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ABSTRACT: A significant aspect of a subway tunnel condition assessment is the sys-
tematic inspection of the inner concrete lining state. Fractures and cracks are one of the 
most common problems of the tunnels in service. It is therefore necessary to detect and 
classify them according to their characteristics and danger level. Underground infrastruc-
ture such as metro tunnels comprise many kilometres in length. Innovative technology is 
vital for the efficient maintenance through detection of possible failures due to fractur-
ing. We will present a new semi-automatic system of detection of crack presence under 
development for the Athens metro. The system is composed of an acquisition system 
(camera) geolocated, a module of cracks detection and an analysis module. In this 
paper, we will focus on the system core, i.e. segmentation and extraction of the frac-
tures. The segmentation module is based on a class of artificial neural network deemed 
more suitable for the analysis of visual images, i.e. an efficient convolutional neural net-
work (CNN). So the first step of this study is to find the most suitable CNN and its 
optimized parameters in terms of precision. Several CNN will be compared. The extrac-
tion module will first extract the segmented cracks and then define a set of parameters 
such as length, width, area and form. This extraction takes into account that the camera 
has limitations and a crack could be present on several images. Future applications of 
this system include the automatic surveillance of the fracture evolution in time and the 
application of adapted prevention measures.

1 INTRODUCTION

Concrete is a material with excellent durability, which explains its wide use as construction 
material. It is nonetheless subject to material limitations which, in combination to design and 
construction practices as well as exposure to severe weather conditions can lead to its damage. 
The damage influences different aspects of the structure, namely the aesthetic, the structural 
and the functional. Grave factors are those that jeopardise the structural integrity of the struc-
ture such as chemical attacks, carbonation, dynamic loading and overloading, dry and wet 
cycling and fire. The series of CEN standards under EN 1504 define the principles of rehabili-
tation of damaged concrete structures. The choice of repair materials and systems are also 
included.

In 2018, a market research exercise was commissioned by the Materials for Life 
(M4L) EPSRC funded research project. Interestingly, the market research showed 
(Figure 1) that damage in the form of cracking in concrete structures was experienced 

DOI: 10.1201/9781003348030-310

2571

https://doi.org/10.1201/9781003348030-310


by more clients, design team members and civil engineering contractors than any other 
problem (Gardner et al. 2018). The predominant strategies for the inspection of concrete 
structures and the recording of cracks are based on “manual” visual inspection by 
experienced personnel. It is clear however, that structural tunnel inspection even if per-
formed through scheduled, periodic tunnel-wide visual observations by inspectors who 
identify defects and rate them, is a slow process with many limitations. The inspectors 
work in an unpleasant environment of dust, absence of light, uncomfortable conditions 
and possibly toxic substances. These working conditions are an important motivation to 
use innovative automated methods for tunnel inspection.

Moreover, the use of innovative technology can provide more objective and efficient main-
tenance through automatic detection of fractures. It is a task that may be undertaken by an 
automated system of detection of crack presence. The use of robotic systems in construction is 
a field with rapid advancements and several studies review their advantages for underground 
construction. Design of a robotic system includes two main parts, the first being the moving 
configuration and the second being the set of sensors it will be equipped with, to perform the 
required detection. The former is generally implemented as a wheeled platform, which has of 
course limitations in more complex and unstructured environments. There are however solu-
tions such as those reported by Boston Dynamics (Raibert et al., 2008) and their quadruped 
robot to face a challenging environment, or Unmanned Aerial Vehicles (UAV) to go through 
uneven terrain.

For the latter, i.e. the sensors part, it is important to notice that the inspection of a tunnel 
aims at certifying the safety of that structure and that it is also desirable to perform the inspec-
tion in a non-destructive way (NDI). Concrete is the most common material in tunnel con-
struction but metal and masonry make up a significant part. Cracks in reinforced concrete 
due to structural load are frequent. If their width lies within specified limits, usually 
0.1-0.3 mm, they are acceptable. The typical defects that are recognizable in concrete tunnels 
are cracks, spalling and leakage. If the tunnel walls have been covered by a finish such as 
paint, then their condition is observable on the basis of the deficiencies of the finish. For non- 
destructive recognition of these features there are several available methods as summarized in 
Table 1.

Figure 1.  Market research results (Gardner et al. 2018 - CC License).
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Based on the above, a possible configuration for the sensors part would be a combination 
of visual and ultrasonic systems for crack detection and a 3-D laser scanning system to detect 
lining deformations. This research does not intend to “reinvent the wheel”, therefore the 
assumption of a robot composed of at least an acquisition system (camera) geolocated is 
assumed, a module of cracks detection and an analysis module. This way, our research will 
focus on the system core, i.e. segmentation and extraction of the fractures and their features.

2 CRACK DETECTION WITH NEURAL NETWORKS

Crack detection using image processing has the advantage of providing more accurate results 
if compared to the results from conventional manual methods. Digital cameras currently have 
at least 12 megapixels image resolution, which enables the detailed acquisition of concrete sur-
face by using simply a mobile phone. Early methods for crack recognition typically applied 
threshold-based approaches to find the region of cracks. The basis of that approach was that 
crack pixels must be darker than surrounding pixels and brightness was the feature taken into 
consideration (Li & Liu, 2008). Obviously, these methods are overly sensitive to noise and 
lacking in global view of the forming crack (Shi et al., 2016). The suppression of noise is 
mostly countered by incorporating more features such as gray-level value based on various 
methods such as the Otsu (1979) threshold selection method (Nhat-Duc, 2018) or the method 
of Kapur et al. (1985), or the neighboring difference histogram method proposed in Li & Liu 
(2008). Apart from the pixel-based analysis of images, block-based crack detection is also 
reported in literature (Oliveira & Correia, 2013). State-of-the-art crack detection methods 
include CrackTree (Zou et al., 2012), CrackIT (Oliveira & Correia, 2013), FFA (Nguyen 
et al., 2011) and MPS (Amhaz et al., 2014).

2.1  Convolutional neural networks

In the last decade, deep convolutional neural networks (DCNN) have been developed for 
image classification and general object detection thanks to the developments in computing 
power and the large amounts of data supplemented by improved algorithms and large tagged 

Table 1. Non-destructive tunnel inspection methods.

Method Description

Visual Well-trained eye
Strength-based Estimation of surface compressive strength (eg. rebound test)
Sonic Estimation of strength based on modulus of elasticity calculated from impact-echo 

sonic pulse travelling speed (e.g. sounding rod)
Ultra-sonic Estimation of strength based on velocity of pulse generated by a piezoelectric trans-

ducer (ultrasonic devices)
Magnetic Determination of reinforcement position (e.g. Magnetic Flux Leakage method)
Electrical Determination of permeability and corrosion through measurements of electrical 

potential differences between reinforcing steel and the surface.
Thermography Similar to visual method but under infrared radiation. The discontinuities represent 

barriers to thermal flow.
Radar Determination of discontinuities based on the propagation of electromagnetic energy 

(e.g. ground penetrating radar)
Radiography Determination of density and thickness based on the amount of X or gamma radiation 

absorbed by structural materials.
Endoscopy Visual method of unreachable areas based on the insertion of a flexible viewing tube 

into pre-drilled borehole
Muon 
tomography

Similar to radiography but based on muon penetration.
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datasets such as ImageNet (Deng et al., 2009). A Convolutional Neural Network (CNN) is 
a multi-layer Artificial Neural Network designed especially to handle two-dimensional input 
data. Convolution Convolutional neural networks (CNNs) have more hidden layers and com-
plex network structure than traditional machine learning methods.

The idea behind a convolution is to study how a function acting on another function brings 
out a modified one. It is performed by doing element-wise multiplication between a kernel, i.e. 
a mask, and each sub-matrix of the original image matrix and sum the result into a single inte-
ger or floating value. Then, a transformed or filtered matrix is obtained and converted back 
into an image. If the original image was a gray-scale image, each pixel contains values between 
0 and 255 which makes the computation easier compared to a color image with [RGB] triplets 
stored in each pixel. The kernel may be a function like the famous edge detection Canny 
(1986) algorithm, or one that sharpens or increases contrast between bright and dark regions 
of the image. The concept of convolution is depicted in Figure 1 where the upper left 2x2 part 
of an image is converted to a matrix and then convoluted to a reduced matrix 1x1. A simple 
convolution neural network model structure diagram is shown in Figure 2. It includes two 
convolution layers C1 and C2 and two sub-sampling layers S1 and S2. First the image is convo-
luted by a 3-kernel filter and three feature maps are obtained in the S1 layer. Then, the proced-
ure is repeated with C2 and S2 layers, and the final output is vectorized and input into the 
traditional neural network.

In a crack detection sequence, after the image acquisition, a series of actions are performed 
in a linear fashion, in order to obtain the final estimation. A diagram of crack detection 
sequence is depicted in Figure 3. In that sequence, the CNN concerns the stage of image pro-
cessing and the NN the stage of image segmentation. Pre-processing involves mainly the cor-
rection of luminosity with the purpose to ease the cracking detection process by both reducing 
noise and enhancing the dark linear features. Post-processing concerns the re-assembling of 
the image parts.

Many CNN structures have been developed for the image processing of pavement, building, 
bridges and road fractures. Dais (2020) has tested numerous CNNs on masonry walls of his-
torical buildings. They considered VGG16 (Liu et al., 2015), MobileNet (Howard et al., 2017), 

Figure 2.  (a) Concept of convolution, (b) Simple CNN structure.

Figure 3.  Diagram of actions sequence for crack detection based on image acquisition.
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MobileNetV2 (Sandler et al., 2018), InceptionV3 (Szegedy et al., 2016), DenseNet121 and 
DenseNet169 (Huang et al., 2017), ResNet34 and ResNet50 (He et al., 2016) as well as Dee-
pLabv3+ (Chen et al., 2018), DeepCrack (Liu et al., 2019), and FCN based on VGG16 (Liu 
et al., 2017). These networks were used in the frame of transfer learning and gave a score F1 
between 79.6% and 75.4%. Yang, 2019 used pyramidal networks on road cracks. They com-
pared five types, namely HED (Xie & Tu, 2015), RCF (Liu et al., 2017), FCN (Long et al., 
2015), CrackForest (Shi et al., 2016) and their own FPHBN.

2.2  Selection of CNN

The first important selection for this research was the selection of NN type for image segmen-
tation. As presented in the previous paragraph the literature presents numerous possibilities. 
Further, the KERAS library contains about forty models that can be tested.

In our research, five CNNs were selected for testing that belong to three types of architec-
ture, namely U-Net, Fully Convolutional Network (FCN) and Feature Pyramid Network 
(FPN). U-Net and U-Net reduced, FPN, Linknet and DeepCrack in transfer learning mode. 
The basic architecture of U-Net can be found in Keras library documentation. It consists of 
two symmetric paths, one contractive and one expansive, thus forming a U shape, hence its 
name.

2.3  Training of the CNN with crack images

It is important to train the selected CNNs with one or more suitable image databases 
available. The objective is to be able to perform fast and accurate segmentation of 
images containing cracks. The task requires the training of the NN with a maximum 
number of images representing different situations. Five different databases were selected 
for this purpose:

2.3.1 Crack_detection_CNN_masonry (Dais, 2020)
This is database of 241 color images of 224x224 size in png format and 241 segmentation 
images (masks) of the same size and format.

2.3.2 Crack500 (Yang et al., 2019)
This is a database of a total 587 png format images and masks in 640x360 sizes.

2.3.3 Deepcrack (Liu et al., 2019)
This is a public benchmark dataset with cracks in multiple scales and scenes to evaluate the 
crack detection systems. All of the crack images are manually annotated.

2.3.4 Crack forest dataset master (Shi et al., 2016)
This is an annotated road crack image database. It contains 157 images 320x420 and their 
segmentation.

2.3.5 Data Maguire 20180517 (SDNET2018)
This is a database of 230 images originating from bridge decks, walls and pavements cracks. 
Each image is segmented into 256 × 256 px sub-images labeled as C if there was crack or U if 
there was not. The final database contains 18K sub-images.

3 SEMI-AUTOMATIC INSPECTION OF TUNNEL IN ATHENS METRO

The Athens Metro construction began in 1992 from the Larissa Station. The first milestones 
in the construction progress include the arrival of the TBM at Syntagma Square in 1997 and 
the completion of the track laying related works for SYNTAGMA – SEPOLIA and SYN-
TAGMA – ETHNIKI AMYNA sections and first partial opening of the System in 2000.
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The implementation of new network extensions has continued and Line 4 is currently 
underway. The newer lines are expected to be in an excellent state, the older ones how-
ever, are entering an era of more demanding inspection and maintenance. It has been 
decided to focus on the older construction parts of the Metro so as to be sure to include 
cracks in our images.

3.1  Access, programming and timing of the inspection

The timing of inspections and the state of the structure are correlated. The environmental con-
ditions should be recorded as a routine part of any inspection. The current and recently pre-
vailing conditions are important, e.g. the efficiency of the drainage system will be more 
apparent in wet periods and cracks may be more open in cold weather. The existing access 
opportunities should also be taken into consideration. For the case of a railway track, the 
tunnel would be some distance from the access point. For the case of avoiding disruption to 
other activities, inspection may be planned to coincide with other maintenance, repair or 
monitoring work. A touching distance inspection is required. Tunnel inspection for the 
Athens Metro, is currently performed by the personnel of the former Athens-Piraeus Railway 
Company STASY S.A. It takes place between 1.00 a.m. and 4.00 a.m. when there is no public 
using the rail. The crack inspection focuses on water presence, as mentioned earlier and it is 
performed in combination to other maintenance tasks.

3.2  Crack repair strategies

There are currently two main courses of action for the Athens Metro and they both fall under 
the hand-placed polymer modified cementitious materials.

3.2.1 Dry superficial cracks
Superficial crack repairs are carried out by sealing the surface of the crack to prevent 
the ingress of moisture and deterioration of the adjacent materials. These capillary type 
cracks and their surrounding area showing no sign of moisture are thoroughly cleaned 
with water or pressurized air from cement deposits, dust, soil, oils, grease, etc. Then, 
temporary surface sealing along the crack by a suitable material (epoxy paste, polyester 
putty, etc.) is followed by drilling holes directly in the crack and placing special nozzles 
(packers) for the introduction of the grout. The number, diameter, position and depth of 
the holes depend on the characteristics of the crack (length, width, depth). After the 
temporary crack seal has cured, the crack is filled by epoxy resin by pressure injection 
in successive layers, through the packers, starting from the lowest nozzle in vertical 
cracks or one edge in horizontal cracks until completely sealed.

3.2.2 Superficial cracks with water flux
These are leaking capillary type cracks that occur in structural concrete where there is 
no waterproofing system in accordance with specifications. After the intervention, the 
now dry cracks are sealed, according to the previous case. The concrete surface to be 
repaired is again thoroughly cleaned. For cracks that show tear-like leaks without pres-
sure, a temporary surface seal along the crack with a suitable material such as fast set-
ting hydraulic cement, is applied with a view to immediately stop the leak. If the cracks 
show leaks with high water pressures, polyurethane foam is first injected to temporarily 
seal the crack. Holes are drilled for grout injection on either side of the crack at an 
angle of 45° at sufficient distances from and between the crack and of suitable depth so 
that the holes penetrate the crack interface. Permanent sealing of the crack is effected by 
applying a suitable material (acrylic, polyurethane, or epoxy resin suitable for leaking 
cracks), injected under pressure through the packers. The material has adequate fluidity 
to be able to penetrate and cover all the voids and pores of the concrete ensuring the 
complete filling of the crack.

2576



3.3  Image acquisition

The station at Katehaki was selected for image acquisition for several reasons. It is a section 
of the Athens Metro that was constructed in 1995 and that is currently closely monitored and 
with newer geotechnical investigations and studies due to new line extensions. Further, the 
area combines two out of three types of construction used, namely Cut & Cover and Segmen-
tal Lining with TBM, while the one missing is the Conventional Excavation that has been 
used in other areas of the network with more complex geotechnical profiles such as the tunnel 
that connects Syntagma to Monastiraki Station. The concrete used was C20/25, reinforced 
with steel S500 while the reinforcement cover was 60mm. The vertical (main) reinforcement 
bars were Φ25 while the horizontal Φ20/20mm. Three samples of the images taken are 
depicted in Figure 5.

3.4  Segmentation of crack images

The images were cut up in patches of 224x224 px with an overlap of 112 and then segmented 
by use of a NN. At the end of the procedure, the images were re-combined. The patch size 
was selected in order to fit all the CNNs selected to be used.

4 RESULTS

In this section, the performance of the five models is compared and summarized. The 
following metrics are used: Accuracy = TP+TN/M; Precision = TP/(TP+FP); Recall = 
TP/(TP+FN); F1-Score = 2.(Precision x Recall)/(Precision+Recall), where TP = True 
Positives, TN = True Negatives, FP = False Positives, FN = False Negatives and M is 
the number of samples.

4.1  Validation results from the trained CNN

All selected CNNs were trained with 80% and validated with 20% of the available datasets. 
Figure 4 contains indicative results from the training graded on their F1 score and Tables 2 
and 3 all related metrics. 

Indicative results from the trained and validated CNNs for the Athens metro photo-
graphs are contained in Figure 5. In the case of fine cracks in continuous concrete struc-
ture and uniform illumination the results are satisfactory. However, in section of 
construction with pre-fabricated concrete segments and in the presence of efflorescence, 
more training is required.

Figure 4.  Results from the trained CNN.
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5 CONCLUSIONS

The first main stages for the rehabilitation of damaged concrete structures are currently 
performed by skilled personnel and include registration of the state of the structure and 
determination of the causes of damage. Optical recognition of common defects in tunnels 
includes cracks in various patterns, spalling, pop-outs, efflorescence, staining, delamin-
ation, honey-comb and leakage.

The advances in neural networks and image segmentation have provided tools for the auto-
mation of maintenance in concrete underground structures. In the case of the Athens metro, 
the implementation of these techniques by use of U-Net/reduit, FPN, LinkNet and Deep-
Crack has shown great potential. It has also been shown that further training of advanced 
CNNs is generally required to cover for specific factors such as type of construction, illumin-
ation and environment.

Table 2. Train evaluation indexes.

epoch F1_score F1_score_dil Precision Precision_dil Recall accuracy loss

unet reduit 101 0.873 0.981 0.783 0.973 0.990 0.990 0.072
unet 78 0.892 0.991 0.813 0.989 0.993 0.991 0.034
fpn 112 0.765 0.951 0.645 0.942 0.963 0.977 -0.074
linknet 57 0.710 0.833 0.587 0.763 0.948 0.969 0.168
deepcrack 119 0.972 0.999 0.947 1.000 0.999 0.998 0.008

Table 3. Validation results.

F1_score F1_score_dil Precision Precision_dil Recall accuracy loss

unet reduit 0.774 0.838 0.788 0.926 0.778 0.982 0.536
unet 0.853 0.939 0.804 0.967 0.918 0.988 0.201
fpn 0.712 0.824 0.720 0.971 0.735 0.976 0.091
linknet 0.736 0.824 0.657 0.802 0.880 0.974 0.230
deepcrack 0.874 0.926 0.855 0.959 0.901 0.990 0.284

Figure 5.  Indicative results from the Athens Metro crack pictures.
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