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Abstract: The Internet of Things (IoT) technology is growing rapidly, while the IoT devices are being
deployed massively. However, interoperability with information systems remains a major challenge
for this accelerated device deployment. Furthermore, most of the time, IoT information is presented
as Time Series (TS), and while the majority of the studies in the literature focus on the prediction,
compression, or processing of TS, no standardized representation format has emerged. Moreover,
apart from interoperability, IoT networks contain multiple constrained devices which are designed
with limitations, e.g., processing power, memory, or battery life. Therefore, in order to reduce the
interoperability challenges and increase the lifetime of IoT devices, this article introduces a new
format for TS based on CBOR. The format exploits the compactness of CBOR by leveraging delta
values to represent measurements, employing tags to represent variables, and utilizing templates
to convert the TS data representation into the appropriate format for the cloud-based application.
Moreover, we introduce a new refined and structured metadata to represent additional information
for the measurements, then we provide a Concise Data Definition Language (CDDL) code to validate
the CBOR structures against our proposal, and finally, we present a detailed performance evaluation
to validate the adaptability and the extensibility of our approach. Our performance evaluation results
show that the actual data sent by IoT devices can be reduced by between 88% and 94% compared
to JavaScript Object Notation (JSON), between 82% and 91% compared to Concise Binary Object
Representation (CBOR) and ASN.1, and between 60% and 88% compared to Protocol buffers. At
the same time, it can reduce Time-on-Air by between 84% and 94% when a Low Power Wide Area
Networks (LPWAN) technology such as LoRaWAN is employed, leading to a 12-fold increase in
battery life compared to CBOR format or between a 9-fold and 16-fold increase when compared to
Protocol buffers and ASN.1, respectively. In addition, the proposed metadata represent an additional
0.5% of the overall data transmitted in cases where networks such as LPWAN or Wi-Fi are employed.
Finally, the proposed template and data format provide a compact representation of TS that can
significantly reduce the amount of data transmitted containing the same information, extend the
battery life of IoT devices, and improve their lifetime. Moreover, the results show that the pro-
posed approach is effective for different data types and it can be integrated seamlessly into existing
IoT systems.

Keywords: Internet of Things (IoT); Time Series (TS); interoperability; CBOR; JSON; Protobuf; ASN.1

1. Introduction

The Internet of Things (IoT) has emerged as one of the most transformative technolo-
gies of recent years, having extended the reach of the internet beyond traditional computer
networks [1]. It encompasses all kinds of devices and objects that can transmit or receive
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digital data, and has garnered the attention of academia and industry due to its rapid
growth [2,3]. A clear indicator of the IoT expansion is the surge in Machine-to-Machine
(M2M) connections, which has grown from approximately one billion in 2017 to an esti-
mated 3.9 billion by 2022. Furthermore, other studies predict that the number of IoT devices
will escalate to 22 billion by 2025 and 50 billion by the end of the decade [1,4–6].

Despite this significant growth, the increasing demand for IoT connectivity and the
diverse requirements of various applications have made it increasingly challenging to
develop cost-effective, adaptable, and intelligently efficient IoT systems within the context
of a massive-IoT paradigm [6]. In addition, the scale of IoT deployment and the substantial
volume of data collected by IoT devices make their integration into an information system
challenging. Currently, the selection and incorporation of devices into IoT systems occur
during the conception phase, which means that modifying an application may necessi-
tate replacing the device. Conversely, the introduction of new devices in the network
may require the modification of the application to support them. This leads to a strong
dependency between cloud applications and IoT devices.

Furthermore, in the scenario of an increasing number of distributed and heterogeneous
IoT devices, there is a demand for technologies that support interoperability, providing
means of representation, discovery, and integration [7]. To manage the interoperability-
related issues, IoT devices need to be compatible with each other, which requires the use
of common communication protocols and standards. Tolk and Muguira have defined
different levels of interoperability in [8] and are illustrated in Figure 1. Thus, while wireless
standards have resolved a number of connectivity-related issues, interoperability-related
challenges still exist. For instance, even if devices use the same communication protocols
or standards, they may use different syntaxes for representing data, which can cause errors
or misinterpretations. Next, if IoT devices use the same communication protocols and
data formats, they can interpret the data differently based on their individual context or
understanding depending on the application or network. Finally, it is also possible that
different organizations may use different standards, policies, or processes which can affect
how they integrate IoT devices into their operations [9–12].
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Figure 1. Levels of interoperability by Tolk and Muguira in [8].

In addition to the interoperability challenges, a typical IoT system architecture consists
of multiple constrained devices that are connected to aggregating gateways. Then, the
gateways are linked to cloud platforms to deliver the information sensed by the constrained
devices [13]. However, constrained devices are commonly designed with cost and power
efficiency as primary considerations, resulting in highly constrained resources in terms of
power, memory, and processing capabilities [14]. In particular, sensors function through
battery energy, and this energy is used up when the sensor transmits data. The better
the quality and quantity of the information transmitted, the more accurately the sensor
can monitor the environment. However, this also means that the battery is drained more
rapidly. Because of these limitations in energy supply, it is crucial to create efficient plans
for controlling sensor transmissions that find a suitable compromise between monitoring
precision and energy consumption [15].
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In this article, we introduce the Variable-based TS (VTS) template, a versatile template
with a specific representation format for Time Series (TS) based on CBOR [16]. This compact
format and template constitute the starting point for decoupling the application data format
from the sensor data format. Our proposal employs the characteristics of the CBOR to
depict measurements by utilizing the difference between subsequent values in the TS
(delta), while using a hierarchical tree-like structure encoded in CBOR with a Tag Number
(TAGN) to determine the location of the values within the TS. Moreover, metadata are
utilized to depict supplementary information such as the sensor precision, time stamp, and
sensor identifiers.

In [17], we introduced a new and versatile format for standardizing the representation
of time series data, based on CBOR. This format is highly efficient and aims to separate
the format of sensor data from the application. With this approach, we aim to provide a
more flexible and adaptable way of handling TS data. Moreover, we have also presented a
novel architecture that allows for the transformation of this representation into any data
format that is required by any cloud application. By decoupling the representation format
from the application data format, our architecture enables the conversion of the TS data
into different formats with ease, providing greater flexibility and interoperability between
different systems. This article extends [17] with the following contributions:

• A new refined and structured metadata to provide a more comprehensive and orga-
nized representation of additional information such as sensor precision, time stamp,
and sensor identifiers;

• A comparison between the proposed metadata and the format used in [17];
• A CDDL code to validate CBOR structures against the proposed VTS template, facili-

tating the identification of malformed CBOR structures;
• A performance evaluation with different data types (i.e., Global Positioning System

(GPS) measurements) to validate the adaptability of our approach;
• A performance evaluation of our proposal against the most popular data representa-

tions: JSON, CBOR, ASN.1, and Protocol buffers. It considers:

– IoT devices’ battery life;
– LoRaWAN transmissions’ Time-on-Air;
– Packet Fragmentation;
– Overhead of protocol headers: LoRaWAN and SCHC (UDP/IP/CoAP).

The remainder of this article is organized as follows: in Section 2 we provide an
overview describing the most prevalent formats used for representing information on
the internet, as well as the related work present nowadays. Then, Section 3 outlines the
problem statement to further introduce the IoT architecture that facilitates the seamless
integration of IoT devices into diverse information systems in Section 4. Section 5 presents
our Variable-based TS (VTS) template along with its detailed metadata and the data format
proposal, which reduces the amount of data sent by IoT devices while preserving the same
information. Furthermore, the VTS template and the data format proposed will enable the
translation of the transmitted data format into any required data format compatible with
the cloud application in an IoT network.

Eventually, this article continues with the performance evaluation, which demonstrates
that the actual data sent by IoT devices can be reduced by between 88% and 94% when
compared against JSON, and between 64% and 91% when compared against binary formats
as CBOR, ASN.1 or Protocol buffers. Additionally, it reduces between 80% and 96% the
Time-on-Air leading to an incrementation of a 12-fold increase in battery life compared
to Protocol buffers, ASN.1, CBOR and JSON formats. Moreover, in cases where networks
such as LPWAN or Wi-Fi are employed, the metadata represents only an additional 0.5%
of the overall data transmitted. This implies that it is possible to transmit the context
for all the measurements using a small number of bytes. Later, in Section 7 we present a
brief discussion about the benefits, drawbacks, and challenges of our proposal. Finally, in
Section 8 we present our conclusions based on our findings and analysis.
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2. Technical Background and Related Work

This section aims to provide a description of the most commonly employed represen-
tation formats on the internet and the related work present in the literature. To start, we
will first review JSON [18], a widely adopted data representation format that is known
for its ease of use and human-readable structure. Then, we will delve into CBOR [16],
a binary data format that has proven to be a fundamental aspect of our research. After,
we will present an overview of SenML [19], a format that is specifically designed to facil-
itate the representation of sensor measurements and device parameters in a systematic
and straightforward manner. Then, we will provide a summary of RDF [20], a widely
used standardized model for exchanging data over the web, based on syntax notations.
Later, we will examine Concise Data Definition Language (CDDL) [21]; this language has
different roles as it serves as an extension to CBOR and define different data structures.
Finally, we present a literature review of different binary formats commonly used for data
representation on the internet [22–27].

2.1. JSON

JSON, as defined in [18], is a data interchange format that establishes a comprehensive
set of rules for the organization and serialization of structured data. This format has gained
widespread popularity and acceptance among developers, particularly on the internet, due
to its versatility and ease of use. The major advantages of using JSON include:

• JSON is easily comprehended and written by humans, allowing for efficient and
intuitive data manipulation.

• JSON is a compact data format in comparison to other alternatives such as XML,
resulting in reduced data transmission time and storage requirements.

• JSON employs conventions commonly utilized in programming languages, while
maintaining language independence, and it enables seamless integration with a wide
range of other programming languages and platforms.

The JSON notation is built on a collection of “name/value” pairs, where each “name”
is a string and the “value” can be either an object ({}), an array ([]), a string, a number, or
values as ’true’, ’false’, or ’null’. This structure allows for the representation of complex data
structures, such as nested objects and arrays, in a clear and organized manner. Additionally,
JSON also allows for the representation of ordered lists of values, enabling the efficient
representation of data sequences such as Time Series data [18]. Listing 1 shows an example
of a JSON structure.

Listing 1. A JSON example that consists of four sensor measurements. Three for ‘/current’ mea-
surements and one for ‘/voltage’ measurements. The sensor is identified by the following URL
‘urn:dev:mac:0024befffe804ff1/’.

[
{ ‘sensor ’: ‘urn:dev:mac :0024 befffe804ff1/current ’,

‘time ’: ‘Tuesday 8 June 2010 18:01:16 ’ ,
‘unit ’: ‘A’,
‘value ’: 1.7
},

{ ‘sensor ’: ‘urn:dev:mac :0024 befffe804ff1/current ’,
‘time ’: ‘Tuesday 8 June 2010 18:01:15 ’ ,
‘unit ’: ‘A’,
‘value ’: 1.6
},

{ ‘sensor ’: ‘urn:dev:mac :0024 befffe804ff1/current ’,
‘time ’: ‘Tuesday 8 June 2010 18:01:14 ’ ,
‘unit ’: ‘A’,
‘value ’: 1.5
},
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{ ‘sensor ’: ‘urn:dev:mac :0024 befffe804ff1/voltage ’,
‘time ’: ‘Tuesday 8 June 2010 18:01:16 ’ ,
‘unit ’: ‘V’,
‘value ’: 120.1
}

]

Listing 1 represents four sensor measurements, three for current and one for voltage,
where each one is represented in an object ({}) with four key-value pairs:

• The first key-value pair are strings (“sensor”: “urn:dev:mac:0024befffe804ff1/current”),
and indicates the identifier for the sensor measurement.

• The second key-value pair are strings (“time”: “Tuesday 8 June 2010 18:01:15”), and
indicates the time when the measurement was taken by the sensor.

• The third key-value pair are also strings (“unit”: “A” or “unit”: “V”), which indicates
the unit for the measurements, Amperes (A) or Voltage (V).

• The fourth key-value pair is composed of the string ‘value’, and a float number
indicating the value for each measurement (i.e., 1.5, 1.6, 1.7, and 120.1).

Furthermore, JSON also has a number of additional features that make it a versatile
and a powerful data interchange format. JSON is easy to parse and generate by machine,
allowing for efficient data manipulation and automation. It is also lightweight and can be
transmitted over a network without the need for additional software or libraries. Finally,
JSON is self-describing and human-readable, making it easy to debug and troubleshoot.

In conclusion, JSON is a widely adopted data interchange format that offers a compre-
hensive set of rules for the organization and serialization of structured data. Its versatility,
ease of use, and language independence make it a popular choice for developers working
on a wide range of projects. JSON is a powerful tool for data representation and storage
that allows for the efficient and intuitive manipulation of data.

2.2. Concise Binary Object Representation (CBOR)

CBOR is a data serialization format that is designed to be more efficient and compact
than JSON. This format is particularly well-suited for IoT applications, where the need for
efficient data transfer and storage is crucial. The CBOR format was designed by the Internet
Engineering Task Force (IETF) and is specified in [16] including the following goals:

1. Represent common internet standard data formats without ambiguity: This ensures
that the data can be easily understood and interpreted by any system that uses CBOR.

2. Have a compact code for encoding and decoding: CBOR has been designed to have a
compact codebase, which makes it easy to implement and use in various systems. This
allows for faster processing times and reduces the resources required for encoding
and decoding data.

3. Allow data to be decoded without a schema description: CBOR is designed to be
self-describing, which means that data can be decoded without the need for a schema
description. This allows for greater flexibility and ease of use, as it eliminates the need
to define and maintain a separate schema.

4. Be reasonably compact in terms of serialization: CBOR has been optimized for com-
pactness, which means that the serialized data are smaller in size compared to other
binary data formats. This makes it more efficient for use in high-volume applications
and for transmission over constrained networks.

5. Can be applied to both constrained nodes and high-volume applications: CBOR
is designed to be versatile, which means that it can be used in a wide range of
applications, from high-volume applications that require fast processing times to
constrained nodes that have limited resources.

6. Support all JSON data types: CBOR is designed to be compatible with JSON, which
means that it supports all of the data types used in JSON. This allows for interoper-
ability between systems that use CBOR and those that use JSON.
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7. Be extensible in terms of format: CBOR has been designed to be extensible, which
means that new data types and features can be added to the format as needed. This
allows for future updates and improvements to the format and ensures that it stays
relevant and useful for a long time.

CBOR is a self-describing format, such as JSON, which makes it easy to read and
understand. However, it uses a binary representation instead of a text-based representation,
making it more efficient for data transmission and storage. Additionally, CBOR supports a
wider range of data types than JSON, including integers of various sizes, floating-point
numbers, binary data, maps, and arrays. As a result, CBOR is able to represent data in
a more compact form than JSON. Table 1 presents the different data types supported by
CBOR, along with examples of their representation.

Table 1. CBOR data types with the corresponding representation and examples.

Data Type CBOR Representation 2 Example 1

Unsigned Integer 000 (Major type 0) 345 : 19 0159 hex

Negative Integer 001 (Major type 1) −345 : 39 0158 hex

Byte String 010 (Major type 2) “Hello” in ASCII: 4548656C6C6F hex

Text String 011 (Major type 3) “Hello” as String: 6548656C6C6F hex

Array 100 (Major type 4) [1,2,3] : 83010203 hex

Map 101 (Major type 5) {1:5} : A10105 hex

Tag 110 (Major type 6) Epoch-based date : C11A01020304 hex

Simple/Float Type 111 (Major type 7) Boolean ’True’ : F5 hex
1 All the examples are represented in hexadecimal but the CBOR representation is in binary format. 2 The CBOR
representation of the data type is identified in the first three bits defined in [16] as a Major type.

When the size of messages serialized using CBOR and JSON were compared in earlier
studies, the findings showed that CBOR had a substantially more compact representation
in terms of bytes, with an approximate 26% reduction in size when compared to JSON [28].
For example, in JSON, a large integer would be represented as a string, whereas in CBOR it
can be represented in a more compact binary format. To illustrate this, consider Listing 1
from Section 2.1, it requires 447 when represented in JSON, while with CBOR, it would
require 407 bytes, as it can be observed in Listing 2.

It is important to note that the reduction presented in Listing 2 does not utilize the
optimal encoding for floating numbers in the CBOR format. Specifically, the encoding of
the number 120.1 requires 4 bytes in JSON, but up to 9 bytes in CBOR. Additionally, the
representation of strings in CBOR is not efficient compared to JSON, as it requires the same
number of bytes in both formats. CBOR also supports a feature called “tags”, which can be
used to attach additional information to data types. For example, a timestamp could be
represented as a CBOR tag, indicating that the data are timestamps. This feature allows for
added flexibility and extensibility in the representation of data.

Overall, CBOR is a highly efficient, compact, and extensible data serialization format,
which can be used for various applications, especially for IoT, where the need for efficient
data transfer and storage is crucial. Its ability to represent data in a more compact form,
support a wider range of data types, and add flexibility through the use of tags and
indefinite-length data make it a valuable alternative to JSON in IoT applications.
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Listing 2. The CBOR representation of Listing 2 in hexadecimal. It starts with an array of four objects
(84); then, for each object, there is a map with four key-value pairs (A4), i.e., (i) “sensor”: “urn:dev
.../current”, (ii) “time”: “Tue... 18:01:16”, (iii) “unit”: “A”, and iv) “value”: 1.7. For example, the
CBOR encoding 66 (i.e., line 3) is indicating the type of the variable (i.e., first key from the first
key-value pair) which is a string in this example that consists of 6 characters, i.e., “sensor”. While the
second key from the first key-value pair is encoded with 78 24 (i.e., line 5), and it indicates that the
variable is a string of 36 characters, i.e., “urn:dev .../ current”. Another example would be the last
key-value pair, where we have the CBOR encoding 65 (i.e., line 15) which indicates that the variable
is a string of 5 characters, i.e., “value”, while the second key from the last key-value pair is encoded
with FB 3FFB333333333333 (i.e., line 17), and it indicates the floating number of 1.7.

1. 84 # array (4)
2. A4 # map(4)
3. 66 # text (6)
4. 73656 E736F72 # "sensor"
5. 78 24 # text (36)
6. 75726 E3A6 ... F63757272656E74 # "urn:dev .../ current"
7. 64 # text (4)
8. 74696 D65 # "time"
9. 78 1C # text (28)
10. 54756573646179... 31383 A3036 # "Tue ... 18:01:16"
11. 64 # text (4)
12. 756 E6974 # "unit"
13. 61 # text (1)
14. 41 # "A"
15. 65 # text (5)
16. 76616 C7565 # "value"
17. FB 3FFB333333333333 # 1.7
18. A4 # map(4)
19. ...
20. ...
21. A4 # map(4)
22. 66 # text (6)
23. 73656 E736F72 # "sensor"
24. 78 24 # text (36)
25. 75726 E3A6D6 ... 66 F6C74616765 # "urn:dev .../ voltage"
26. 64 # text (4)
27. 74696 D65 # "time"
28. 78 1C # text (28)
29. 5475657364617... A30313A3136 # "Tue ... 18:01:16"
30. 64 # text (4)
31. 756 E6974 # "unit"
32. 61 # text (1)
33. 56 # "V"
34. 65 # text (5)
35. 76616 C7565 # "value"
36. FB 405 E066666666666 # 120.1

2.3. Sensor Measurement List (SenML)

Sensor Measurement List (SenML), is a data format for representing sensor measure-
ments and metadata in a structured way. It is proposed in [19] as a way to standardize
the representation of sensor data in the IoT ecosystem. The main goals of SenML were to
provide a lightweight, flexible, and extensible format for representing sensor data, as well
as to facilitate the integration of sensor data with existing web technologies.

SenML uses a simple, hierarchical structure to represent sensor data, where every
sensor reading is represented as an element within the hierarchy. Each element can include
a variety of metadata, such as the type of sensor, the units of measurement, and the time
the measurement was taken. This allows for easy interpretation of the data by both humans
and machines. For instance, Listing 3 represents a temperature measurement in Celsius
degrees with JSON syntax.
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Listing 3. A single SenML Record example. More specifically, ‘n’ stands for the name (or the
identification) of the sensor, and it comes with the value ‘urn:dev:ow:10e2073a01080063’. Then, the
unit is represented with ‘u’ and the value ‘Cel’ for Celsius degrees. Finally, the value is represented
with ‘v’ that in this example comes with the value 23.1.

[
{ ‘n’: ‘urn:dev:ow:10 e2073a01080063 ’,

‘u’: ‘Cel ’,‘v ’:23.1 }
]

One of the key characteristics of SenML is its capability to encapsulate multiple
measurements in a single message, thereby enabling efficient transmission of sensor data
and the correlation of measurements from various sensors. This feature allows for the
compact representation of sensor data, reducing the amount of data that needs to be
transmitted, and making it easier to correlate data from different sensors.

SenML also facilitates the usage of ‘base values’ when representing multiple mea-
surements in a single message. This allows for optimization and reusability of values
per measurement, which can further enhance the efficiency of sensor data transmission.
This feature allows to reduce the size of the message by not repeating the same values for
each measurement, which can be especially useful in scenarios where a large number of
measurements need to be transmitted frequently. An example employing the concept of
‘base values’, specifically ‘base name (bn)’, ‘base unit (bu)’, and ‘base time (bt)’, is depicted
in Listing 4. In this context, the example shows Listing 1 from Section 2.1 employing
the SenML data format. Then, Listing 4 serves as an illustration of how SenML can be
utilized to represent data in a structured manner. In this case, with the use of ‘base val-
ues’ is possible to eliminate the need to repeatedly send specific information, such as the
sensor identification (i.e., ’urn:dev:mac:0024befffe804ff1/’), the time (i.e., ‘bt’: 1276020076
represented in EPOCH format), and the unit for the current (i.e., ’A’). Thus, the use of
’base values’ enables the transmission of only the necessary information, making the data
transfer process more compact.

Listing 4. The SenML representation of the Listing 1. The first object only contains base values which
will apply to all the other objects. Then the identifier of the sensor is depicted with the values of
‘bn’+‘n’ (i.e., ‘urn:dev:mac:0024befffe804ff1/’+‘current’ or ‘urn:dev:mac:0024befffe804ff1/’+‘voltage’).
Then, the time is represented with the values of ‘bt’+‘t’, for example, 1276020076 in EPOCH format
plus −2 which is equal to 1276020074. Finally, the unit of the object that contains ‘voltage’ overrides
the ‘bu’: ‘A’ with ‘u’:‘V’, where V stands for Voltage.

[
{ ‘bn ’: ‘urn:dev:mac :0024 befffe804ff1/’,

‘bt ’: 1276020076 , ‘bu ’: ‘A’},
{ ‘n’: ‘voltage ’, ‘u’:‘V’, ‘v’: 120.1 },
{ ‘n’: ‘current ’, ‘t’:-2, ‘v’: 1.5 },
{ ‘n’: ‘current ’, ‘t’:-1, ‘v’: 1.6 },
{ ‘n’: ‘current ’, ‘t’:0, ‘v’: 1.7 }

]

Finally, SenML is supported by several data formats including JSON, CBOR, Extensible
Markup Language (XML), and Efficient XML Interchange (EXI). These formats are able to
share the common SenML data model, allowing for the representation of sensor data in a
format that is easy to parse and generate.
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2.4. Resource Description Framework (RDF)

Resource Description Framework (RDF) is a standardized data model for representing
and linking data on the web developed by the World Wide Web Consortium (W3C). It is a
way of structuring data in a graph format, where nodes represent resources (e.g., sensors,
actuators, or things) and edges represent relationships between them. [20]

RDF is particularly useful for IoT applications, as it enables the integration of hetero-
geneous data from a wide range of sources. This is important in IoT, where data are often
generated by different devices, using different protocols and formats. By using RDF, data
can be integrated and queried in a uniform way, regardless of their source [29,30].

Then, in RDF the information is represented in triplets. A triple consists of three parts:
subject, predicate, and object. These three parts are used to represent statements about
resources in a graph format [20]:

• Subject: The subject is the resource that the statement is about. It is represented by
an Uniform Resource Identifier (URI) or a blank node. The subject is usually the first
element of an RDF triple and describes the resource being talked about [20].

• Predicate: The predicate is the property or relationship being asserted about the
subject. It is represented by the URI that identifies the property. The predicate is
usually the second element of an RDF triple [20].

• Object: The object is the value of the property or relationship. It can be a literal (e.g.,
a string or a number) or another resource (identified by a URI or a blank node). The
object is usually the third element of an RDF triple [20].

At the same time, this data model can be represented as turtle syntax or using different
languages as XML or JSON for Linking Data (JSON-LD). For instance, Listings 5–7 depict
an example of RDF/JSON-LD, turtle syntax and RDF/XML respectively [30].

Listing 5. The RDF turtle representation of the Listing 1. In this example,
urn:dev:mac:0024befffe804ff1/current and urn:dev:mac:0024befffe804ff1/voltage are
represented as instances of the http://.../Sensor class. Each measurement for a sensor is
represented as a blank node (_:m1, _:m2, etc.) connected to the corresponding sensor with
the http://.../hasMeasurement property. The time, unit, and value of each measurement are
represented as properties of the blank node using the URIs http://.../time, http://.../hasUnit,
and http://.../hasValue, respectively. The value is represented as a typed literal with the
xsd:float data type.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>.
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema #>.

<urn:dev:mac :0024 befffe804ff1/current >
rdf:type <http :// example.org/Sensor >.

<urn:dev:mac :0024 befffe804ff1/voltage >
rdf:type <http :// example.org/Sensor >.

<urn:dev:mac :0024 befffe804ff1/current >
<http :// example.org/hasMeasurement > _:m1.
_:m1 <http :// example.org/time > "Tuesday 8 June 2010 18:01:16".
_:m1 <http :// example.org/hasUnit > "A".
_:m1 <http :// example.org/hasValue > "1.7"^^ xsd:float.

.

.

.
<urn:dev:mac :0024 befffe804ff1/voltage >
<http :// example.org/hasMeasurement > _:m4.
_:m4 <http :// example.org/time > "Tuesday 8 June 2010 18:01:16".
_:m4 <http :// example.org/hasUnit > "V".
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_:m4 <http :// example.org/hasValue > "120.1"^^ xsd:float.

Listing 6. The RDF / JSON-LD representation of the Listing 1. Note that in RDF / JSON-LD, the
@context is used to define the mapping between terms used in the JSON data and their corresponding
URIs. The @graph contains an array of objects that represent the nodes and edges in the graph. The
@id is used to identify the node, and the other properties correspond to the predicates and objects in
the RDF triples.

{
"@context ": {

"sosa": "http ://www.w3.org/ns/sosa/",
"time": "http ://www.w3.org /2006/ time#",
"value": "sosa:hasSimpleResult",
"unit": "sosa:hasUnit",
"observation ": "sosa:Observation",
"sensor ": "sosa:madeBySensor",
"phenomenonTime ": "sosa:phenomenonTime",
"resultTime ": "sosa:resultTime"

},
"@graph ": [

{
"@id": "urn:dev:mac :0024 befffe804ff1/current",
"@type": "sosa:Observation",
"sosa:madeBySensor ": "urn:dev:mac :0024 befffe804ff1",
"sosa:phenomenonTime ": "Tuesday 8 June 2010 18:01:16" ,
"sosa:resultTime ": "Tuesday 8 June 2010 18:01:16" ,
"sosa:hasSimpleResult ": 1.7,
"sosa:hasUnit ": "A"

},
.
.
.

{
"@id": "urn:dev:mac :0024 befffe804ff1/voltage",
"@type": "sosa:Observation",
"sosa:madeBySensor ": "urn:dev:mac :0024 befffe804ff1",
"sosa:phenomenonTime ": "Tuesday 8 June 2010 18:01:16" ,
"sosa:resultTime ": "Tuesday 8 June 2010 18:01:16" ,
"sosa:hasSimpleResult ": 120.1,
"sosa:hasUnit ": "V"

}
]

}

Listing 7. The RDF / XML representation of the Listing 1. Note that in RDF / XML, the rdf:about
attribute is used to indicate the subject of a triple, and the properties (predicates) and values (objects)
are nested inside the rdf:Description element.

<?xml version ="1.0"? >
<rdf:RDF xmlns:rdf="http ://www.w3.org /../../22 -rdf -syntax -ns#"

xmlns:ex="http ://...#" >

<rdf:Description rdf:about ="urn :::0024...804 ff1/current">
<ex:time >Tuesday 8 June 2010 18:01:16 </ ex:time >
<ex:unit >A</ex:unit >
<ex:value >1.7 </ex:value >
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</rdf:Description >
.
.
.

<rdf:Description rdf:about ="urn :::0024...804 ff1/voltage">
<ex:time >Tuesday 8 June 2010 18:01:16 </ ex:time >
<ex:unit >V</ex:unit >
<ex:value >120.1 </ex:value >

</rdf:Description >

</rdf:RDF >

Despite the fact that turtle syntax, RDF/XML, and RDF/JSON-LD representations can
be advantageous for different IoT applications, these formats are too verbose for constrained
devices with limited storage and processing power [30].

Moreover, in recent years, the research on this topic has focused on finding a format to
compress large sets of RDF triples, with the aim of reducing network traffic. Two examples
of such formats are HDT (Header, Dictionary, and Triples) [31] and RDSZ (RDF Differential
Stream compressor based on Zlib) [32]. While these compression techniques have shown
promising results in terms of decreasing network traffic, they are not suitable for very
constrained devices, due to the processing power [30,33].

Then, the research in [30] proposed an approach that addresses the requirements for
efficient serialization of RDF data in constrained devices. The proposed approach relies on
the standardized W3Cs Efficient XML Interchange (EXI) format, which enables efficient
serialization of RDF data and makes it applicable even for devices with limited capabilities.
Thus, in [30], it is possible to convert from Listing 7 represented in RDF/XML to Listing 8.
Thus, in Listing 8 the data are not repeated each time a measurement is described, instead,
the elements that are repeated (e.g., strings as “unit”) are replaced by IDs.

Listing 8. The RDF / EXI representation of the Listing 7. The EXI coding mechanism used in (ref) is
to assign a unique ID to the name of an unknown element or attribute when it is encountered for
the first time in the stream (e.g., the unit is identified with ID = 1). This string-based name is then
memorized and associated with the assigned ID. Subsequently, whenever the same string appears
again in the stream, its assigned ID is used instead (e.g., 1 “V” in the listing).

00 "urn :::0024...804 ff1/current"
time "Tuesday 8 June 2010 18:01:16"
unit "A"
value "1.7"
...

04 "urn :::0024...804 ff1/voltage"
0 "Tuesday 8 June 2010 18:01:16"
1 "V"
2 "120.1"

2.5. Concise Data Definition Language (CDDL)

Concise Data Definition Language (CDDL) is a data definition language that is used to
define data structures, developed by the Internet Engineering Task Force (IETF) [21]. The
main goal of CDDL is to provide a simple and expressive way to define data structures
that are both human-readable and machine-processable express for protocol messages and
data formats that use CBOR or JSON structures. One of the key features of CDDL is its
expressiveness, which enables the definition of complex data structures with minimal code.
Additionally, it supports a wide range of data types, including integers, strings, and arrays,
which makes it suitable for various applications. Furthermore, CDDL is designed to be
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extensible, allowing the addition of custom data types as needed. Moreover, CDDL allows
to indicate the occurrence of a field, for example, whether it is mandatory or optional.

CDDL is used to define the data structures in CBOR or JSON. This allows for a compact
and efficient representation of sensor data, making it easy to process and interpret. For
example, the CDDL code in Listing 9 defines a sensor measurement with a name, unit, and
value, and indicates that the name field is mandatory and the value field is optional.

Listing 9. A CDDL code example with different data types and occurrences. The object (i.e., Measure-
ment) is represented by 3 key-value pairs, i.e., name, unit, and value for the keys, while the values
are represented by the type of variable, tstr (i.e., text string) or float. The ‘+’ represents that the value
name can be present at least one or more times, while ‘?’ indicates that this value is optional.

Measurement = {
+ name: tstr ,
unit: tstr ,
? value: float ,

}

As an illustration, consider that we generate the corresponding CDDL code to establish
the SenML structure of Listing 4 in JSON format. The outcome is depicted in Listing 10,
wherein we specify the fields of key-value pairs, the corresponding units, and the occurrence
of each value.

Listing 10. The CDDL code that represents the structure of the Listing 4. SenMLexample is an
array ([]) composed of two objects (i.e., baseValues, values). Moreover, the value 0 ∗ 1 specifies an
occurrence of 0 or 1 for each key-value pair.

SenMLexample = [ baseValues , values ]

baseValues = { 0*1 ‘bt ’: number , ; Base Time
0*1 ‘bn ’: tstr , ; Base Name
0*1 ‘bu ’: tstr ; Base Unit }

values = { 0*1 ‘t’: int , ; Time
0*1 ‘n’: tstr , ; Name
0*1 ‘u’: tstr , ; Unit
0*1 ‘v’: float ; Value }

Thus, by utilizing the CDDL code along with the tools outlined in [21] enables the
efficient generation and validation of data structures in both JSON and CBOR formats.

2.6. Literature Review on Binary Formats

Serialization is a process widely used in IoT to transmit information between devices.
It involves converting data structures or object states into a format that can be transmitted
over a network and then reconstructed on the other end. Thus, serialization is important
for IoT devices as it allows for efficient and reliable transmission of data, which in turn can
enhance the limited capabilities and prolong the lifespan of these devices [22]. Moreover,
serialization formats are widely utilized for the efficient transmission of information be-
tween IoT devices [23]. Binary formats, a subset of serialization formats, represent data
through binary encoding and are known for their ability to facilitate efficient transmission
and storage, such as CBOR. Other binary formats identified in the literature include:

1. MessagePack: a schema-less open-source binary object serialization mechanism. It
relies on Type System and Formats concepts, which define the data types supported,
including key-value pairs, and how they are encoded. It is lightweight and has a small
memory footprint, making it suitable for IoT devices [24]. Additionally, MessagePack
is a widely implemented counted binary serialization format, similar in many proper-
ties to CBOR, although less strict in its definition and relies on implementation-specific
details to determine how data should be encoded [16].
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2. Binary JSON (BSON): an open-source, schema-less binary data serialization mecha-
nism that was developed for the storage of key-value pairs (JSON-like maps) in the
MongoDB database. It is designed to be lightweight and efficient and is represented
as key-value pairs, where keys are strings and values can be any supported data type.
Binary JSON (BSON) is suitable for IoT applications, particularly sensor nodes, due
to its efficient encoding/decoding and fast traversal [24]. Its major distinguishing
feature is the capability for an in-place update which allows it to maintain a com-
pact representation. It can also be used in other applications through open-source
libraries [16].

3. Abstract Syntax One (ASN.1): a standard for specifying the structure of data used
in telecommunications and computer networking. It is used to define the syntax of
messages exchanged between systems and provide a standard way of describing
data exchanged between systems [16]. ASN.1 is independent of any specific program-
ming language or implementation, and is widely used in communications such as
Secure Sockets Layer (SSL)/Transport Layer Security (TLS) and the implementation
of communication protocols such as Simple Network Management Protocol (SNMP),
Lightweight Directory Access Protocol (LDAP), and others. It is often used in con-
junction with the Basic Encoding Rules (BER) and other encoding rules such as the
Distinguished Encoding Rules (DER) for specific applications [25].

In addition to the previously mentioned binary formats, there have been several other
formats developed with various objectives. These objectives may not have been explicitly
stated, but can be inferred from the context in which the format was first utilized. Examples
of alternative binary formats with similar objectives include Protocol Buffers, designed by
Google, PSON, Smile, and Message Services Data Transmission (MSDTP) [26,27].

3. Problem Statement

IoT device interoperability is a complicated system that needs to be considered from
all angles. Therefore, a comprehensive solution is needed to address all interoperability
issues, which have been identified as one of the most important problems of IoT [9]. To
solve this interoperability problem, all IoT devices must be compatible with the devices
they communicate with. This is only possible if they use common communication protocols
and standards. The connectivity-related problems have been solved by wireless standards
and most devices can communicate at the physical level, but there are some problems at
the interoperability levels, i.e., technical, syntactic, semantic, and organizational.

In IoT environments, technical interoperability is still a major challenge, preventing up
to 60% of potential economical benefits [34]. The main technological method to integrate
numerous heterogeneous devices using different communication technologies is multimode
radios. However, security concerns can arise when doing so. A device that uses multiple
wireless protocols may provide more attack vectors through which malicious actors could
secretly introduce unwanted malware and monitor network data [9].

For syntactic interoperability, messaging protocols such as Constrained Application
Protocol (CoAP), Extensible Messaging and Presence Protocol (XMPP), Advanced Message
Queuing Protocol (AMQP), and some platforms have emerged as solutions, each providing
essential interoperability capabilities between domains. Although devices are capable of
flawless communication, they still cannot understand each other. Therefore, additional
techniques are required to express information semantics in a way that can be understood
by all IoT devices. Thus, a consistent interpretation of semantic data in a globally shared
ontology can be very helpful at the organizational level of interoperability. However, this is
not always the case. Even though many local systems use well-accepted ontologies, they
end up extending them and creating their own meanings and interfaces [9].

Even when interoperability is present, there is still the problem that Over the Top
(OTT) companies do not want their products to be interoperable in order to gain a compet-
itive advantage over customers. For this reason, they do not promote open Application
Programming Interface (API) for their applications [10]. Furthermore, APIs related to IoT
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devices are mostly incompatible with each other and require a common API management
system layer that can abstract the complexity of IoT devices [11].

The different devices with different data formats and different APIs are another major
problem in IoT interoperability. Due to the lack of data semantics and common standards
for interpreting the meaning of the data, as well as the incompatibility of devices at the data
layer, the dynamic nature of the data is a significant barrier to communication between IoT
devices. In addition, the data must be discoverable, which can be difficult with enormous
volumes of remote networks and cloud-based data [11].

Finally, the majority of IoT data measurements are presented in TS format, nevertheless,
this representation depends on the application or the environment in which the system is
employed [12]. Even a single measurement is a degenerated case of a TS representation.
Indeed, we have observed that the works from the literature are concentrated on exploiting
the data rather than on efficiently representing it. For instance, in [35], the authors proposed
a framework to improve the analysis of the information produced by sensor devices. This
framework adds contextual and historical information to the initial data.

Next, in [36], the authors presented a new compression method of TS for IoT. Thus,
the measurement reporting process was tailored to specific use cases in a simple and
easy-to-use manner for constrained devices [12]. To the best of our knowledge, there is no
standard representation for TS in IoT. Therefore, having a standard representation may
be beneficial since it breaks the significant dependency between constrained devices and
cloud applications, which makes IoT devices independent from the network or application,
and helps to reduce the interoperability problems experienced in IoT networks.

4. Big Picture: The Proposed Architecture

Figure 2 depicts our proposed architecture for IoT networks that encompasses the
implementation of a middleware component between the data transmission process and
the information processing process. The implementation of this middleware allows us
to concentrate on the production of interoperable datasets. This, in turn, enables the
seamless integration of IoT devices into various information systems without requiring any
modifications to the actual code of the device. Then, our vision for the IoT architecture is
centered on facilitating the integration of IoT devices into different information systems in
an efficient and effective manner.
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Figure 2. The proposed IoT architecture.

In our proposed architecture for IoT networks, the device user application is responsi-
ble for generating all the information obtained from the measured values. To facilitate the
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efficient management of the data transmission process and enable the seamless integration
of IoT devices into various information systems, we propose to implement a middleware,
placed between the transmission and information processing stages. Furthermore, the
primary function of this part is to compactly group the data generated by a sensor using a
common TS representation. This is a key contribution of our research. The middleware is
also responsible for selecting the appropriate interface where the data will be transmitted,
and for controlling the size and the periodicity of each measurement depending on the
interface, band restrictions, and the type of measurement.

The transmission of data over wireless networks, such as Wi-Fi and 5G, requires the
use of appropriate protocols to ensure efficient and reliable transmission. In this context,
the use of the UDP/IP/CoAP protocol stack is commonly employed for the transmission
of data to a proxy. To meet the specific requirements of networks such as LoRaWAN and
NB-IoT, which have limited frame sizes, it is beneficial to employ techniques to reduce the
size of the data being transmitted. Static Context Header Compression (SCHC) [37] is a
header compression protocol, to reduce the size of the header information in the data packet.
When compression is not enough, it also uses Fragmentation, to divide the data into smaller
packets that can be transmitted more efficiently. Re-transmissions of lost packets is also
provided to assure reliability. Thus, SCHC [37] could be used to compress IP/UDP/CoAP
over LoRaWAN and NB-IoT which helps to meet the requirements of L2 word size [38,39].
(It must be noted, that the use of SCHC does not imply a full UDP/IP/CoAP protocol stack
implementation, but since SCHC relies on compression rules, the device can process these
rules directly to limit the footprint [40].)

Hence, the compact TS representation can be transmitted over various access networks
such as 5G, Wi-Fi, LoRaWAN and NB-IoT, but ultimately all the data will converge at a
TS proxy, as illustrated in Figure 2. The TS proxy, acting as an intermediary between the
device and the data platform or cloud application, will be responsible for reconstructing
the information transmitted by the device. Following the reconstruction process, the TS
proxy will then proceed to convert the information from the TS standard representation
into the specific data representation required by the data platform or cloud application.
This conversion process is essential for ensuring compatibility and interoperability between
the device and any data platform or cloud application.

5. CBOR Templates: An Optimization for TS Data Representation

The utilization of CBOR, a binary data format known for its extensibility, presents the
opportunity to optimize the transmission process through the definition of new tags. As
outlined in [41], the proposed use of a CBOR template allows for the handling of variables,
thus enabling the transformation of data representation from formats such as JSON to
CBOR. As defined by [41], a CBOR template is a CBOR data item that contains one or more
variables. These variables are represented within the template as a CBOR data item that
contains a specific identifier, commonly referred to as CBOR tag 42. This specific identifier
allows for the efficient identification and handling of variables within the CBOR template,
resulting in a reduction of the overall number of bytes transmitted during the process.

5.1. Static-based Time-Series (STS)

We present the STS proposition through the example present in Listing 11.

Listing 11. A template example present in [41].

{
‘name": ‘Carsten Bormann ’,
‘place ’: 42(0)

}

where:

• 42: The Tag Number (TAGN), which indicates the variable identifier.
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• (0): Indicates the position where the value of the variable is, in this case, the first
position of a CBOR array.

It is important to note that, when the template outlined in Listing 11 undergoes the
process of substitution, with the variable 0 assigned the value of “Bremen”, the resultant
data item will be as depicted in Listing 12.

Listing 12. CBOR variable substituted in Listing 11 [41].

{
‘name ’: ‘Carsten Bormann ’,
‘place ’: ‘Bremen ’

}

This example shows the limitation of the proposed template in [41] (i.e., Static-based
Time-Series (STS)), which handles only static variables. Specifically, it is stated that when
devices are required to transmit 100 values of the same variable, a separate variable must
be utilized for each measurement, resulting in the need for 100 variables in the template.
This limitation is exemplified in the context of the JSON structure presented in Listing 13,
which pertains to a temperature and humidity sensor transmitting three simultaneous
measurements.

Listing 13. A JSON structure that will be employed in the rest of the article.

[
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 32 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 20 },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 31 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 21 },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 30 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 22 }

]

Thus, the appropriate template as per the STS model would be present in Listing 14.

Listing 14. Example of Listing 13 as a template with CBOR variables.

[
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 42(0) },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 42(1) },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 42(2) },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 42(3) },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 42(4) },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 42(5) }

]

The CBOR array that undergoes substitution in this scenario is shown in Listing 15.

Listing 15. CBOR array undergoinf the substitution in template from Listing 14.

[32, 20, 31, 21, 30, 22]

However, it should be noted that the STS model, as a static template, is unable to
accommodate variations in the number of measurements in the data item. In the event that
a different CBOR data item with a differing number of measurements is received (e.g., an
array with only four measurements [ 32, 20, 31, 21 ]), the template would expect a different
number of values (six variables) and would not be able to perform the substitution.

5.2. Tree Formatting

In this study, we present a novel approach for representing the location of variables
in CBOR data items through the use of a tree structure within the TAGN model. This
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approach allows for a reduction in the amount of data transmitted by IoT devices and
opens the possibility for the use of non-static templates in future developments.

As an illustration of this approach, we considered the example presented in Listing 16,
which features nested arrays across four levels to demonstrate the tree representation. This
representation allows for a clear and efficient identification of the location of variables
within the CBOR data item.

Listing 16. Example with nested arrays to explain tree representation.

[
[0, 1, 2, 3],
[4, 5,

[ 6, 7, 8, 9] ],
[10, 11]

]

The tree representation of the array presented in Listing 16 is illustrated in Figure 3.

[[0, ...],[4, ...[6, ...]],[10, ...]]

[0,1,2,3] [4,5, [6,7,8,9]] [10,11]

0 1 2 3 4 5 [6,7,8,9] 10 11

6 7 8 9

Level 0

Level 1


Level 2


Level 3


Figure 3. Tree representation in levels of Listing 16.

In the context of the proposed representation of the TAGN, it is feasible to selectively
access specific values as needed. The following values can be accessed:

1. Consider the tag represented as TAGN (0,1), it refers to a specific value within an
array of data. Specifically, it refers to the first array of data (TAGN (0,1)), in this case
([0,1,2,3]), and the second position of that array (TAGN (0,1)). Therefore, the value
referred to by this tag is: 1.

2. The tag represented as TAGN (1,2,3) refers to a specific value within an array of
data. Specifically, it refers to the second array of data (TAGN (1, 2, 3)), in this case
([4,5[6,7,8,9]]), within that array, it refers to the third position (TAGN ( 1, 2, 3)) which
is another array ([6,7,8,9]), and finally the value present in the fourth position (TAGN
( 1, 2, 3)) which is: 9.

3. In addition to referring to specific values within an array of data, the proposed
representation of the TAGN also allows for the inclusion of the value “true” which
signifies the selection of all values present in an array. Consider the tag represented as
TAGN (1, 2, true): It corresponds to all the values present in the array located at [1, 2].
This feature enables the efficient selection of multiple values within an array without
the need to specify each individual position:

(a) [ 1, 2, 0 ]: 6
(b) [ 1, 2, 1 ]: 7
(c) [ 1, 2, 2 ]: 8
(d) [ 1, 2, 3 ]: 9

5.3. Delta Between Measurements

In this section, we present the incorporation of delta values in CBOR templates as a
means of reducing the amount of data transmitted by IoT devices. The utilization of deltas
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allows for the transmission of only the differences between subsequent measurements,
rather than transmitting the entire measurement values.

To illustrate this concept, we provide the example presented in Listing 13. The pro-
posed approach of using deltas is shown to effectively reduce the amount of data sent by
IoT devices while preserving the integrity of the measurement data. Then, the CBOR data
item for the STS template is necessary to reproduce Listing 13 is: [ 32, 20, 31, 21, 30, 22 ].
This data item requires 10 bytes when encoded using CBOR. By utilizing the delta values
between subsequent measurements, the data size can be reduced. In this case, the difference
in temperature is -1 (32 − 1 = 31, 31 − 1 = 30) and humidity is +1 (20 + 1 = 21, 21 + 1 = 22).
Therefore, only the first value is necessary as a reference. As a result, the array using the
delta between measurements is: [ 32, 20, −1, 1, −1, 1 ], which requires only 8 bytes rather
than 10.

The utilization of deltas to represent measurements is particularly beneficial when
the measurement values are higher. This is explained by the example of [535,537,539,538]
which requires 13 bytes of data when encoded using CBOR. In contrast, the use of delta
values [535,2,2,−1] reduces the data size to only 7 bytes. This first approach for delta uses
the difference horizontally. However, it is possible to introduce a delta using the difference
between the measurements vertically. Then, consider a CBOR template where the CBOR
data item to replace is depicted by Listing 17.

Listing 17. Example of a CBOR data item. Four arrays with four values each one.

[ [535 ,537 ,539 ,538] ,
[550 ,551 ,552 ,553] ,
[572 ,574 ,573 ,570] ,
[590 ,589 ,588 ,587]

]

Listing 17 requires 53 bytes when encoded using CBOR Then, when we use the
horizontal delta, it transforms Listing 17 to Listing 18 using only 29 bytes instead of
53 bytes, reducing around 45% the number of bytes to represent the same information.

Listing 18. Example of a CBOR data item with horizontal delta representation. Each array contains
the reference value (first position of the array), and then the difference between the subsequent values
(i.e., 535 + 2 = 537, 537 + 2 = 539, 539− 1 = 538).

[ [535, 2, 2, -1],
[550, 1, 1, 1],
[572, 2, -1, -3],
[590, -1, -1, -1]

]

Moreover, the difference vertically (vertical delta) as depicted in Figure 4 is between
each reference value (i.e., 535, 550, 572, 590), thus with 535 as the reference value for all the
measurements the difference will be (+15,+22,+18) respectively, (535 + 15 = 550, 550 +
22 = 572, 572 + 18 = 590) as shown in Listing 19.

[535,537,539,538],
[550,551,552,553],

[572,574,573,572],

[590,589,588,587]. 


Delta Horizontal

Delta

Vertical

+15

+22

+18

Figure 4. Representation of horizontal delta and vertical delta of Listing 18.
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Listing 19. Example of a CBOR data item with horizontal and vertical delta.

[ [535, 2, 2, -1],
[15, 1, 1, 1],
[22, 2, -1, -3],
[18, -1, -1, -1]

]

The vertical delta is designed to be used when the data transmitted by the device
corresponds to the same measurement when multiple sensor devices are used to collect the
same type of information, e.g., humidity measurements. In this case, as the information
does not change abruptly, it is possible to reduce the amount of data sent even more
compared to only using the horizontal delta.

The utilization of delta values as proposed in this section results in a significant
reduction in the amount of data transmitted by IoT devices. This is evidenced by the
example presented in Listing 18, which requires only 23 bytes when encoded using CBOR.
This represents a reduction of approximately 54% compared to when the delta is unused.
As previously stated, in the subsequent sections of this study, all examples will be presented
utilizing delta values (horizontally) as described in this section to further demonstrate the
effectiveness of this approach in reducing data transmission size.

5.4. Variable-Based TS (VTS)

The utilization of CBOR variables and templates in Section 5.1 promises to reduce
efficiently the amount of data transmitted by IoT devices. However, this approach is limited
by the requirement of knowing the exact number of data items or variables to be replaced.
This limitation can pose a challenge in certain cases, for example when the number of data
items or variables is not known in advance.

In this section, we propose the inclusion of a new value to the TAGN specification.
The incorporation of this new value addresses the limitation of the previous approach and
makes it possible to represent TS data items that have an unknown number of data items.

This is achieved by using a template and an array of information depicted in Listing 20.

Listing 20. VTS template to represent Listing 13.

[
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: TAGN(0, true) },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: TAGN(1, true) }

]

It is important to note that the identification of the CBOR variables present in the
CBOR data item can be achieved through the utilization of the TAGN tag. The remaining
value in the TAGN specification indicates the location at which the corresponding value
can be found within the data item. Then, the structure of the TAGN is represented in the
format from Listing 21.

Listing 21. TAGN structure for VTS.

TAGN(v1, v2 , .., vn)

Where:

1. TAGN is the tag number.
2. The values v1, v2, and vn indicate the locations where the respective variable values

can be found:

(a) If ‘true’, it indicates that all the items on the array should be selected.
(b) If it is a number, it denotes the specific position or array where the value is.

In accordance with the structure of the template proposed, the CBOR data item re-
quired to represent the JSON structure presented in Listing 13 must be the one in Listing 22.
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Listing 22. VTS CBOR data item to represent Listing 13 with VTS template present in Listing 20.

[ [32, -1, -1], [20, 1, 1] ].

It is important to note that the understanding of how the template works and how the
CBOR data item was constructed is available in Sections 5.2 and 5.3, respectively. Thus, the
outcome of the template when values are replaced is depicted in Listing 23.

Listing 23. Final result for VTS with information replaced.

[
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 32 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 20 },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 31 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 21 },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 30 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 22 }

]

The utilization of the template presented in Listing 20 allows for a degree of flexibility
in terms of the number of values that can be transmitted. This is due to the presence of the
Boolean value ’true’ within the TAGN field.

As a result, it is possible to transmit multiple values for both humidity and temperature.
As an example, the CBOR data item depicted in Listing 24 can be utilized to transmit two
values for humidity and two values for temperature.

Listing 24. VTS CBOR data item with only two measurements.

[
[32, -1],
[20, 1]

]

Then, substituting the values from the CBOR data item in Listing 24 into the VTS
template, it produces the output shown in Listing 25.

Listing 25. Result for VTS sending the two values from Listing 24.

[
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 32 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 20 },
{ ‘n’: ‘temperature ’, ‘u’: ‘Cel ’, ‘v’: 31 },
{ ‘n’: ‘humidity ’, ‘u’: ‘%RH ’, ‘v’: 21 }

]

In the last two examples, it is evident that there are two arrays present. These arrays
are utilized to represent two distinct variables—temperature and humidity—independent
of the number of measurements that are sent. Thus, this approach is organized by variables,
as illustrated in Figure 5.

[ 32,  –1,  –1 ] , [ 20,  1,  1 ]

3 measurements
of Temperature

3 measurements
of Humidity

Figure 5. Explanation for the CBOR data item required in VTS.
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The use of arrays in this manner allows for efficient storage and manipulation of the
data, as each variable can be accessed and processed separately. Furthermore, this approach
ensures that the data remains organized and easily interpretable, even as the number of
measurements increases or decreases. Overall, Variable-based TS (VTS) template provides
a clear and structured way to handle large amounts of data in a meaningful way.

5.5. Metadata

Thus far, the examples presented have illustrated the usage of a basic payload. How-
ever, it is important to note that the data transmitted within the IoT context is often more
complex and multifaceted. In addition to the actual measurement of the variable, certain
use cases may require the inclusion of supplementary information, such as:

1. The timestamp of the measurement;
2. The identification of the sensor;
3. The precision of the sensor;
4. The unit of measurement for the sensor;
5. Among others.

To address the need for this additional information, we propose the incorporation of a
feature referred to as ‘metadata’. This feature allows for the differentiation between the
metadata and the measurements being transmitted.

Then, to facilitate the storage of this metadata, we propose the utilization of a map
type in CBOR format. This map type will be present every time a message is sent, allowing
for the clear and organized handling of the data sent by the IoT device. Thus, the metadata
representation in the VTS template will be represented as in Listing 26.

Furthermore, as mentioned in Section 2.2, integers are optimized to be represented in
CBOR. Thus, we use the integers 0, 1, 2, 3, 4 and 5 to represent the keys in the corresponding
map, referring to the context, timestamps, precision, delta, and unit respectively.

Listing 26. Representation of metadata in VTS. The general metadata are in the first map; then, inside
each array of measurements the specific metadata are present.

[ { General METADATA},
[ {Specific METADATA}, 32, -1, -1 ],
[ {Specific METADATA}, 20, 1, 1 ]

]

Finally, Table 2 introduces the metadata values defined in this proposal. Here, you can
find a brief meaning, the value defined for each metadata value, the unit used to represent
each metadata value, and an example, where the general or specific metadata can be found,
and the default value when it is not present in the CBOR data item.

Table 2. Metadata values.

Name Meaning Value Defined Unit Default Value Type 1 Example

Context

Specific number
which indicates
the other values
of the metadata.

0 Integer 0 G {0:23}

Time

Time when the
first

measurement in
the CBOR data
item was taken.

1 EPOCH time Reception time G & S {1:16,540,740}
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Table 2. Cont.

Name Meaning Value Defined Unit Default Value Type 1 Example

Time
difference

Difference in
time with the
subsequent

values.

2 Seconds 60 G & S {2:30}

Precision

Decimal
component of a
floating-point

number to
convert into an

integer.

3 Integer 2 G & S {3:1}

Delta

Difference
between the
subsequent

values.

4 1, 2 or 10 1 G & S {4:23}

Unit
Metric unit

used for each
variable taken.

5 String, all listed
in [42]. – S {5:‘Cel’}

1 The type corresponds to where it is possible to find the metadata value, in the general metadata (G), specific
metadata (S) or both (G & S).

5.5.1. General Metadata

General metadata are an essential element in the data representation proposed in
this study. Thus, the values contained within the general metadata establish the context
for all the values present in the CBOR data item. This context will ensure the accurate
interpretation and utilization of the data.

• 1 and 2: Time Stamp
The time stamp is used to denote the point in time at which the measurements

were taken. This is achieved by representing two values, the absolute time and the
interval between each subsequent measurement:

1. Time: Represented by the integer 1. The value present in this key is represented
using the CBOR tag 1 [16], which specifies the date and time in EPOCH format.
As constrained devices have limited capabilities, normally the clock relays on
the gateways or servers to provide the time information when needed [43]. Thus,
if the time is not present in the metadata, the time of reception is used by default.

2. Time difference: the time difference between successive measurements is indi-
cated by the integer value 2. This key gives information about the interval at
which the measurements were taken. For instance, a value of 2 indicates that
the measurements were taken every two seconds after the previous measure-
ment. Conversely, a value of −5 would imply that the measurements were taken
five seconds prior to the subsequent measurement. Finally, the time between
measurements for IoT applications depends on several factors e.g., the network
bandwidth, sensor sampling rate, etc [44]. Then, we have selected 60 s as the
default value when no value is provided in the metadata. This is a medium value
that is neither too high for applications that send data every few minutes nor too
low for applications that send data every few seconds.

Listing 27 presents an example of a time stamp present in the metadata.
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Listing 27. Example of a time stamp in the metadata. The number 1 represents the time and the
corresponding value is in EPOCH format, while the number 2 represents the difference in seconds
between measurements, in this case, corresponding to 30 s.

[ { 1: 1654070400 ,
2: 30 } ]

Listing 27 depicts that the initial measurement in each array of the CBOR data item
was recorded on Wednesday, 1 June 2022 at 10:00:00. The subsequent measurements
were acquired with an interval of 30 s. This would result in the second measure-
ment being recorded on Wednesday, 1 June 2022 10:00:30, the third measurement on
Wednesday, 1 June 2022 10:01:00, and so forth.

• 3: Precision
Precision refers to the decimal component of a floating-point number. For exam-

ple, if we were to consider the numbers 2.345 and 2.34, both of which are classified as
floating-point numbers, we would see that the former has a precision of 3, while the
latter has a precision of 2.

It is also noteworthy that floating-point numbers are not optimized in CBOR, as
an integer value would be deemed more favorable due to its ability to represent a
value with a smaller number of bytes. Therefore, if the precision can be indicated,
the decoder will be able to interpret and accurately represent the values in question.
Consequently, if the number 2.345 were to be represented, it would be represented as
the integer 2345, with a precision of 3. In the event that the precision is included in the
general metadata, all variables will possess the same precision. However, if precision
is not present in the metadata, the default value will be 2. The precision of IoT data
may vary depending on several factors, such as the sensor type, the data processing
method, the environment, and others. Therefore, 2 is a suitable value that can meet
this requirement for many applications.

Thus, precision is represented by the integer 3 and an example of a precision
present in the metadata is shown in Listing 28.

Listing 28. Example of a Precision value in the metadata. The value one refers to only one decimal
position for precision.

[
{ 3: 1 }

]

Listing 28 represents that the measurements present in the CBOR data item have
a precision of 1. Then, if a measurement inside the CBOR data item has a value of 145
the final value would be 14, 5.

• 4: Delta
The difference between consecutive values, referred to as delta, is described in

section 5.3 and can be either horizontal or vertical in nature.
The presence of delta is indicated by the integer 4. The value within the CBOR

metadata object represents the orientation of delta, with 1 indicating a solely horizontal
orientation, 2 indicating both horizontal and vertical, and 10 indicating delta being
inactive. In the absence of delta being specified in the metadata, a default value of 1 is
assumed. In the same direction as other works such as [45], delta encoding typically
involves only horizontal differences. An example of a delta value as found within the
metadata is presented in Listing 29.
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Listing 29. Example of a delta value in the metadata. The value 10 corresponds to the delta being
inactivated.

[
{ 4: 10 }

]

Thus, Listing 29 shows that the measurements do not have to be managed as the
difference of the subsequent values.

• 0: Context
Context is mandatory to be always present in the general metadata, and can refer

to information such as the precision of measurements, the time difference between
each measurement, and many other relevant details.

In the proposed data representation, context is represented by the integer 0. The
associated value to this key is an unsigned integer and represents the identification
of the context for all the metadata within the system. For example, if we send the
data {0:1}, we are referring to context 1 for all metadata. This context may include
information such as the precision of measurements, the time difference between each
measurement, and other supplementary information. It is important to note that the
context can change by sending another value associated with the key 0, e.g., {0:2}. This
allows the system to be flexible and the context to be easily updated as required.

An important thing to remember is that once the context has been sent and the
end device knows the corresponding value, it is only necessary to send the context in
all the metadata. To explain this, consider the example in Listing 30.

Listing 30. Example of context value in the metadata. The context 1 refers to the difference in time
(30 s) and the precision for the measurements (3).

[
{ 0: 1,

1: 1654070400 ,
2: 30,
3: 3

}
]

Thus, the Listing 30, when represented in CBOR, takes 15 bytes. Then the context
(number 1) shows that all the measurements were taken on Wednesday, 1 June 2022
at 10:00:00 (1:1,654,070,400), and the subsequent measurements were taken 30 s after
(2: 30). Finally, all measurements have a precision of 3 (3: 3) and, as the delta is not
specified, it is set to horizontal by default. Furthermore, if the end device knows the
context (1), the succeeding CBOR data items will only contain the metadata present in
Listing 31.

Listing 31. General metadata when the context is known. The context is referring to the values sent
in Listing 30.

[
{ 0: 1 }

]

Finally, the metadata in Listing 31 is only 4 bytes when represented in CBOR
instead of 15 bytes as in Listing 30.
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5.5.2. Specific Metadata

Specific metadata can be found in the measurement array, as shown in Listing 26.
This specific metadata have the ability to override the general metadata, but if not present,
the general metadata will apply. Furthermore, the values specified in Section 5.5.1 can be
altered except for the context. Then, consider Listing 32 as an example of specific metadata.

Listing 32. Example of specific metadata. The values 0,1,3 as general metadata are replaced by the
values 2:45 and 3:4 in the specific metadata.

[
{ 0: 1, 1: 1654070400 , 2: 30, 3: 3 },
[ { 2: 45} ],
[ { 3: 4} ]

]

Listing 32 gives an example where the specific metadata replaces the general
metadata on two separate occasions:

1. In the first array of measurements, it overwrites the time difference (2). Now, the mea-
surements are not taken every 30 s, instead, the value indicates that each measurement
inside the array is taken every 45 s.

2. In the second array of measurements, it overrides the precision (3). Now, the mea-
surements no longer have a precision of 3, instead, the value indicates that each
measurement now has a precision of 4.

• 5: Unit
The unit, represented by the integer 5, identifies the metric unit used for each

variable taken. To ensure validity, all possible values for this key must be listed in [42].
Thus, when the value does not exist in this list, it will not be accepted by the VTS
template. As an example, Listing 32 can be modified to reflect that the first array of
measurements is for a temperature sensor measuring in degrees Celsius. The result of
this modification is shown in Listing 33.

Listing 33. Example of specific metadata with unit specification. In this case, the value 5: ‘Cel’ in the
object where is specified, the measurements are in Celsius degrees.

[
{ 0: 1, 1: 1654070400 , 2: 30, 3: 3 },
[ { 2: 45, 5: ‘Cel ’} ],
[ { 3: 4} ]

]

5.6. CDDL Specification

As outlined in Section 2.5, Concise Data Definition Language (CDDL) enables the
definition of data structures that are both machine-processable and human-readable. Then,
the objective of this section is to provide the CDDL code that outlines the data structure
proposed in this article through the use of the VTS template and metadata.

Listing 34 defines the array for the VTS template, composed by a template-context and
the data values of the measurements present in the template.

Listing 34. VTS array represented in CDDL code. The data format is defined by a context and
data-values.

; Definition of general array
template -array -vts = [

template -context , ; General Metadata
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+ data -values , ; Data values
]

Once the general array is defined, it is necessary to declare the template-context and
the data-values. Therefore, Listing 35 illustrates the template-context, which consists of
the Context (0), present in Section 5.5.1, and all other values found in the general metadata
such as time, precision, and delta.

Listing 35. Template-context definition in CDDL code. Definition of general metadata and the
corresponding values.

; Definition of template context
template -context = {

0 : uint , ; Context per message
? general_metadata

}

; Definition of general metadata
general_metadata = (

0*1 1 : epoch , ; Epoch Time
0*1 2 : uint , ; Difference in time in seconds
0*1 3 : precision , ; Precision
0*1 4 : delta ; Difference with the subsequent value

)

Finally, Listing 36 represents the arrays for the data values, composed by the specific
metadata, depicted in Section 5.5.2, and the integers values from the measurements.

Listing 36. Specific metadata and data values definition in CDDL code.

; Definition of specific metadata
specific_metadata = (

general_metadata ,
0*1 5 : unit ; Change of unit

)

; Definition of Data Values (Measurements)
data -values = [

0*1 {specific_metadata},
+ values: int

]

Listings 34–36 depict a subset of all the proposed rules in the proposed data format.
Once the proposed data format is defined with CDDL it is possible to validate that any
CBOR data structure is well structured, or to create an example of the data structure with
random values. Listing 37 presents the command to generate a random example with the
structure defined in a file named CBOR_Template_VTS.cddl, and described in [46], with
the corresponding result.

Listing 37. CDDL command to generate a random example and the result. The random ex-
ample follow all the structure defined in the code from Listings 34–36 saved in the archive
CBOR_Template_VTS.cddl.

>> cddl CBOR_Template_VTS.cddl generate 1

[{0: 3622, 3: 7, 4: 10}, [1180, -91, 1771, 756],
[{3: 3, 4: 10}, 2849, -809, 3896], [2732 , -690]]
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Finally, a full description and explanation of how to use the CDDL code described in
this section is presented in [46].

6. Performance Evaluation

In this section, we present a comprehensive performance evaluation of the proposed
time series representation format VTS comparing against JSON, and other binary for-
mats as CBOR, Protocol Buffers (protobuf) and ASN.1. The evaluation is divided into
five parts: Payload Comparison, Fragmentation, Time-on-Air, Battery Lifetime, and Meta-
data Comparison.

In the Payload Comparison, we compared the payload of the proposed representation
format against the conventional JSON representation and binary formats as CBOR, Protocol
Buffers (protobuf) and ASN.1. The Fragmentation section evaluated the impact of the
proposed representation format on the packet Fragmentation when the payload is sent over
a LoRaWAN network. Consequently, in the Time-on-Air section in a LoRaWAN network,
we calculated the time required to transmit the data collected by IoT devices using VTS,
JSON, Protocol Buffers (protobuf), ASN.1, and CBOR representation formats. Then, in the
Battery Lifetime section, we evaluated the impact of the proposed representation format on
the Battery Lifetime of IoT devices. Finally, we compared the metadata proposed in this
article with the metadata proposed in [17].

6.1. Payload Comparison

In the context of IoT devices, payload size is a critical factor that affects the performance
and efficiency of wireless communication. A larger payload size means more Time-on-Air,
which consumes more energy and reduces the battery life of IoT devices. Moreover, a
larger payload size also increases the risk of packet loss and Fragmentation due to channel
interference and noise. Therefore, in this section, we compared two payloads: the payload
used throughout this article as depicted in Listing 13 and the payload from real world data
based on GPS measurements.

6.1.1. Article Example

Consider the JSON representation example depicted in Listing 38.

Listing 38. The JSON representation of Listing 13 to be transformed into CBOR, and VTS.

[ {‘n’:‘temperature ’,‘u’:‘Cel ’, ‘v’:32} ,
{‘n’:‘humidity ’, ‘u’:‘%RH ’, ‘v’:20} ,
{‘n’:‘temperature ’,‘u’:‘Cel ’, ‘v’:31},
{‘n’:‘humidity ’, ‘u’:‘%RH ’, ‘v’:21} ,
{‘n’:‘temperature ’,‘u’:‘Cel ’, ‘v’:30},
{‘n’:‘humidity ’, ‘u’:‘%RH ’, ‘v’:22} ]

The payload size required to transmit all the data in this JSON representation is
214 bytes. In contrast, the payload size required for the CBOR representation is 139 bytes,
while the payload size to represent it in Protocol buffers and ASN.1 is 132 and 63, re-
spectively. However, the VTS template requires a significantly smaller payload size of
25 bytes. Then, as depicted in Figure 6, the implementation of the VTS proposal allows for
a substantial reduction of approximately 88% in payload size (from 214 bytes to 25 bytes).
Moreover, compared to Protocol buffers, the VTS representation reduces approximately
60% in payload size (from 63 bytes to 25 bytes)
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Figure 6. Payload size comparison between JSON, CBOR, ASN.1, Protocol buffers (Protobuf) and
VTS template.

6.1.2. Real World Data

To test the template proposal using real world data, we used the dataset 11 from the
repository [46]. This dataset consists of the first 300 observations obtained from a GPS
placed on a bicycle to promote cyclist safety in smart cities [47]. The GPS system includes
latitude, longitude, and velocity information, resulting in a total of 900 measurements.

Listing 39 presents the JSON format with the SenML structure that must be employed
for data transmission. In this instance, it necessitates 42, 843 bytes for successful transmis-
sion.

Listing 39. The JSON representation of the GPS real world data.

[{’n’:’Latitude ’, ’u’:’Lat ’,’t ’:1667135896307 ,’v’: -29.620745} ,
{’n’:’Longitude ’,’u’:’Lon ’,’t’:1,’v’: -51.127167} ,
{’n’:’Velocity ’, ’u’:’m/s’,’t’:1,’v ’:0.024192}

.

.

.
{’n’:’Latitude ’, ’u’:’Lat ’,’t’:1,’v’: -29.622693} ,
{’n’:’Longitude ’,’u’:’Lon ’,’t’:1,’v’: -51.131297} ,
{’n’:’Velocity ’, ’u’:’m/s’,’t’:1,’v ’:12.534} ]

Finally, as illustrated in Figure 7, while the implementation of CBOR reduced the
payload size around 32% (from 42, 843 bytes to 29, 100 bytes), the use of the VTS template
facilitated a decrease of nearly 94% in payload size (from 42, 843 bytes to 2437 bytes). Even
compared to Protocol buffers, which reduce by around 49% when compared to CBOR,
the VTS proposal reduces the payload size 88% (from 21, 900 bytes in Protocol buffers to
2437 bytes)
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Figure 7. Payload in bytes comparison between JSON, CBOR, ASN.1, Protocol buffers (protobuf) and
VTS template for real world data.

6.2. Fragmentation

The Payload Comparison evaluation presented in Section 6.1 can be further extended
to include payload Fragmentation during transmission over LoRaWAN. The Table 3 shows
the maximum payload size for LoRaWAN within the EU 863–870 MHz band, depending
on each Spreading Factor (SF) [48].

Table 3. Maximum payload size per SF in LoRaWAN for the EU863-870 MHz Band [48].

Spreading Factor (SF) Payload Size (Bytes)

12 59

11 59

10 59

9 123

8 230

7 230

Determining the maximum payload size provides the necessary information to eval-
uate whether Fragmentation will occur during the transmission of each payload over
LoRaWAN for each SF. This evaluation was achieved by using Equation (1).

Number o f f ragments =
payload

Max payload per SF
. (1)

The evaluation outcome is presented in Figures 8 and 9.
Furthermore, it is of paramount importance to incorporate the protocols, in this case,

IP/UDP and CoAP, for the purpose of transmitting the payload information, accompanied
by the necessary headers essential for LoRaWAN transmission. Thus, without SCHC the
IP/UDP and CoAP headers, we need a total of 32 bytes. However, due to the implementa-
tion of the SCHC compression mechanism, the adoption of an appropriate rule to represent
the IP/UDP headers significantly reduces this requirement to only 1 byte. Consequently,
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the CoAP headers necessitate an allocation of 4 bytes. Finally, the LoRaWAN headers
demand a total of 13 bytes, encompassing 5 bytes in the MAC layer and 8 bytes in the
application layer. Hence, to enable a comprehensive payload Fragmentation comparison, it
becomes imperative to include an aggregate addition of 18 bytes per fragment.

As depicted in Figure 8, it shows that the payload in Listing 38, when using JSON
format, a size of 214 bytes, will be fragmented into 6 fragments when using SF 10, 11,
and 12, 2 fragments when using SF 7 and 8, and 3 fragments when using SF 9. A similar
situation occurs when a payload of 139 and 132 bytes is represented in CBOR and ASN.1,
respectively, it will be fragmented into 2 and 4 fragments depending on the Spreading
Factor. Then, Protocol buffers are only fragmented when using SF 10, 11, and 12 into
2 fragments. However, a payload of 25 bytes length, if represented in VTS format, will not
be fragmented at any Spreading Factor.
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Figure 8. Fragmentation for the article example depicted in Listing 13 per SF.

Finally, as illustrated in Figure 9, the payload in Listing 39 when using VTS format,
with a size of 2437 bytes, will be fragmented between 12 and 60 fragments. On the other
hand, the CBOR, ASN.1, Protocol buffers and JSON representations are expected to result
in a Fragmentation between 104 and 1, 045 fragments.
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Figure 9. Fragmentation for GPS real world data per SF.
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6.3. Time-on-Air

An additional method to assess our proposal is through the examination of the Time-
on-Air for the associated payload. The determination of Time-on-Air will facilitate in the
next section the calculation of the battery life of an IoT device utilizing LoRa to transmit
the data. To determine the time required to transmit a message over LoRa, the procedures,
the modulation specifics, and the associated regional parameters for LoRa are taken into
account [48–50].

The transmission time, denoted as Tpacket, can be expressed as the summation of the
preamble transmission time and the payload message transmission time, as depicted in
Equation (2) [49].

Tpacket = Tpreamble + Tpayload. (2)

Then, Tpreamble can be obtained with Equation (3) [49].

Tpreamble = (npreamble + 4.25)× Tsymbol , (3)

where Tsymbol , presented in Equation (4), and Tpayload, presented in Equation (5), can be
defined as in [49].

Tsymbol =
2SF

BW
(4)

Tpayload = PLSymb× Tsymbol . (5)

Finally, the number of symbols transmitted as the physical message without preamble
is represented as PLSymb [50] in Equation (6).

PLSymb = 8 + max
(

ceil
(

8 · PL− 4 · SF + 28 + 16 · CRC− 20 · H
4 · (SF− 2 · DE)

)
· (CR + 4), 0

)
, (6)

where [49]:

• PL: Total bytes from the payload.
• SF: Spreading Factor.
• H: 1 if the header is not used otherwise 0.
• DE: Low Data Rate Optimization, 1 if used otherwise 0.
• CR: Code Rate, from 1 to 4.
• BW: Bandwidth.

Thus, with EU863-870 MHz Band, a bandwidth of 125 MHz (BW =125,000), a code
rate of 1 (CR = 1), header disabled (H = 0), and not using low data rate optimization
(DE = 0) [49,50], we proceeded to calculate the Time-on-Air for all the payloads from
Section 6.1 (214 bytes, 139 bytes, 132 bytes, 63 bytes, 25 bytes, 42, 843 bytes, 29, 100 bytes,
39, 878 bytes, 21, 900 bytes, and 2437 bytes).

Figure 10 shows that, for Listing 13 when using the VTS format, a payload with a size
of 214 bytes will be transmitted between 0.06 s and 1.48 s, depending on the SF. When
using JSON, CBOR, ASN.1 and the Protocol buffers format, as the payload increases, it will
be transmitted between 0.37 s and 11.68 s for JSON, between 0.23 s and 7.73 s for CBOR,
between 0.22 s and 7.40 s for ASN.1 and between 0.11 s and 3.62 s for Protocol buffers.
Thus, the VTS reduces by around 87% (from 11.68 s to 1.48 s) when compared to JSON, 81%
(from 7.73 s to 1.48 s) when compared to CBOR, 80% (from 7.40 s to 1.48 s) when compared
to ASN.1, and 59% (from 3.62 s to 1.48 s) when compared to Protocol buffers in SF 12.
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Figure 10. Time-on-Air comparison for article payload example in Section 6.1.1 per SF.

Figure 11 shows that, for Listing 39 when using the VTS format, reduces by around
94% (from 2234 s to 127 s) when compared to JSON, 91% (from 1517 s to 127 s) when
compared to CBOR, 93% (from 2079 s to 127 s) when compared to ASN.1, and 88% (from
1142 s to 127 s) when compared to Protocol buffers in SF 12.
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Figure 11. Time-on-Air comparison for real-world data payload in Section 6.1.2 per SF.

Additionally, when comparing Figure 8, and Figure 9 demonstrates that the SF has a
direct effect on the LoRaWAN Time-on-Air. However, an increase in the SF results in an
increase in the Time-on-Air. Then, the magnitude of this impact can be reduced by reducing
the size of the payload which is the achievement when the VTS template is utilized.

6.4. Battery Lifetime

One of the key evaluations to determine the impact of the VTS template implementa-
tion, is the comparison of the battery life of an IoT sensor device in relation to the payload.
Thus, a simple linear function has been employed to calculate the Battery Lifetime [50].
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This function considers the battery capacity (Cbattery in mAh) and the average current
consumption (IAvg in mA) of the IoT device as the key parameters in Equation 7 [50].

Tli f etime =
Cbattery

IAvg
. (7)

As depicted in Equation 8, in order to determine the average current consumption of
an IoT device, several factors must be considered:

• The total time between two consecutive packet transmissions (Tapp in seconds).
• The number of states (Nstates) through the IoT device goes through to transmit a packet.
• The current consumption (Ii in mA) of each state for the IoT device.
• The time duration (Ti in seconds) of each state for the IoT device [50].

Iavg =
1

Tapp
·

Nstates

∑
i=1

Ii · Ti. (8)

Thus, considering an IoT device, which implements four states to transmit a packet—sleep
(Sleep), stand by (Stb), reception (Rx), and transmission (Tx) [51]:

Iavg =
1

Tapp
·
(

IRx · TRx + ITx · TTx + ISleep · TSleep + IStb · TStb

)
. (9)

Consequently, Table 4 depicts the current in mA per state; in this case, we considered
the transceiver Semtech SX1272 [52].

Table 4. Current per state for transceiver Semtech SX1272.

State Current (Ii) mA

Rx 11.2

Tx 125

Sleep 0.001

Standby 1.4

The values listed in Table 4 and the transmission time (Time-on-Air) as obtained
in Section 6.3 are known. Then, to calculate the Battery Lifetime of an IoT device, it is
necessary to determine the time in reception, standby, and sleep modes. As the SX1272
transceiver is a LoRaWAN Class A device [52], the reception time can be computed using
Equation (10).

TRx =
2SF

NRxSymbols
·+2SF + 32

BW
, (10)

where NRxSymbols is 10 for SF 11 and 12, and 8 for SF 7, 8, 9 and 10 [50].
Stand by time is generally 1.5 µs [50]. Consequently, sleep time, presented in Equation (11),

will be the rest of the time when the application is not in any other state as transmission,
reception or stand by.

TSleep = TApp − TTx − TRx − TStb. (11)

Finally, we considered two different application scenarios for the payloads present
in Sections 6.1.1 and 6.1.2. For Section 6.1.1, an application with a battery capacity of
(Cbattery = 2700 mAh) and transmitting four packets per hour is presented. Furthermore,
Section 6.1.2 presents an application with a battery capacity of (Cbattery = 3700 mAh) and
transmitting one packet per hour.

Thus, Figure 12 depicts the increase of the battery life thanks to the use of VTS template.
It shows an increase of almost 4.6 times in all of the SF (e.g., from 5.67 years to 26.51 years
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in SF 7) when compared to JSON. Moreover, an increase of 3.02 times compared to CBOR,
an increase of 2.89 times compared to ASN.1, and an increase of 1.67 times compared to
Protocol buffers.
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Figure 12. Battery lifetime comparison for payloads in Section 6.1.1 per SF.

Consequently, Figure 13 shows a nearly 17-fold increase in battery life in all SF (e.g.,
from 1.23 months to 21.4 months in SF 8) compared to JSON, a nearly 12-fold increase
compared to CBOR, a 16-fold increase compared to ASN.1, and a nearly 9-fold increase
compared to Protocol buffers.
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Figure 13. Battery lifetime comparison for payloads in Section 6.1.2 per SF.

Finally, the selected model for estimating battery life in IoT devices adopts a simplified
approach, aiming to provide a quick estimation of battery life. It focuses on fundamental
parameters such as power consumption, battery capacity, and average current consumption.
However, it is important to note that this model does not incorporate certain influential
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factors such as the distance from the base station, link budget, re-transmissions, aging of
the battery, or collisions. While the simplicity of the model can be beneficial in terms of
ease of use, it is advisable to consider these additional factors for a more comprehensive
and accurate estimation of battery life in practical scenarios.

6.5. Metadata Comparison

In this section, we evaluated the impact of the new metadata proposed in this article
against the metadata proposed in [17]. Consider the metadata defined in Listing 40. This
metadata corresponds to a payload of 9294 bytes in the dataset 3 from [46].

Listing 40. Old definition example of Metadata in [17].

{bt: 1593982800 , dt:10, bp:3}

The first thing to note is that the proposed metadata takes into account that strings are
not optimised in CBOR, and therefore, strings such as “bp” are represented as the integer 3.

Another aspect is the use of the “context” in the metadata proposed in this article.
In comparison, the metadata outlined in [17] requires the transmission of all metadata in
every packet. In this proposal, once the proxy has gained knowledge of the “context”, it is
no longer necessary to transmit the full payload, but only the “context” is transmitted.

The representation of the metadata in Listing 40 in the metadata defined in Section 5.5
is depicted in Listing 41. It consists of 13 bytes as opposed to the 17 bytes used in Listing 40.
Furthermore, when only the “context” 0 : 1 is transmitted, it is represented by only 3 bytes
in CBOR.

Listing 41. New definition example of metadata in [17].

{0:1, 1: 1593982800 , 2:10, 3:3}

Table 5 compares the total number of bytes required to represent metadata. It also
shows the percentage of the metadata size in bytes compared to the payload represented in
9294 bytes. The analysis was conducted considering three cases: the first case represents
a LoRaWAN network operating with a SF of 7 and the maximum allowed payload size,
the second case represents a Wi-Fi network with a Maximum Transmission Unit (MTU) of
1468 bytes, and the third case depicts an LTE/5G network with an MTU of 1428 bytes [17].

Table 5. Metadata comparison between actual proposal and proposed in [17].

Metadata Defined in [17] New Definition of Metadata

LoRaWAN Wi-Fi LTE/5G LoRaWAN Wi-Fi LTE/5G

Packets number 10 2 2 10 2 2
Size in Bytes 170 34 34 40 16 16

Percentage(%) 1.9 0.4 0.4 0.5 0.2 0.2

In addition to the size reduction in the payload, it is also important to note the flexibility
of the metadata thanks to the specific metadata depicted in Section 5.5.2. In addition to
the reduction in payload size compared to [17] for the metadata, it also offers flexibility
thanks to the specific metadata presented in Section 5.5.2. For example, Listing 42 allows
the specification of different measurement periodicity, such as temperature readings every
30 s and humidity readings every 45 s, which is not possible in the metadata defined in [17].
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Listing 42. Change of periodicity for different measurements in metadata. The key-value 2:value for
each map that can be identified overrides the periodicity in the general metadata.

[{0:2, 1: 1593982800} ,[{2:30 ,5: ‘Cel ’} ,] ,[{2:45 ,5: ‘%RH ’},]]

Moreover, as in Listing 42 is also possible to change the unit of the measurement
5 : ‘Cel′ which is not currently possible in the metadata described in [17].

7. Discussion

In this section, we delve into certain use cases that may arise during the transmission
of data. Our discussion aims to explore whether it is possible to represent the measurements
in alternative metric units. Additionally, we explore what happens if a package containing
the context of the measurements is lost. Moreover, we analyze scenarios where time series
representation is not necessary in the network due to the real-time nature of the data. Lastly,
we examine how it is feasible to transform data into other formats apart from the commonly
used SenML or JSON. These use cases will help us in assessing the robustness and flexibility
of the proposed approach, especially in the face of unforeseen challenges and issues that
may arise in real-world IoT applications.

7.1. Other Units

One aspect that requires revision is the units of measurement defined in the metadata.
Even though they are standardized by the IANA, there are certain units that may not be in
this definition. For example, when utilized for GPS, the units latitude and longitude are
defined, but degrees (°), minutes (’), and seconds (") (DMS coordinates) are also possible
to use to represent GPS coordinates. However, this representation is difficult to represent
using our definitions for VTS template and metadata, and may not reduce the amount of
data transmitted. For instance, consider Listing 43 a coordinate example in DMS format,
this uses 13 bytes to be represented in JSON format, while in CBOR it uses 15 bytes.

Listing 43. GPS coordinate example in DMS format.

[
40◦ 51’ 59’’ N
]

To be represented using our data format and the VTS template, it would be necessary
to translate the DMS format to decimal format and then it will be possible to transmit
the corresponding information, which implies a double translation process leading to an
increase in the processing power and time used to translate the data.

7.2. Lost Context

Another aspect that requires consideration is the context defined in the metadata. It
can decrease considerably the amount of data needed to represent the metadata in different
measurements; however, if a message is lost during a specification of the context, then
default values will be taken when translating the data. This may result in errors in the final
representation or even a lack of knowledge of the unit of each measurement present in the
time series. For example, consider the GPS data represented in Listing 44.

Listing 44. The JSON representation of the first six measurements in the GPS real world data.

[ {’n’:’Latitude ’,’u’:’Lat ’,’t ’:1667135896307 ,’v’: -29.620745} ,
{’n’:’Longitude ’,’u’:’Lon ’,’t’:1,’v’: -51.127167} ,
{’n’:’Velocity ’,’u’:’m/s’,’t’:1,’v ’:0.024192}
{’n’:’Latitude ’,’u’:’Lat ’,’t’:1,’v’: -29.622693} ,
{’n’:’Longitude ’,’u’:’Lon ’,’t’:1,’v’: -51.131297} ,
{’n’:’Velocity ’,’u’:’m/s’,’t’:1,’v ’:12.534}

]
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Then, the corresponding VTS template is depicted in Listing 45.

Listing 45. VTS template for Listing 44.

[ {’n’:’Latitude ’,’u’:’Lat ’, ’v’:TAGN(0,True)},
{’n’:’Longitude ’,’u’:’Lon ’,’v’:TAGN(1,True)},
{’n’:’Velocity ’,’u’:’m/s’,’v’:TAGN(2,True)}

]

After the data processing to build the context and the CBOR data item to send the first
two measurements of the GPS data are depicted in Listing 46 and Listing 47 respectively.

Listing 46. Context for CBOR data item needed to send the first three measurements of the GPS data.

[ {0:1, 1:1667135896307 , 2:1, 3:6} ]

Listing 47. CBOR data item needed to send the first three measurements of the GPS data.

[
{0:1},
[ -29620745 , -1984] ,
[ -51127167 , -4130] ,
[24192 ,11658]

]

In case the context is lost, the translation into the JSON data format presented in
Listing 44 will face errors due to it will not have a context, and will select the default values
(precision of 2 instead of 6, the reception time will be taken instead of 1667135896307,
and a difference in time of 60 s instead of 1 s), which differs from reality leading a wrong
representation depicted in Listing 48.

Listing 48. The JSON representation of the GPS real world data with context lost.

[{’n’:’Latitude ’,’u’:’Lat ’,’t’:* reception time ,’v’: -296207.45} ,
{’n’:’Longitude ’,’u’:’Lon ’,’t’:60,’v’: -511271.67} ,
{’n’:’Velocity ’,’u’:’m/s’,’t’:60,’v ’:241.92}
{’n’:’Latitude ’,’u’:’Lat ’,’t’:60,’v’: -296226.93} ,
{’n’:’Longitude ’,’u’:’Lon ’,’t’:60,’v’: -511312.97} ,
{’n’:’Velocity ’,’u’:’m/s’,’t’:60,’v ’:125.34} ]

7.3. Real Time Data

While it is common practice to save IoT data in time series for analysis purposes, there
are certain situations where real-time data transmission is necessary. One such scenario
is where quick response times are critical. For example, in industrial applications where
sensor readings must be acted upon immediately. In these cases, data must be transmitted
and analyzed in real-time to ensure the proper functioning of the system.

Then, consider a sensor of temperature sending one measurement using JSON and
SenML format.

Listing 49 takes 56 bytes to be transmitted, represented in CBOR only takes 40 bytes,
36 bytes when represented with ASN.1, and 31 bytes when represented with Protocol
buffers. Instead, if the VTS representation depicted in Listing 50 is used, only 14 bytes are
necessary to represent the same information. Leading to a reduction of the 20% for CBOR
and the 75% for VTS, and when compared protocols such as ASN.1 or Protocol buffers with
VTS, leads to a reduction of 61% and 54%, respectively.

Listing 49. One single measurement of temperature using JSON and SenML format.

[{’n’:’Temperature ’,’u’:’Cel ’,’t’:1650830443 , ’v ’:20.45}]
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Listing 50. Listing 49 in VTS representation. It is important to note, that as the time is not defined the
default value in the metadata is assigned (the reception time).

[{0:1} ,[{5: ’Cel ’} ,2045]]

Additionally, as mentioned in Section 6.2, 18 bytes are necessary to add in the payload
which corresponds to the headers from the protocols IP/UDP and CoAP over SCHC, and
the headers from LoRaWAN in the MAC and application layer.

Consequently, if we consider an application scenario transmitting one package per
minute with a battery capacity of (Cbattery = 2700 mAh) to calculate the Time-on-Air and
Battery Lifetime, we obtain the results depicted in Figures 14 and 15.

When represented in the VTS format, the Time-on-Air is reduced by about 56% (e.g.,
from 0.107 s to 0.046 s in SF 7) compared to JSON, around 44% (e.g., from 0.082 s to 0.046 s
in SF 7) compared to CBOR, around 40% (e.g., from 0.077 s to 0.046 s in SF 7) compared to
ASN.1 and around 35% (e.g., from 0.071 s to 0.046 s in SF 7) compared to Protocol buffers.
Finally, the Battery Lifetime is increased by around 1.99 times (e.g., from 14.6 months to
29.2 months in SF 7) compared to sending the same information represented in JSON,
a 1.7-fold increase (e.g., from 18.4 months to 29.2 months in SF 7) compared to sending
the same information represented in CBOR, a 1.5-fold increase (e.g., from 19.5 months to
29.2 months in SF 7) compared to sending the same information represented in ASN.1, and
a 1.4-fold increase (e.g., from 20.6 months to 29.2 months in SF 7) compared to sending the
same information represented in Protocol buffers.
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Figure 14. Time-on-Air comparison for real-time data payload per SF.

It is also important to note that while real-time data transmission can be useful in
certain scenarios, it is not always necessary. In many cases, time series data storage and
analysis are sufficient for identifying trends and making informed decisions. Ultimately,
the decision to use real time data transmission versus time series data storage and analysis
depends on the specific use case and requirements of the system.

However, if it is necessary to start batching the measurements, the effectiveness of
the reduction will gradually increase depending on how many bytes are reduced per
measurement in each template, as it varies proportionately to the number of bytes required
to represent the difference between measurements.
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Figure 15. Battery lifetime comparison for real-time data payload per SF.

7.4. Transformation into Any Data Format

Our approach aimed to convert the VTS representation, which includes additional
data to represent the context of measurements, into any format required by the IoT cloud
application. This means that various data formats, such as SenML, JSON, RDF/turtle,
RDF/XML, RDF/JSON-LD, or even RDF/EXI can be generated based on the template used
and the processing carried out by the proxy in the architecture shown in Section 4.

To achieve the transformation, the template used must be tailored to the desired format.
This process enables the data to be transformed into a more suitable format for specific
applications. For example, an instance where the data are represented in RDF/XML format
is depicted in Listing 7. In order to define the template for this specific format, Listing 51
can be used as a reference.

Listing 51. The RDF / XML template representation of the Listing 7. Here the TAGN identify the
variables values of the current and voltage.

<?xml version ="1.0"? >
<rdf:RDF xmlns:rdf="http ://www.w3.org /../../22 -rdf -syntax -ns#"

xmlns:ex="http ://...#" >

<rdf:Description rdf:about ="urn :::0024...804 ff1/current">
<ex:time ></ex:time >
<ex:unit ></ex:unit >
<ex:value >TAGN(0, true)</ex:value >

</rdf:Description >

<rdf:Description rdf:about ="urn :::0024...804 ff1/voltage">
<ex:time ></ex:time >
<ex:unit ></ex:unit >
<ex:value >TAGN(1, true)</ex:value >

</rdf:Description >

</rdf:RDF >

Furthermore, once the template is defined, sending only one CBOR data item in VTS
format (as shown in Listing 50) is sufficient to represent the data in Listing 7.
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Upon comparing Listing 8 with Listing 52, we can see that the RDF/EXI format repeats
the same information in the data as IDs, whereas our proposed approach eliminates the
need of sending this information as it is handled in the data transformation process at the
proxy side.

Listing 52. Listing 49 in VTS representation.

[{0:1 ,1:1276020074 ,2:1 ,3:1} ,[{5: ’Cel ’},15,1,1],
[{{5:’V’}}, 1201]]

Finally, it is also important for future research to consider the processing time of data
transformation at the proxy side of the architecture.

8. Conclusions

As IoT networks expand rapidly, they entail a massive deployment of IoT devices
and an incredible amount of data generated by these devices. Interoperability is a major
challenge that must be addressed, especially the diversity of devices with distinct data
formats. The communication among IoT devices is impeded by the lack of semantic data
and common standards for data interpretation, as well as the device incompatibility at
the data layer, due to the dynamic nature of the data. Furthermore, the data must be
discoverable, which is difficult with enormous volumes of remote networks and cloud-
based data. Therefore, this article proposed a novel data format for time series based on
CBOR. It enhances the efficiency and interoperability of IoT devices by decoupling the
application data format from the sensor data format and reducing the amount of data sent
while preserving the same information. We have validated our approach with different
data types such as GPS measurements, and have evaluated battery life, Fragmentation, and
Time-on-Air to demonstrate its benefits.

The experimental results showed that our approach reduces the actual data sent by
IoT devices by between 88% to 94% compared to JSON. It also reduces the Time-on-Air by
84% to 94%, resulting in a 12-fold increase in battery life when compared to the payload
in JSON format. Then, when our approach was compared against binary formats such
as ASN.1, CBOR, and Protocol buffers, it results in a reduction of the payload of between
54% to 75%, which leads to an increase of battery life of between 1.4 times to 17 times.
It should be noted that these results are highly dependent on the implementation of the
various binary formats and the nature of the data used in this article. Consequently, other
implementations may differ slightly depending on these factors. For example, the results
may differ depending on how the schema is selected in ASN.1 or in the type and TAG
selection in CBOR.

Moreover, our approach provides a very compact format for time series data that
reduces the dependency between cloud applications and IoT devices, since with VTS
it is possible to transform to any data format required by the cloud application. Then,
our approach can be useful in scenarios where the network bandwidth is limited, allow-
ing for more efficient data transmission and meeting the specific requirements of the
target application.

The CDDL code enables the validation of any CBOR structure to check if it follows the
rules of the proposed data format for time series. This will facilitate the future transforma-
tion of the generated time series into any data format needed by the cloud application by
verifying if the structure is well formed or not before proceeding with the transformation
process. Furthermore, with the refined metadata, we achieved flexibility in representing
different data types and changing the context depending on the application’s needs. How-
ever, future work will investigate how to retrieve the context of a packet containing the
values when the context is lost.

Finally, we assert that this approach possesses the potential to be presented and delib-
erated upon within the working groups of the Internet Engineering Task Force (IETF), as a
means to initiate a discussion regarding the establishment of a standardized representation
for time series utilizing CBOR templates.
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