAPm (bUEk ), for different APs M . We set
Lu = Ld = 30 and ρ2

SI/No = 80 dB. It is observed that the
UL and DL sum SEs grow as the ADCs’ resolution increases
until saturating to the perfect quantization case. For the UL,
the FD CF mMIMO needs about 5 bit ADCs to converge to
the infinite-resolution case while in the DL about 7 bits are
required to achieve equal sum SE as the perfect quantization.
We note that the UL shows better sum SE than the DL, in the
low quantization bit regime. However, as the ADCs’ resolution
increases beyond 3 bits, the DL shows superior sum SE since
the APs use higher transmit power (than the UL users) and
DL users suffer less UL-to-DL interference compared with
the residual SI/IAI at the APs. Note that for the DL, the QN
dominates in the low-bit region. This result is consistent with
Fig. 3.

Next, we study the impact of the residual SI/IAI and UL-
to-DL interference on the achievable sum SE by plotting
the total sum SE versus the normalized residual SI ρ2SI

No
in

Fig. 5. For comparison, we include the total sum SEs of
the co-located FD mMIMO and the HD modes. The HD
result is obtained by setting the residual SI, IAI, and UL-to-
DL interference to zero while doubling the transmit powers
and imposing a 0.5 pre-log factor in the SE expressions
(7) and (6), for fairness. It is observed that the total sum
SE of the FD CF (and co-located) mMIMO reduces rapidly
as the strength of the residual SI increases. For the HD,
the sum SE remains unchanged as it is unaffected by the
residual SI, IAI, and UL-to-DL interference. We note that
the vulnerability of the FD CF mMIMO to the residual SI
is aggravated by the low-resolution ADCs. For instance, with
1-bit quantization, the FD CF mMIMO outperforms the HD
CF mMIMO in the region ρ2

SI/No ≤ 143 dB and the region
grows to ρ2

SI/No ≤ 152 dB and ρ2
SI/No ≤ 155 dB for

bAPm (bUEk ) = 3 and bAPm (bUEk ) =∞, respectively. For the co-
located mMIMO, the FD outperforms the HD in the regime
ρ2
SI/No ≤ 118 dB, ρ2

SI/No ≤ 126 dB and ρ2
SI/No ≤ 134
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Fig. 5: Total sum SE vs residual SI ρ
2
SI

No
(dB) (M = 80, Nrx =

Ntx = 5, Lu = Ld = 20).
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Fig. 6: Sum SE vs Rician κ-factor (dB) (M = 80, Lu = Ld =
30).

dB for ADC resolutions 1, 3 and ∞, respectively. Thus, the
FD CF mMIMO provides more resistance to the residual SI
than its co-located counterpart. Moreover, the total sum SE
is substantially higher for the FD CF mMIMO than the co-
located counterpart. This is because the IAI is considerably
lower (due to the higher pathloss among the APs) than the
SI at the co-located mMIMO, where the receive and transmit
antenna arrays are in close proximity.

Fig. 6 shows a plot of the UL/DL sum SE versus the Rician
κ-factor in dB. We set Lu = Ld = 30. Here, the UL and DL
Rician κ-factors are set such that κml = κmk = κ,∀m, l, k.
The upper subplot shows the UL sum SE while the lower
subplot indicates the DL sum SE. We observe that the UL/DL
sum SEs show an initial growth as the κ increases until it
approaches a saturation point. This point of convergence is
obtained by (10) and (11) for the UL and DL, respectively.
Thus, in a strong LoS environment, there exists a performance
ceiling irrespective of the channel estimation quality. Further,
it is noted that the rate of saturation is influenced strongly by
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Fig. 7: Convergence of the proposed sum SE maximization
algorithm (Lu = Ld = 30).
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Fig. 8: Total sum SE vs number of users (ρ
2
SI

No
= 80 dB,

bAPm = 3, and bUEk = 5).

the ADCs’ resolution. For example, in the UL, it is observed
that for bAPm = 1 bit, the sum SE saturates at κ = 18 dB while
the saturation point is κ = 26 dB for bAPm = 3 bits.

B. Power Optimization

Here, we discuss the convergence properties of the proposed
algorithm and sum SE improvement thanks to the joint power
allocation algorithm. We set the following parameters: Lu =

Ld = 30, ρ
2
SI

No
= 80 dB, bAPm = 3, ∀m and bUEk = 5, ∀k.

Fig. 7 indicates the convergence of the proposed sum SE
maximization algorithm, for different APs M and ADCs’
resolution bAPm (bUEk ). Algorithm 2 for alternating optimization
for (17) comprises the WMMSE outer loop and an inner loop
for the ADMM. From the figure, it is observed that for every
update of the data powers, the total sum SE of the network
is improved. From an initial starting point, the system sees
about 12% to 20% growth in the total sum SE at the point of
convergence (for all the considered APs and quantization bits).
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Fig. 9: CDF of total sum SE (M = 80, Nrx = Ntx = 5,
Lu = Ld = 30, bAPm = 3, bUEk = 5).

We note that the proposed algorithm requires few iterations
to converge. Meanwhile, the algorithm has low complexity
since each step in the algorithms involves solving closed-form
expression.

In Fig. 8, we compare the performance of the FD CF
mMIMO with low-resolution ADCs and power optimization
(i.e., indicated as “Optimized”) with the setting without power
optimization (i.e., shown as “Non-Optimized”). We plot the
total sum SE versus the number of UL/DL users, for different
M . It is considered that Lu = Ld = L, i.e., the total
number of UL and DL users in the network is 2L. From
Fig. 8, we observe that jointly optimizing the data powers
offers significant improvements in the total sum SE. For e.g.,
when M = 80, the SE improvement with L = 5 is 6.18%
which increases to 13.7% for L = 35. It is worth noting
that the “Optimized” system with M = 60 shows better sum
SE than the setting with M = 80 without optimization. This
shows the robust SE improvement provided by the joint power
optimization algorithm. Generally, the total sum SE decays as
the users increase beyond a certain number due to the pre-log
factor τs/τc. As the number of users increase, more timeslots
are utilized for pilot signaling which results in reduction of
the available slots for useful data transmission.

Fig. 9 shows the cumulative distribution function (CDF) of
the total sum SE for the “Optimized” and “Non-Optimized”
system, for different levels of normalized residual SI ρ2

SI/No.
The performance gains introduced by the power allocation
algorithm at ρ2

SI/No = 100 dB and ρ2
SI/No = 140 dB

are 13.2% and 38%, respectively. We note that the sum SE
reduction due to the increase in ρ2

SI/No (i.e., from 100 dB
to 140 dB) is 12.7% in the “Optimized” system and 37.5%
in the “Non-Optimized” setting. Thus, indicating that the
power optimization provides more robustness to the increasing
interference caused by the FD transmissions. In Fig. 10,
we plot the CDF of the total sum SE with and without
power optimization, for the quantized and unquantized FD
CF mMIMO. It is clear that the power allocation algorithm
provides significant boost in the total sum SE. Notably, the
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Fig. 10: CDF of total sum SE (M = 80, Nrx = Ntx = 5,
Lu = Ld = 30, and ρ2SI

No
= 80 dB).

quantized FD CF system with power allocation shows better
total sum SE than the unquantized FD CF mMIMO without
optimization.

C. Energy Efficiency

In this subsection, we evaluate the performance of the FD
CF mMIMO with low-resolution ADCs by investigating the
trade-off between the power consumption and the achievable
SE. First, we modify a generic power consumption model
proposed in [40], [41], [42] for the FD CF mMIMO. Then,
this power consumption model is used to evaluate the UL and
DL EEs. The total circuit power consumed by the RF chains
in the UL and DL are modeled by

PuT = MNrx(PLNA + PM + PLPF + PLO + PBamp)

+ 2Nrx

M∑
m=1

(cPAGC,m + PADC,m), (37)

P dT = Ld(PLNA + PM + PLPF + PLO + PBamp)

+

Ld∑
k=1

(cPAGC,k + PADC,k), (38)

respectively, where PLNA, PM , PLO, PLPF , PBamp,
PAGC,m, andPADC,m denote the power consumed by the
low-noise amplifier, mixer, local oscillator, low-pass filter,
baseband amplifier, m-th AP automatic gain controller (AGC),
and ADC, respectively; PAGC,k and PADC,k are the power
consumption of the AGC and ADC at the k-th DL user,
respectively. Also, c is an indicator which takes the value
c = 0, for bAPm = 1; c = 1, for bAPm > 1. The power
consumed by the ADCs is given by PADC,m = 2b

AP
m FW fs,

where FW denotes the Walden’s figure-of-merit (FOM) and
fs is the Nyquist sampling rate. Similar definition holds for
PADC,k. Using (37) and (38), the UL/DL EE is given by
ϑvEE = B

∑Lv
k=1R

v
k/P

v
T bits/Joule [30], where B denotes



14

the bandwidth and v ∈ [u, d].10 For numerical evaluation, the
following power consumption values are used: PM = 16.8
mW, PLO = 5 mW, PLPF = 14 mW, PBamp = 5 mW,
PLNA = 39 mW [42] and PAGC = 2 mW [40], [41] with
FW = 494 fJ/step/Hz [42].11

Fig. 11 (a) shows a plot of UL EE (in Mbps/J) versus
the ADCs’ resolution bAPm , for different number of APs
M . For comparison, the EE performance in Rayleigh fading
scenario is included. We set Lu = Ld = 30 and ρ2SI

No
= 80

dB. It is observed that the UL EE monotonically increases
as the ADCs’ resolution increases from bAP = 1 to 3.
However, as bAP increases beyond 3 bits, the UL EE
declines rapidly towards zero. This is because the UL sum
SE grows sublinearly with the ADCs’ resolution while the
power consumption increases exponentially with bAP . Thus,
as bAP increases above a threshold, i.e., bAP > 3, the power
consumed dominates and the EE decays rapidly. Generally,
the UL EE reduces as M grows since the increase in the
receive RF chains implies more ADCs are employed. We
note that the total power consumed grows linearly with M
and Nrx while the UL sum SE grows logarithmically with
the APs. Furthermore, it is obvious from Fig. 11 (a) that the
UL EE in Rician fading channels is superior to the Rayleigh
case. This is because the UL sum SE improves in strong LoS
environments whereas the total power consumed by the ADCs
is independent of the Rician κ-factor (see Fig. 6). Fig. 11 (b)
plots the trade-off between the UL EE and sum SE. We vary
the quantization bits from bAP = 1 to 12. For each bAP ,
the UL sum SE and EE are computed. Higher sum SE are
plotted on the right while higher EE performance are shown
in the upper plots. Therefore, the best EE/SE trade-off occur
on the right uppermost points. It is observed that as the ADCs’
resolution increases, both the UL EE and sum SE increases
as bAP improves from 1 to 3. For bAP > 3, the UL EE
reduces while the UL sum SE remains saturated. Also, the
entire operating region envelope of the FD CF mMIMO with
low-resolution ADCs is improved in Rician fading scenarios.

Fig. 11(c) plots the DL EE against the ADCs’ resolution
bUE at the DL users, for different M . It is observed that
the DL EE initially grows as bUE increases from 1 to 4
before decaying towards zero. As the quantization bits at the
DL users improves, the DL sum SE grows until saturation.
However, the power consumption increases exponentially for
every increase in the resolution bits and the EE subsequently
falls. Contrasting with the UL, the DL EE improves as the
number of APs increases since the DL sum SE enhances
with M and the total power consumption in the DL, i.e.,
P dT is not dependent on the number of transmit RF chains,
i.e., M and Ntx. Similar to the UL, the DL EE is improved
in Rician channels when compared with the Rayleigh case.
Fig. 11(d) provides insights into the DL EE and SE trade-

10Since the key benefit of using low-resolution ADCs in mMIMO systems
is to reduce the circuit power consumption, particularly due to the ADCs, we
study the EE as a function of the circuit power consumption and ignore the
UL/DL transmit powers. This is a standard assumption in the literature [16],
[30], [41], [42].

11This corresponds to the high power ADC which operates at a speed of
1 Gs/s. The Walden’s FOM can have values as small as FW = 5 ∼ 65
fJ/step/Hz for a low-to-intermediate power ADC [42].
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Fig. 11: (a) UL: EE vs ADCs’ resolution. (b) UL: EE/SE trade-
off. (c) DL: EE vs ADCs’ resolution. (d) DL: EE/SE trade-off.

off. From Fig. 11, it is clear that the DL EE and sum SE
increases as the quantization bits increase from bUE = 1 to
4. However, for bUE > 4, the DL sum SE remains flat while
the DL EE decreases towards zero as the power consumed by
the DL users dominates. Also, the envelope of the operating
region in the DL increases as M grows and enlarges in LoS
conditions. From Fig. 11(a) and Fig. 11(c), we note that using
the derived analytical results, we can numerically obtain the
optimal number of quantization bits that maximize the UL and
DL EEs, i.e., bAP = 3 and bUE = 4, respectively.

VI. CONCLUSION

We have studied the SE/EE of the FD CF mMIMO
with low-resolution ADCs over Rician channels. Closed-
form solutions have been derived to characterize the joint
effects of the Rician κ-factor, UL/DL powers, residual SI/IAI,
UL-to-DL interference, and QN on the UL/DL achievable
SEs. The vulnerability of the FD system to the residual
SI/IAI and UL-to-DL interference is aggravated by the coarse
quantization. However, the FD CF mMIMO offers significant
SE improvement over the HD counterpart and co-located
FD mMIMO. We have maximized the total sum SE of the
network subject to the per user power and per AP power
constraints. From the results, the proposed algorithm offers
considerable SE gain over the uniform power allocation. We
have analyzed the trade-off between the SE and EE as a
function of the ADCs’ resolution. The optimal ADC resolution
that maximizes the EE can be numerically achieved.

APPENDIX A
PROOF OF THEOREM 1

1) Solve for Desired Signal and Noise: Here, we have
the desired signal Aul

∆
= pu,l|E{

∑M
m=1 αmĥHmlhml}|2, where

E{
∑M
m=1 αmĥHmlhml} is rewritten as

∑M
m=1 αmE{ĥHmlhml}.

E{ĥHmlhml} = E{ĥHml(h̃ml + ĥml)}
(a)
= E{‖ĥml‖2}

= E{‖κ1/2
ml κ̄

−1/2
ml hL,ml + κ̄

−1/2
ml ĥw,mk‖2}

(b)
= κmlκ̄

−1
mlE{‖hL,mk‖

2}+ κ̄−1
mlE{‖ĥw,ml‖

2}, (39)
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where (a) uses the fact that the estimate and error channel
vectors are independent and in (b), we remove all the terms
with zero expectations. Then, we have E{‖hL,mk‖2} =

ζml
∑Nrx
n=1 e

j(n−1)π sin(ψuml) · e−j(n−1)π sin(ψuml) = ζmlNrx
and E{‖ĥw,ml‖2} = ζmlµmlNrx. Therefore, we have
the solution pu,lN

2
rx(
∑M
m=1 αmζmlκ̄

−1
ml(κml + µml))

2.
Similarly, the noise term yields

∑M
m=1 α

2
mE{‖ĥml‖2} =∑M

m=1 α
2
mζmlκ̄

−1
ml(κml + µml).

2) Solve the BUG: The term Bul is rewritten
as pu,l[

∑M
m=1

∑M
m′=1 αmαm′E{ĥHmlhmlhHm′lĥm′l} −

N2
rx(
∑M
m=1 αmζmlκ̄

−1
ml(κml + µml))

2]. Here, we derive the
first term for all possible AP combinations.

For m 6= m′, E{ĥHmlhmlhHm′lĥm′l} =
E{ĥHmlhml}E{hHm′lĥm′l}. E{ĥHmlhml} = E{ĥHmlĥml} =
ζmlκ̄

−1
ml(κml + µml)Nrx. Similarly, E{hHm′lĥm′l} =

ζm′lκ̄
−1
m′l(κm′l + µm′l)Nrx.

For m = m′, we have E{|ĥHmlhml|2} = E{|ĥHmlh̃ml|2} +
E{|ĥHmlĥml|2}. Thus, E{|ĥHmlh̃ml|2} = ζ̃mlE{‖ĥml‖2} =
ζ̃mlζmlκ̄

−1
ml(κml+µml)Nrx. For E{|ĥHmlĥml|2}, we can write

E{‖ĥml‖4} = E{‖(κ1/2
ml κ̄

−1/2
ml hHL,ml + κ̄

−1/2
ml ĥHw,mk)×

(κ
1/2
ml κ̄

−1/2
ml hL,ml + κ̄

−1/2
ml ĥw,mk)‖2} (c)

= κ2
mlκ̄
−2
mlE{|hL,ml|

4}
+ κmlκ̄

−2
mlE{|h

H
L,mlĥw,ml|2}+ κmlκ̄

−2
mlE{|ĥ

H
w,mlhL,ml|2}

+ κmlκ̄
−2
mlE{|h

H
L,mlhL,mlĥ

H
w,mlĥw,ml|}

+ κmlκ̄
−2
mlE{|ĥ

H
w,mlĥw,mlh

H
L,mlhL,ml|}+ κ̄−2

mlE{‖ĥw,ml‖
4},

where in (c), we remove all the terms with zero expectations.
From above, we derive E{‖hL,ml‖4} =

(ζml
∑Nrx
n=1 e

j(n−1)π sin(ψuml) · e−j(n−1)π sin(ψuml))
2

= ζ2
mlN

2
rx,

E{|hHL,mlĥw,ml|2} = ζ2
mlµmlNrx, and E{|ĥHw,mlhL,ml|2} =

ζ2
mlµmlNrx. Also, E{|hHL,mlhL,mlĥHw,mlĥw,ml|} =

E{hHL,mlhL,ml}E{ĥHw,mlĥw,ml} = ζ2
mlµmlN

2
rx. Similarly,

E{|ĥHw,mlĥw,mlhHL,mlhL,ml|} = ζ2
mlµmlN

2
rx. Using [43,

Lemma 2.9], E{‖ĥw,ml‖4} = ζ2
mlµ

2
mlNrx(Nrx + 1). Thus,

E
{∣∣∣ M∑

m=1

αmĥHmlhml

∣∣∣2} =

M∑
m=1

α2
m

[
ζ̃mlζmlκ̄

−1
ml(κml + µml)×

Nrx + κ̄−2
mlζ

2
ml(κ

2
mlN

2
rx + 2κmlµmlNrx + 2κmlµmlN

2
rx+

µ2
mlN

2
rx + µ2

mlNrx)
]

+

M∑
m 6=m′

M∑
m′=1

αmαm′ζmlκ̄
−1
mlζm′lκ̄

−1
m′l×(

κmlκm′l + µmlµm′l + κmlµm′l + µmlκm′l

)
N2
rx

= Nrx

M∑
m=1

α2
mκ̄
−1
mlζml

[
ζ̃ml(κml + µml) + κ̄−1

mlζml(2κmlµml

+ µ2
ml)
]

+N2
rx

M∑
m=1

M∑
m′=1

αmαm′ζmlκ̄
−1
mlζm′lκ̄

−1
m′l

(
κmlκm′l+

µmlµm′l + κmlµm′l + µmlκm′l

)
.

Using ζ̃ml = ζmlκ̄
−1
ml − ζ̂ml and performing simple algebra

pu,lVar(
∑M
m=1 αmĥHmlhml) yields

pu,lNrx

M∑
m=1

α2
mκ̄
−2
mlζ

2
ml(µml + κml + µmlκml). (40)

3) Solve for the MUI: The MUI term is expressed
as Cll′ =

∑Ku
l′ 6=l

∑M
m=1 pu,l′α

2
mE{|ĥHmlhml′ |2}. We

expand E{|ĥHmlhml′ |2} = E{|(κ̄−1/2
ml κ

1/2
ml h

H
L,ml +

κ̄
−1/2
ml ĥHw,ml)(κ̄

−1/2
ml′ κ

1/2
ml′hL,ml′ + κ̄

−1/2
ml′ hw,ml′)|2}

= κ̄−1
ml κ̄

−1
ml′ [κmlκml′E{|hHL,mlhL,ml′ |2} +

κmlE{|hHL,mlhw,ml′ |2}+κml′E{ĥHw,mlhL,ml′ |2}+E{|ĥHw,ml×
hw,ml′ |2}]. The following expectations are
derived: E{|ĥHw,mlhw,ml′ |2} = ζmlµmlζml′Nrx,
E{|hHL,mlhw,ml′ |2} = ζml′ζmlNrx, and E{ĥHw,mlhL,ml′ |2} =

ζml′ζmlµmlNrx. Also, E{|hHL,mlhL,ml′ |2} =

[
∑Nrx
n=1 e

j(n−1)π(sin(ψuml)−sin(ψu
ml′ ))]2ζmlζml′

(d)
=

ζmlζml′ [φmll′e
j(π2 (Nrx−1))(sin(ψuml)−sin(ψu

ml′ ))]2 =
ζmlζml′φ

2
mll′ , where (d) uses [24, eq. (118)]. Combining all

derived terms, the MUI term achieves

Nrx

Lu∑
l′ 6=l

M∑
m=1

pu,l′α
2
mζmlζml′ κ̄

−1
ml κ̄

−1
ml′(κmlκml′

φ2
mll′

Nrx
+ κml

+ κml′µml + µml). (41)

4) Solve the residual SI and IAI: : The residual SI/IAI
is given as

∑Ld
k=1

∑M
m=1

∑M
n=1 α

2
mηnkE{|ĥHmlQmnĝnk|2}.

We derive E{|ĥHmlQmnĝnk|2} = βnkκnkκ̄
−1
nk (νnk +

κnk)E{|ĥHmlQmnQ
H
mnĥml|} = NtxNrxβnkκnkκ̄

−1
nk (νnk +

κnk)σ2
mnζmlκmlκ̄

−1
ml(µml + κml). Thus, we have

Ld∑
k=1

M∑
m=1

M∑
n=1

α2
mηnkσ

2
mnβnkκnkκ̄

−1
nk ζmlκmlκ̄

−1
ml(νnk + κnk)×

(µml + κml)NtxNrx. (42)

5) Solve the QN: To derive the QN, we write
E{|
∑M
m=1 ĥ

H
mlz̃m|2} =

∑M
m=1

∑M
m′=1 E{|ĥHmlz̃mz̃m′ ĥm′l|}.

For m 6= m′, E{|ĥHmlz̃mz̃m′ ĥm′l|} = 0 since
the QN vectors are uncorrelated. If m = m′, we
have E{|ĥHmlRz̃m ĥml|}. To obtain Rz̃m , we derive
E{yum(yum)H} = E

{∑Lu
l=1

∑Lu
l′=1

√
pu,lpu,l′hmlh

H
ml′ +∑Ld

k=1

∑Ld
k′=1

∑M
n=1

∑M
n′=1

√
ηnkηn′k′Qmnĝnkĝ

H
n′k′Q

H
mn′

}
+

INrx . For l 6= l′, E{|hmlhHml′ |} = 0. If n 6= n′

and k 6= k′, E{Qmnĝnkĝ
H
n′k′Q

H
mn′} = 0; If n = n,

k 6= k′, E{|Qmnĝnkĝ
H
nk′Q

H
mn′ |} = 0; n 6= n′ and

k = k′, E{|Qmnĝnkĝ
H
n′kQ

H
mn′ |} = 0; Let gnkt = [gnk]t,

uit = [Qmn]it and hmli = [hml]i. Thus, the QN simplifies as

M∑
m=1

ᾱm

Nrx∑
i=1

(
E{|ĥmli|2}+

Lu∑
l 6=l′

pu,l′E{|ĥ∗mlihml′i|2}+

pu,lE{|ĥ∗mlihmli|2}+

Ld∑
k=1

M∑
n=1

Ntx∑
t=1

ηnkE{|ĥ∗mliuitĝnkt|2}
)
.

We derive E{|ĥmil|2} = ζmlκ̄
−1
ml(µml + κml) and

E{|ĥ∗mliuitĝnkt|2} = σ2
mnβnkκ̄

−1
nk (νnk + κnk)κ̄−1

mlζml(µml +
κml).

Next, we write E{|ĥ∗mlihmli|2} = E{|ĥ∗mlih̃mli|2} +
E{|ĥmli|4}; E{|ĥ∗mlih̃mli|2} = ζ̃mlζmlκ̄

−1
ml(κml + µml)

and E{|ĥmli|4}
(d)
= κ̄−2

ml(κ
2
mlE{|hL,mli|4} + E{|ĥw,mli|4} +

4κmlE{|h∗L,mliĥw,mli|2}) = κ2
mlκ̄
−2
mlζ

2
ml + 2κ̄−2

mlζ
2
mlµ

2
ml +
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4ζ2
mlµmlκmlκ̄

−2
ml , where (d) removes the terms with zero

expectations. Thus, E{|ĥ∗mlihmli|2} = ζ̃mlζmlκ̄
−1
ml(κml +

µml) + κ̄−2
mlζ

2
ml(κ

2
ml + 2µ2

ml + 4µmlκml) = κ̄−2
mlζ

2
ml(κ

2
ml +

µ2
ml + 3µmlκml + κml + µml).
Finally, E{|ĥ∗mlihml′i|2} = (κmlκml′E{|h∗L,mlihL,ml′i|2}

+ κmlE{|h∗L,mlihw,ml′i|2} + κml′E{|ĥ∗w,mlihL,ml′i|2} +

E{|ĥ∗w,mlihw,ml′i)|2})κ̄
−1
ml κ̄

−1
ml′ , where we derive

E{|h∗L,mlihL,ml′i|2} = ζmlζml′ , E{|h∗L,mlihw,ml′i|2} =

ζml′ζml, E{|ĥ∗w,mlihL,ml′i|2} = ζml′ζmlµml, and
E{|ĥ∗w,mlihw,ml′i)|2} = ζml′ζmlµml. Therefore,
E{|ĥ∗mlihml′i|2} = ζmlζml′ κ̄

−1
ml κ̄

−1
ml′(µml + κml + κml′µml +

κmlκml′).
Combining the terms, the QN yields

M∑
m=1

Nrxᾱm[ζmlκ̄
−1
ml(µml + κml) + pu,lκ̄

−2
mlζ

2
ml(κ

2
ml + µ2

ml+

3µmlκml + κml + µml) +

Lu∑
l′ 6=l

pu,l′ζmlζml′ κ̄
−1
ml κ̄

−1
ml′(µml+

κml + κml′µml + κmlκml′) +Ntx

Ld∑
k=1

M∑
n=1

ηnkσ
2
mnβnkκ̄

−1
nk×

κ̄−1
mlζml(νnk + κnk)(µml + κml)]. (43)

Substituting the derived terms into (4) completes the proof.

APPENDIX B
PROOF OF THEOREM 2

For brevity, we derive only the QN term at the k-th DL
user. The other terms are obtained by following Appendix A.
Here, the QN is Z̃dk = (εk − ε2

k)E{|ydk|2}, where

E{|ydk|2} = 1 +

Ku∑
l=1

Lu∑
l′=1

√
pu,lpu,l′E{|qklq∗kl′ |}+

Ld∑
k′=1

Ld∑
k′′=1

M∑
m=1

M∑
m=1

√
ηmk′ηm′k′′E{|gHmkĝmk′ ĝHm′k′′gm′k|}.

To derive the third term, all possible AP-user combinations
are considered. If k′ 6= k′′ 6= k and m 6= m′,
E{|gHmkĝmk′ ĝHm′k′′gm′k|} = 0; If k′ = k′′ 6= k and m 6= m′,
E{|gHmkĝmk′ ĝHm′k′gm′k|} = 0; For k′ = k′′ 6= k, m = m′,
E{|gHmkĝmk′ ĝHmk′gmk|} = E{|gHmkĝmk′ |2}. We have

E{|gHmkĝmk′ |2} = E{|(κ1/2
mk κ̄

−1/2
mk gHL,mk + κ̄

−1/2
mk gHw,mk)×

(κ
1/2
mk κ̄

−1/2
mk gL,mk + κ̄

−1/2
mk ĝw,mk)|2}

= κmkκ̄
−1
mkκmk′ κ̄

−1
mk′E{|g

H
L,mkgL,mk′ |2}+ κ̄−1

mkκ̄
−1
mk′×

E{|gHw,mkĝw,mk′ |2}+ κmkκ̄
−1
mkκ̄

−1
mk′E{|g

H
L,mkĝw,mk′ |2}+

κ̄−1
mkκmk′ κ̄

−1
mk′E{|g

H
w,mkgL,mk′ |2}.

The following expectations are derived: E{|gHL,mkgL,mk′ |2} =

βmkβmk′ [
∑Ntx
n=1 e

j(n−1)π sin(ψdmk) · e−j(n−1) sin(ψd
mk′ )]2

(d)
=

βmkβmk′ [φmkk′e
j((Ntx−1)π/2)(sin(ψumk−sin(ψu

mk′ ))]2 =
βmkβmkφ

2
mkk′ , where (d) has used [24, eq. (118)].

Also, E{|gHw,mkĝw,mk′ |2} = βmk′νmk′E{‖gw,mk‖2} =

βmk′νmk′βmkNtx, E{|gHL,mkĝw,mk′ |2} = βmk′νmk′βmkNtx
and E{|gHw,mkgL,mk′ |2} = βmk′βmkNtx. Therefore,

E{|gHmkĝmk′ |2} = Ntxβmkβmk′(νmk′ + κmk′ + κmkνmk′+

κmkκmk′
φ2
mkk′

Ntx
). (44)

Next, if k′ = k′′ = k′ and m 6= m′,
E{|gHmkĝmkĝHm′kgm′k|} = E{|gHmkĝmk|}E{|ĝHm′kgm′k|}.
We derive E{|gHmkĝmk|} = E{|(ĝHmk + g̃mk)ĝmk|} =
E{‖ĝmk‖2}, where we have used the fact that the
estimated and error vectors are uncorrelated. Therefore,
E{‖ĝmk‖2} = E{‖κ1/2

mk κ̄
−1/2
mk gL,mk + κ̄

−1/2
mk ĝw,mk‖2} =

κmkκ̄
−1
mkE{gHL,mkgL,mk} + κ̄−1

mkE{‖ĝw,mk‖2},
where we exploit the zero-mean property of
estimated white channel. E{gHL,mkgL,mk} =

βmk
∑Ntx
n=1 e

j(n−1)π sin(ψumk) · e−j(n−1)π sin(ψumk) = βmkNtx
and E{‖ĝw,mk‖2} = βmkνmkNtx. We have
E{‖ĝmk‖2} = κ̄−1

mkβmkNtx(κmk + νmk). Similarly,
E{|ĝHm′kgm′k|} = κ̄−1

m′kβm′kNtx(κm′k + νm′k). Thus,

E{|gHmkĝmkĝHm′kgm′k|} = N2
txκ̄
−1
mkβmkκ̄

−1
m′kβm′k(κmk+

νmk)(κm′k + νm′k). (45)

Finally, for k′ = k′′ = k and m = m′, E{|gHmkĝmk|2} =
E{|g̃Hmkĝmk|2} + E{‖ĝmk‖4}. We derive E{|g̃Hmkĝmk|2} =
β̃mkE{‖ĝmk‖2} = Ntxβ̃mkκ̄

−1
mkβmk(κmk + νmk) and

E{‖ĝmk‖4} = E{|(κ1/2
mk κ̄

−1/2
mk gHL,mk + κ̄

−1/2
mk ĝHw,mk)(κmk×

κ̄−1
mkgL,mk + κ̄−1

mkĝw,mk)|2} (c)
= κ2

mkκ̄
−2
mkE{|g

H
L,mkgL,mk|2}+

κmkκ̄
−2
mkE{|g

H
L,mkĝw,mk|2}+ κmkκ̄

−2
mkE{|ĝ

H
w,mkgL,mk|2}+

κ̄−2
mkE{‖ĝw,mk‖

4}+ κmkκ̄
−2
mkE{|g

H
L,mkgL,mkĝ

H
w,mkĝw,mk|}

+ κmkκ̄
−2
mkE{|ĝ

H
w,mkĝw,mkg

H
L,mkgL,mk|}. (46)

Note that in (c), we remove the terms with zero mean.
From (46), we can derive the following expectations:
E{|gHL,mkgL,mk|2} = β2

mkN
2
tx, E{|gHL,mkĝw,mk|2} =

β2
mkνmkNtx, and E{|gHL,mkgL,mkĝHw,mkĝw,mk|} =

E{|gHL,mkgL,mk|}E{|ĝHw,mkĝw,mk|} = N2
txβ

2
mkνmk.

Similarly, E{|ĝHw,mkĝw,mkgHL,mkgL,mk|} = N2
txβ

2
mkνmk.

Using [43, Lemma 2.9], E{‖ĝw,mk‖4} =
β2
mkν

2
mkNtx(Ntx + 1). Thus, E{‖ĝmk‖4} =

κ̄−2
mkβ

2
mk(κ2

mkN
2
tx + ν2

mkN
2
tx + ν2

mkNtx + 2κmkνmkNtx +
2κmkνmkN

2
tx). Therefore, E{|gHmkĝmk|2} gives the solution

E{|gHmkĝmk|2} = Ntxβ̃mkκ̄
−1
mkβmk(κmk + νmk) + κ̄−2

mkβ
2
mk×

(κ2
mkN

2
tx + ν2

mkN
2
tx + ν2

mkNtx + 2κmkνmkNtx+

2κmkνmkN
2
tx) = β2

mkκ̄
−2
mk[Ntx(νmk + κmk + νmkκmk)+

N2
tx(κ2

mk + ν2
mk + 2κmkνmk)], (47)

where we have used β̃mk = βmkκ
−1
mk − β̂mk.

Finally, we consider E{|qklqkl′ |} from above. If l′ 6= l,
E{|qklqkl′ |} = 0 and for l′ = l, E{|qkl|2} = γ2

kl. Using (44),
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(45), and (47), the QN at the k-th DL user is written as

Z̃dk =
[
Ntx

Ld∑
k′ 6=k

M∑
m=1

ηmk′βmkβmk′
(
κmkνmk′ + νmk′ + κmk′

+
κmkκmk′φ

2
mkk′

Ntx

)
+Ntx

M∑
m=1

ηmkβ
2
mkκ̄

−2
mk

(
νmkκmk + νmk

+ κmk

)
+N2

tx

M∑
m=1

M∑
m′=1

√
ηmkηm′kκ̄

−1
mkβmkκ̄

−1
m′kβm′k

(
κmk×

κm′k + νmkνm′k + κmkνm′k + κm′kνmk

)
+

Lu∑
l=1

pu,lγ
2
kl

]
× (εk − ε2

k). (48)

This completes the proof.
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