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A B S T R A C T

The work focuses on the development of an adaptive technique for the physical interaction handling between
a human and a robot, as well as its experimental validation. The proposed technique is based on the
deep residual neural network and dedicated finite state machine, where the states are the robot behavior
modes and transitions are the switchings between the states that depend on the interaction parameters and
characteristics. It ensures the human operator safety and improves the human–robot collaboration performance
by implementing various scenarios. In the scope of this technique, the parameters of human–robot interaction
are used to select an appropriate robot reaction strategy using data from internal robot sensors only, i.e.
proprioceptive sensors. These parameters define the interaction force vector and its application point on the
robot surface, which allow to classify the interaction within the set of predefined categories. This classification
distinguishes interactions applied at the tool or intermediate link (Tool/Link), having soft or hard nature
(Soft/Hard), as well as having different intention (Intl/Accd) or duration (Short/Long). Based on identified
category and the current robot state, the algorithm chooses an appropriate robot reaction. To confirm the
efficiency the developed technique, an experimental study was conducted, which involved the collaboration
between the real industrial manipulator KUKA LBR iiwa and the human operator.
1. Introduction

The field of robotics is advancing rapidly and, as robots become
more prevalent in various industries, it is becoming increasingly im-
portant to ensure safe physical interaction between humans and robots.
However, ensuring human safety is still a challenging issue, since
most industrial robots can achieve high speeds and forces, which
could be dangerous for a human (Falco et al., 2012; Zanchettin et al.,
2016). Although currently there exist a number of collision avoidance
techniques, sometimes a collision between a human and a robot is
unavoidable or even it is a necessary element of the manufacturing
process. To ensure the safety in practice, all possible physical interac-
tions should be properly identified and handled by an appropriate robot
reaction that can vary from a simple emergency stop to more compli-
cated scenarios, like moving away from the obstacle or lowering robot
joint stiffness. It is clear that to implement any of these scenarios, the
human–robot interaction force as well as its origin and some properties
should be also properly estimated in order to produce relevant robot
reaction.

The problem of the human–robot interaction handling was the focus
of the robotics community for several years (Fryman and Matthias,
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E-mail address: aklimchik@lincoln.ac.uk (A. Klimchik).

2012). Some early works in this field (Heinzmann and Zelinsky, 1999;
Yamada et al., 1997) discussed requirements for the robot mechanics
and its control systems in order to provide safe interaction with a
human. They highlighted the importance of the robot actuator’s back-
drivability and the limitation of robot motor torques while contacting
with a human and switching the robot controller to the so-called exter-
nal force compensation mode. Some of the recent works proposed more
sophisticated approaches for the interaction handling, which operate
with several possible robot reactions depending on the robot state. In
particular, Haddadin et al. (2008) and Lippi and Marino (2020) used
the interaction handling pipeline, in which some properties of interac-
tion were used to select safe robot behavior on a high level. For such
complex robot behavior, a formal way of defining the collaborative
robot safety strategies was presented in Guiochet et al. (2008), where
the authors used a graph representation of the safety mode concept,
which associates a specific set of rules for each functional behavior of
the monitored robot system.

To implement desired safety strategies, there are several approaches
to control program architectures, which allow a robot and a human to
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execute tasks in the shared workspace. Several research groups applied
finite state machines for the interaction handling, where the states
are the robot reactions. In particular, Parusel et al. (2011) proposed
a practice-oriented approach, which operated with four main robot
states: autonomous in the case of a human absence; high compliance
mode in the case of a human presence; collaborative mode with a
human in the loop; reflex reaction mode in the case of a fault. More
advanced techniques were proposed in De Luca and Flacco (2012)
and their following work (Magrini and De Luca, 2017), which addi-
tionally used external vision sensors for robot collision avoidance and
safe human–robot coexistence. In both works, the collision handling
strategies operated with the above-mentioned reactions such as switch-
ing to the emergency stop, reflex mode, kinematic redundancy mode,
etc. Besides, the physical interaction parameters were also taken into
account for choosing an appropriate robot reaction. Also, an external
RGB-D sensor was used to estimate the interaction force application
point. It is clear that the practical application of such sensors is limited
because of possible occlusions and low frames-per-second rates.

In this work, the focus is on the development of adaptive robot
control technique that in contrast to others ones takes into account both
physical interaction parameters and also its type, which are identified
and classified using data from internal robot sensors only (propriocep-
tive sensors). It is worth mentioning that here the notion of adaptivity
is used for the high-level robot control while it is usually related to
the low-level control of robot actuators in the conventional literature.
To achieve the principal goal, the remainder of this paper is organized
as follows. Section 2 gives a general overview of techniques used in
human–robot interaction handling. Section 3 formulates the basic robot
behavior modes. Section 4 presents the developed high-level controller
based on the finite state machine for the selection of appropriate robot
reactions. Section 5 describes the interaction types proposed in this
work and shows how to distinguish them using AI-based techniques.
Section 6 shows relevant experimental results that confirm the validity
and utility of the proposed methods for safe and efficient human–robot
physical interaction and collaboration. Finally, Section 7 summarizes
the main contributions and gives directions for the future work.

2. Overview of interaction handling strategies for safe human–
robot collaboration

Generally, the problem of human–robot physical interaction han-
dling in collaborative robotics is treated in several consecutive steps,
which include the interaction detection, isolation, identification, classifica-
tion, and reaction. In addition, there are also some post and pre-collision
steps that deal with collision avoidance and post-collision recovery. At
the first of these steps, the presence of the interaction force acting on
the robot is detected. At the second step the force application point
is estimated; this can be done with different precision levels: from
determining a colliding link number to estimation of the exact point
location on the link surface. At the third step, the force amplitude
and direction are computed, assuming that the force is applied to the
isolated point found at the previous step. Further, at the fourth step,
dealing with the interaction classification, some additional properties
of the interaction are evaluated, such as accidental or intentional, per-
manent or repetitive, static or dynamic, etc. And finally, at the reaction
step, an appropriate robot behavior is selected based on the interaction
force properties in order to provide safe and efficient human–robot
collaboration. More details concerning the above-listed stages can be
found in Haddadin et al. (2017), De Santis et al. (2008), De Luca et al.
(2006), Gribovskaya et al. (2011) and Bolotnikova et al. (2019). A
typical example of a such human–robot interaction handling procedure
is presented in Fig. 1.

It is clear that, before any physical interaction handling, the inter-
action should be detected by an appropriate algorithm. The principal
performance of such algorithms are the response time (i.e. the interval
2

from the time instant when the interaction event really started to the
moment when the algorithm detects it), which should be as small as
possible. Besides, the detection precision is also important that relate
to the number of false-positive classifications. Since the detection is
a binary problem, most of the relevant methods are based on the
input signals comparison with some thresholds. In practice, the simplest
way to detect interaction is monitoring changes in motor current or
torque values (Harden et al., 2011; Takakura et al., 1989), which
eliminates the need for a robot dynamic model. This simplicity proves
advantageous, as slow motions can be treated as quasi-static, enabling
the detection of collisions through sudden changes or disturbances in
the observed motor signals. A more sophisticated approach uses the
dynamic model of the robot and compares the actual joint torques with
their estimated values. This technique is also known as the direct torque
estimation or inverse dynamics approach (Haddadin et al., 2008).
Recent work in this area (Heo et al., 2019) is based on a deep neural
network, which demonstrated better response time and a lower false-
positive rate compared to classical methods. However, this advantage
was achieved only for cyclic operations, where the robot repeated the
same trajectory tracking during its operation.

In relevant literature, it is typically assumed that the operator
interacts with a general 𝑛-dof serial manipulator, which consists of a
fixed base, an end-effector, and several links connected by 𝑛 revolute
joints. Besides, the interaction force could be applied to an arbitrary
point on the manipulator link surface. In this work, the input data for
the considered interaction handling algorithm are provided by one-
axis torque sensors whose outputs usually include some additional
components caused by robot dynamics. In particular, in case of physical
interaction between the robot and external object, the robot dynamics
equation is typically written as

𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐅(�̇�) + 𝐠(𝐪) = 𝝉𝑚 + 𝝉𝑒𝑥𝑡 (1)

here 𝐪, �̇�, �̈� ∈ R𝑛 are the vectors of generalized coordinates,
elocities, and acceleration, respectively; 𝐌(𝐪) ∈ R𝑛×𝑛 is an inertia
atrix; 𝐂(𝐪, �̇�) ∈ R𝑛×𝑛 is a matrix of Coriolis and centrifugal forces;
(�̇�) ∈ R𝑛 and 𝐠(𝐪) ∈ R𝑛 are the vectors of friction and gravitational
orques; 𝝉𝑚 is the vector of the total motor torques; 𝝉𝑒𝑥𝑡 is the vector
f the torques at the joints generated by applied interaction force.
n this work, it is assumed that the dynamic component is already
xcluded from the measurement data by means of a dedicated robot
tate observer (Haddadin et al., 2017; Mamedov and Mikhel, 2020),
roviding an estimation of the external torque. So further, only pure
nteraction components 𝝉𝑒𝑥𝑡 obtained from relevant state observer will
e referred to as the joint torques 𝝉. The use of only external torques
alues allows to generalize the developed techniques for the arbitrary
rajectories and speeds of the manipulator.

The isolation step of interaction handling pipeline deals with esti-
ating of the robot link index 𝑘 where the interaction force is applied

o. This index may be found by selecting of 𝑘 significant components
f the joint torque vector 𝝉 =

(

𝜏1,… , 𝜏𝑛
)𝑇 . In more formal way, the

-index defining the interacting link can be found using the following
ecision rule as was shown in (Haddadin et al., 2017)

𝜏𝑘‖ ≥ 𝛿𝜏 & ‖𝜏𝑖‖ < 𝛿𝜏 , ∀𝑖 > 𝑘 (2)

here 𝛿𝜏 is some tolerance value allowing to distinguish significant and
on-significant components in the measured torque vector 𝝉.

The interaction identification step focuses on finding of the interac-
ion parameters, such as the interaction force magnitude, its direction,
nd its application point. For the considered interaction, the basic re-
ation (static equilibrium condition) between the force 𝐟 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]𝑇

nd the joint torques vector 𝝉 =
(

𝜏1,… , 𝜏𝑛
)𝑇 can be written using the

anipulator Jacobian 𝐉 (𝐪,𝐩), where 𝐩 is the force application point and
is the joint coordinate vector. It is worth mentioning that here the

nteraction force may be applied to the any manipulator 𝑘th link, not to
he end-effector only. So, the reduced Jacobian 𝐉𝑘 (𝐪,𝐩) should be used,
hich is obtained from the conventional one 𝐉 𝐪,𝐩 by extraction of
( )
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Fig. 1. Basic steps of the interaction handling in human–robot collaboration.
its first 𝑘 columns. Using these notations, the desired static equilibrium
equations can be written as

𝐉𝑘
(

𝐪(𝑘),𝐩
)𝑇

⋅
⎡

⎢

⎢

⎣

𝑓𝑥
𝑓𝑦
𝑓𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜏1
…
𝜏𝑘

⎤

⎥

⎥

⎦

(3)

where 𝐩 is the force application point, 𝐪(𝑘) =
(

𝑞1,… , 𝑞𝑘
)𝑇 is the reduced

joint coordinate vector and 𝝉 (𝑘) =
(

𝜏1,… , 𝜏𝑘
)𝑇 is the reduced joint

torque vector. It should be noted that here the index 𝑘 is assumed to
be known and estimated at the previous step.

In the above equation, both the joint coordinate vector 𝐪(𝑘) and
torque vector 𝝉 (𝑘) are known from measurements, while the interaction
force 𝐟 and its application point 𝐩 should be found. Related reduced
Jacobian 𝐉𝑘 (𝐪,𝐩) of size 3 × 𝑘 can be obtained in conventional way,
which yields the following expression

𝐉𝑘
(

𝐪(𝑘),𝐩
)

=
[

𝐫1 × (𝐩 − 𝐩1) .. 𝐫𝑘 × (𝐩 − 𝐩𝑘)
]

(4)

where the vector 𝐩𝑖 and the unit vector 𝐫𝑖 define location and orienta-
tion of the 𝑖th joint axis.

For the considered problem, the above static equilibrium equation
should be solved in conjunction with constraints describing the manipu-
lator link surfaces. In practice, it is convenient to describe these surfaces
using the conventional triangle meshes, which are widely used in 3D
CAD modeling. This allows to present the basic geometric constraints
as 𝐩 ∈ 𝜴𝑘, where the superscript 𝑘 denotes the link number and the
triangle mesh 𝜴𝑘 is defined by a set of its vertices 𝐕𝑘, list of connections
𝐄𝑘 forming 3D faces and corresponding face normal vectors 𝐍𝑘, i.e.

𝐩 ∈ 𝜴𝑘 = 𝑚𝑒𝑠ℎ
(

𝐕𝑘, 𝐄𝑘, 𝐍𝑘) . (5)

Using this notation, each of the above 3D faces can be described by the
equation

𝜴𝑗
𝑘 = 𝛼1 ⋅ 𝐕

𝑘,𝑗
1 + 𝛼2 ⋅ 𝐕

𝑘,𝑗
2 + 𝛼3 ⋅ 𝐕

𝑘,𝑗
3

0 ≤ 𝛼𝑖 ≤ 1
∑

𝛼𝑖 = 1
(6)

where 𝑘 is index of the robot link, 𝑗-index denotes the number of
triangular face 𝐄𝑘

𝑗 and 𝛼𝑖 is some arbitrary variable, which defines the
point coordinates at 𝑗th triangle of 𝛺𝑘 with corresponding vertex points
𝐕𝑘,𝑗
1 , 𝐕𝑘,𝑗

2 , 𝐕𝑘,𝑗
3 . It is worth mentioning that in the above equation, the

index 𝑗 is unknown and should be found taking into account the static
equilibrium equation (3).

Another essential constraint that must be taken into account is
related to the feasible directions of the interaction force 𝐟 ∈  𝜇 .
As follows from the Coulomb friction law, the feasible directions can
be presented in the form of a so-called ‘friction cone’, which is built
around the link surface inward-pointing normal vector 𝐧 located at
3

𝑝

the contact point 𝐩. Assuming that the friction coefficient is equal to 𝜇,
this constraint can be presented in the following way
|

|

|

∠
(

𝐧𝑝, 𝐟
)

|

|

|

≤ 𝑎𝑡𝑎𝑛 (𝜇) (7)

Although, that some of the human–robot interactions, like grasping,
does not follow Coulomb friction law, it is still possible to use (7) with
𝜇 → ∞, which will correspond to the enlarged friction cone with angle
up to 180 deg.

Thus, the desired solution (𝐟 ,𝐩) computed for the identification step
must satisfy the static equilibrium equations (3) as well as constraints
on the force direction 𝐟 ∈  𝜇 and the contact point location 𝐩 ∈ 𝜴𝑘. It
is worth mentioning that depending on the number of equations 𝑘, the
relevant linear system can be either over- or under-determined. Besides,
in practice, the right hand side of these equations can be corrupted
by the measurement noise that may cause the equations inconsistency
in the strong sense. For this reason, it is meaningful to present the
considered identification task as the following non-linear constrained
optimization problem
‖

‖

‖

𝝉 (𝑘) − 𝐉𝑘
(

𝐪(𝑘),𝐩
)𝑇 𝐟‖‖

‖

→ min
𝐟 ,𝐩

𝐩 ∈ 𝜴𝑘, 𝐟 ∈  𝜇

(8)

where the torque measurements 𝝉 (𝑘) are assumed to be corrupted by the
measurement noise and the index 𝑘 is determined using expressions (2).

It should be noted that this paper mainly focuses on the human–
robot interaction handling and relevant adaptation of robot behavior,
while mathematical and algorithmic details related to the interac-
tion parameters identification are carefully studied in our previous
works (Popov et al., 2021a, 2022, 2021b). For this reason, here we
concentrate on the classification and reaction steps, which together with
the identification step are integrated into the proposed adaptive control
strategy allowing to ensure safe robot collaboration with a human
operator. As follows from the above overview, there are still a number
of open questions in this area. In particular, it is required to improve
existing interaction classification techniques and enhance interaction
handling methods by means of adaptive control algorithms ensuring
human safety during collaboration with a robot.

3. Robot behavior modes in human–robot interaction

In order to provide safe and efficient robot reactions in the human–
robot collaboration, it is necessary to prioritize the desired character-
istics of the entire workcell consisting of the robot, some auxiliary
equipment, and the operator. For classical industrial robots, the main
performance indicator is their manufacturing efficiency characterized
by accuracy, speed, and load capacity. In contrast, collaborative robots
share the working environment with humans, so safety is the most
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important issue. Thus, for the collaborative robots, the prioritization of
the desired performances should be the following: (i) human safety, (ii)
robotic cell safety, (iii) efficient execution of the manufacturing task. It
means that for the handling of each physical interaction, the collabora-
tive robot should choose a proper reaction, which is the most riskless
for the operator as well as prevent damaging the robot itself while
executing the desired task in a more accurate and fast way. In practice,
these can be achieved by applying advanced joint-level control, which
ensures the required joint angles, velocities and, in addition, desired
joint compliance. Relevant low-level controller settings are generated
by the high-level controller that ensures the safe interaction between
the robot and the operator.

The simplest way of interaction handling in collaborative robotics is
a straightforward stop reaction, where the robot suspends all motions if
the interaction is detected. Such a reaction is obviously safe but can be
hardly efficient in manufacturing workcells. In particular, there are a
number of so-called ‘‘contact operations’’, which involve direct physical
interaction between a robotic tool and a workpiece. Hence in practice,
it is required to employ more complex robot reactions depending on
the interaction type and parameters. Besides, it is necessary to take
into account that for the contact operations the interaction force can
be caused by different sources, such as a technological process, an
obstacle, or a human. It is clear that the robot reactions for each case
should be different and usually pursue distinct goals.

To define the set of possible robot behavior modes, the existence of
physical interaction and its parameters should be taken into account.
If the robot does not interact with the operator or any object in its
environment, the robot behavior mode will be further referred to as
the autonomous task execution mode. Here, the robot simply follows the
desired reference trajectory, without controlling the joint compliance.
In contrast, if the human–robot or environment-robot interaction is
detected, then the robot is switched to the so-called interaction handling
mode. This mode is activated by interaction detection and remains
active until it disappears. It should be noted that there is also a special
case of the autonomous task execution mode, which corresponds to the
contact operations and assumes the physical interaction between the
robot and a workpiece. In addition, for safe operation, the emergency
fault mode should be provided that is enabled when some modules of
the system are not working as expected. It is clear that generally, the
robot’s reaction and its working mode depend on the interaction type
and parameters.

Let us consider first the autonomous task execution mode, which is
characterized by the absence of any robot reactions since there is no
unexpected physical interaction. As it has been mentioned above, here
two sub-cases that are possible:

Non-contact mode. It corresponds to the robot following the de-
sired trajectory without controlling the joint compliance. In this case,
no obstacles or a human in the robot environment were detected. The
principal goal here is the efficient execution of the task while ignoring
the safety issues both for the robot and the operator.

Contact mode. It corresponds to the robot following the desired tra-
jectory while maintaining the desired interaction force amplitude and
direction. Typically such interaction force is applied to the workpiece
by the robot tool at the desired time. However, any additional robot
interaction with a human or environment is not expected, so the safety
issues both for the robot and the operator are ignored.

Further, in the interaction handling mode four sub-cases are possible
that differ in robot reaction to the detected interaction:

Pause mode. In such mode the robot stops its motions along the
desired trajectory for some time. The motion recovery process can be
initialized either manually, initialized by the operator, or automatically
after a period of time. The first option is convenient for the operator and
can be implemented as a reaction to the second touch: the first touch
stops the robot, and the second one resumes its motion. The automatic
option is useful in case of brief interactions, after which the robot can
4

continue its motion if the interaction force is no longer applied.
Compliant mode. In this mode the robot motions are determined
by the joint compliance controller, which ignores the desired trajectory.
In the literature, this mode can be also referred to as the reflex mode.
Here, the robot position and configuration can be changed manually,
by the operator who is applying proper force to the end-effector. Such
a technique can be used if the robot cannot avoid an obstacle or when
it is reaching the joint angle limits.

Redundant mode. In this mode the robot motions are handled
by the hybrid position-compliance controllers for all joints, which try
to follow the desired trajectory while ensuring certain manipulator
stiffness. Here, the robot kinematic redundancy is usually used to simul-
taneously move the end-effector along the desired path and maintain
the interaction force at a safe level. In contrast to the two previous
modes, in this case, the task execution is not interrupted. This mode is
available for robots with more than six degree-of-freedoms only.

Obstacle avoidance mode. In this mode the robot tries to avoid an
obstacle on its way. Since it is assumed that only the internal sensors of
the robot are available, the obstacle is detected after interacting with
it. Further, the identified interaction parameters are used to compute
the obstacle position. Depending on the robot state and the interaction
type, the dedicated obstacle avoidance algorithm generates a new
collision-free path in the neighborhood of the detected obstacle.

Finally, if some of the robot safety features are violated or the
robot encountered some hard-to-solve problems requiring the operator
intervention, the emergency fault mode is activated:

Emergency stop mode. In such mode the robot stops its motions
along the desired trajectory and waits. Activating this mode is similar
to pushing the ‘‘red button’’ on the robot controller. Such a mode is
enabled if the identified interaction force exceeds some safe limits.
In contrast to the pause mode described above, this mode necessarily
requires the operator’s intervention to proceed.

Hence, to ensure safe human–robot collaboration, three basic behav-
ior modes with seven sub-cases describing the robot reactions should
be considered. It is clear that these behavior modes are very basic and
may be modified and adapted for any particular practical application.
To ensure switching between these modes in real-time, a dedicated
high-level controller was developed, which is the focus of the following
section.

4. Robot reaction control based on interaction parameters

In order to achieve the desired safe human–robot collaboration, it
is necessary to ensure proper switchings between the above-described
robot modes. The latter is implemented by a high-level controller that
is usually used for trajectory planning and auxiliary equipment control.
This additional feature of the human–robot interaction handling may
be realized by using a finite state machine, which is widely used in
computer science. For the considered application, the machine states
are the robot behavior modes while the transitions are the switchings
between these modes. In this work, the transitions are executed using
some specific conditions, which depend on the identified interaction
parameters. In more detail, such finite state machine and relevant
transition conditions are presented below.

The proposed finite state machine for the human–robot interaction
handling is represented in Fig. 2. This machine includes seven states
corresponding to different robot behavior modes described in the pre-
vious section. The transition between these states is executed when
the interaction is detected and highly depends on the identified in-
teraction parameters. In particular, some transitions are invoked if the
interaction appears while other ones are activated when the interaction
disappears. In more detail, the functioning of this finite state machine
is described below.

First, let us consider the robot behavior in the case of the non-
contact operation mode, which is typically used for robot tool posi-
tioning. The simplest and safest reaction to any accidental interaction

(Accd) is to stop the robot. The latter corresponds to the transition
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Fig. 2. Proposed finite state machine with its states and transitions. The states are the robot behavior modes and transitions are switchings between the states depending on the
interaction parameters and characteristics: applied at the tool or intermediate link (Tool/Link); having soft or hard nature (Soft/Hard); interaction intention (Intl/Accd). Only the
most important states and transitions are shown while duration-based transitions (Short/Long) are hidden.
to the pause mode. Here, two options of this mode are used, which
depend on the interaction duration. In the case of the brief interaction
with the operator (Soft), the pause mode is activated and deactivated
by touch: the first touch stops the robot motions and the second
one resumes the execution of the non-contact mode. But for the long
interaction, for instance, if the interaction force is caused by the colli-
sion with the robot environment (Hard), the pause mode will remain
enabled until the force disappears. In the case of intentional interaction
(Intl), the robot’s behavior depends on the interaction parameters. If
the interaction force is applied at the robot intermediate link (Link), the
redundant mode is activated that does not stop the robot motion, con-
tinues executing the desired end-effector trajectory, but does not allow
increasing of interaction force amplitude. In contrast, if the operator
interaction with the robot end-effector was detected (Tool & Soft), the
robot is switched to the compliant mode, where it stops the motions
and increases the compliance in order to avoid the operator injury.
Otherwise, if such interaction force is caused by the robot environment
(Tool & Hard), then the robot is switched to the obstacle avoidance
mode. It is worth mentioning that the considered finite state machine
also allows to switch the robot from the non-contact mode to the
contact mode, which corresponds to the intentional interaction between
the robot tool and the workpiece (Intl & Tool).

Further, consider the contact operation mode, where the robot
interacts with a workpiece by means of its tool. In this case, the number
of potential reactions is limited since the robot should maintain the
desired interaction force depending on the technological process. Here,
there are two options for the robot reactions, switching either to the
redundant mode or pause mode. The first one is used when the force
is applied to the intermediate robot link (Intl & Link) and it is similar
to the non-contact case described above. The second reaction is applied
in the case of any accidental interaction (Accd), it stops all robot
motions since it is the safest robot behavior here. Any other reactions
are not provided for the contact mode, because of the requirements
issued from the technological process specifications e.g. the desired
interaction force amplitude.

It should be noted that for the considered finite state machine, some
transition conditions require additional characteristics of the interac-
tion, in addition to the previously described force amplitude, direction,
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and its application point. In particular, it is necessary to distinguish
the robot-operator and robot-environment interactions (soft or hard)
in order to choose a proper reaction. Besides, the interaction intention
(accidental or intentional) is also important since it must influence
the robot’s behavior. Relevant interaction classification techniques are
presented in the following section.

5. Classification of human–robot interactions

To ensure safe human–robot collaboration, the robot controller must
take into account not only the interaction parameters 𝐟 , 𝐩 but also
distinguish some interaction properties, which may have different na-
ture (Cioffi et al., 2020; Kouris et al., 2018; Briquet-Kerestedjian et al.,
2019; Cho et al., 2012; Gamboa-Montero et al., 2020). In particular,
the interaction may be caused by accidental contact with the operator
or by collision with the auxiliary equipment, as well as by intentional
force application to the workpiece. Let us consider this issue in detail,
starting from the definition of the possible interaction classes and
then proposing techniques allowing to attribute these classes to the
interactions.

Interaction classes. The proposed set of the interaction classes is
shown in Fig. 3. First of all, it is necessary to distinguish the interaction
duration, which is described here by Short and Long classes. Relevant
classification can be done by a simple comparison of the interaction
time with a predefined threshold value, which can be found empiri-
cally. In our study we used a threshold of about 1 s. The latter allows
to separate easily a short accidental operator touch and dangerous col-
lision with an object in the robot environment. Further, the interactions
differ in their nature, assumed to be either Soft or Hard. In practice, the
soft interactions are usually associated with a human, while the hard
ones normally occur when the robot collides with a workpiece, walls,
etc. However, by using the robot’s internal sensors only, it is rather
hard to separate the human–robot interaction and the robot interaction
with some soft objects. Thus, it is explicitly assumed here that any
soft interaction is related to the operator. Relevant classification can
be done by analyzing the time series describing the robot joint torques
evolution over time. Also, the interaction may be applied to either the
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Fig. 3. Diagram of the interaction classes. The interaction duration, nature, and its location are determined by using the robot’s internal sensors. The intentional and accidental
interactions are predefined in the robot program.
Fig. 4. Structure of the deep neural network for Soft/Hard interaction classification. As input, a fixed time window of the robot joint torque measurements is used, and the output
is the interaction class.
robot end-effector (Tool) or its indeterminate Link. Relevant classifica-
tion can be easily done by using the interaction parameter 𝐩 provided
by the identification algorithm. Finally, any interaction can be either
intentional (Intl) or accidental (Accd). For non-contact operations,
in most cases the interaction is accidental but for the human–robot
collaborative work, the interaction is usually intentional. In practice,
a relevant decision is made at the robot programming stage and does
not depend on robot sensor readings.

Classification techniques. To specify the interaction class, differ-
ent techniques can be applied. Let us describe those of them that were
used for our experimental study. For the Short/Long, Tool/Link, and
Intentional/Accidental classes, the classification techniques are rather
straightforward in implementation, as was described above. In contrast,
distinguishing between Soft and Hard interactions is more complicated
and requires some advanced algorithms to analyze the robot joint
torques evolution over time. In this study, neural network techniques
were used to achieve this classification.

To classify time-series data obtained from the robot joint torque
sensors, a deep neural network was used since this technique proved
to be very efficient for similar problems (Tchatchoua et al., 2022).
In this network, the fixed time window of the torque measurements
provided the input and the desired interaction class (Soft/Hard) was
obtained at the output. The generalized architecture of such neural
network is presented in Fig. 4, which implements the residual-based
technique also known as ResNet and widely used in image analysis (He
et al., 2016; Cheng et al., 2023; Javidi and Jampour, 2020), robotics
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applications (Kumra and Kanan, 2017), fault diagnosis (Liang et al.,
2022) and speech recognition (Hershey et al., 2017).

Network structure. The input dimensions of the developed ResNet
consist of 7 × 100, where 7 corresponds to the number of joints and
100 represents the consecutive external torque measurements. The
update frequency of the torque values is 100 Hz, resulting in a fixed
time window of exactly 1 s. The developed network consists of three
sequential Residual blocks. Similar to the original ResNet, each of these
blocks has two paths for the input data, where the first path includes
three subsequent convolutions with ReLU activation functions. These
convolution layers have a kernel size of 8 × 8, 5 × 5, and 3 × 3 cor-
respondingly. The second path has only one convolution layer, except
for the last Residual block, which has a direct connection to the end
of the first path. In each of the Residual blocks, the outputs of the first
and second paths are combined by the addition operation and following
ReLU activation. It should be noted that the size of tensors is 64, 128,
and 128 for the first, second, and third Residual blocks correspondingly.
The output of the last Residual block is followed by the global average
pooling and the dense layer with a softmax activation function. So,
after the proposed modifications of the classical ResNet, the developed
network is able to attribute the physical interaction to one of the
predefined classes, Soft or Hard.

Network training. To train the developed network for the interac-
tion type classification, the proper dataset was captured from the KUKA
iiwa robot used in our experiments. To obtain the desired data, the
robot followed some random trajectories and repeatedly collided with
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Fig. 5. Dataset acquisition examples for the interaction classification. The robot
physically interacts either with a human or some rigid objects from its environment.

the operator and environment. In total, about 430,000 data frames with
100 Hz rate and 500 collision cases were recorded, which corresponded
to both hard and soft interactions. The latter of them occurred not
only in a collaborative way, where the operator guided the robot, but
also in an accidental way, where the robot unintentionally collided
with the operator’s arm, back, or body. An example of data acquisition
for soft or hard interaction cases is presented in Fig. 5. In this study,
the captured dataset was partitioned into training, test, and validation
sets using a 70-15%-15% proportion. To address class imbalance, the
random undersampling technique was employed, which balanced the
number of examples in each class. The developed neural network was
trained using the backpropagation algorithm with the Adam optimizer,
initialized with the following parameters: 𝐿𝑟 = 0.001, 𝛽1 = 0.9, 𝛽2 =
0.999. To further improve the optimization process, a learning rate
schedule was implemented. If the loss metric showed no improvement
for over 10 epochs, the learning rate was reduced by multiplying it
with a factor of 0.5, ensuring its minimum value of 1 ⋅10−5. As a result,
the final learning rate settled at approximately 1 ⋅ 10−4. Since there are
only two classes, Soft and Hard, the binary cross-entropy was used as
the loss function.

Network evaluation. As follows from a relevant experimental
study, the developed neural network provided an accuracy of 98%
with score of 0.9788 on test, 0.9697 on validation and 0.9847 on
training data. Besides, additional experiments proved the network’s
ability to separate reliably the interactions with the operator’s hand, or
body from the interactions with hard objects, such as metal workpieces
and walls. It should be also mentioned that the simplest one-layer
feedforward neural network was also evaluated for its ability to solve
the same task. Here, the Fourier transform coefficients were used as
the input and the network was composed of 100 neurons. However,
this simplified approach provided essentially lower accuracy of 89%,
which is not enough for reliable interaction classification. More details
regarding this network and its performance can be found in one of our
previous works (Popov et al., 2017).

Thus, to provide safe robot interaction with the operator and the
environment, the relevant controller was developed, based on the finite
state machine technique. This controller allows to change the robot’s
behavior depending on the detected interaction type and parameters.
In particular, the controller distinguishes the Short and Long, Soft and
Hard, Tool and Link, Intentional and Accidental interactions, which
cause switching between several predefined robot behavior modes. The
efficiency of this controller is confirmed by the experimental study
presented in the following section.

6. Implementation of the developed adaptive interaction handling
controller

The developed high-level robot controller ensuring safe human–
robot collaboration is based on the modular structure. It consists of
two independent parts, where the first one was implemented inside
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of the original robot controller of KUKA iiwa (internal part) and the
second one was realized on the external computer. The communication
between the robot controller and external computer was executed by
means of ROS (Robot Operating System), which allows to receive the
sensor measurements from the robot and sends it the motion com-
mands. Here, we used the advantages of KUKA iiwa controller that
supports high-level Java programming language, in contrast to the
conventional robotic controllers for which highly-specialized languages
(KRL, Karel, etc.) are available only. This allowed to connect the robot
controller Java Core with the external ROS core by means of the open
source ROS package iiwa_stack (Hennersperger et al., 2017). It should
be also mentioned that some modifications were done to the original
iiwa_stack in order to obtain required data from the sensors or the state
observers as well as provide online adjustment of the joint compliances.

The general structure of the controller is presented in Fig. 6. Its
external part consists of five main modules: Communication, Identifi-
cation, Classification, Finite State Machine and Reaction Library. The
Communication module creates the ROS core and transforms the robot
controller data into a more convenient form. In addition, this module
sends the commands to the robot, which define the desired robot joint
angles and compliances. The Identification module uses the robot joint
torques and angles measurements to detect the physical interaction and
to identify its parameters (𝐟 , 𝐩) using the algorithms presented in Popov
et al. (2022, 2021a). The Classification module attributes the detected
interaction to one of the predefined classes listed in Fig. 3 and described
in detail above; in case of Soft/Hard classification, the deep neural net-
work is used. Further, the interaction parameters and characteristics are
transmitted to the Finite State Machine presented in Fig. 2. This machine
defines the safe robot behaviors modes, using its states and transition
between them as functions of the interaction parameters and properties
obtained from the Identification and Classification modules. The set of
all possible robot reactions is stored in the Reaction Library module,
which predefines the safe robot behaviors. It should be mentioned that
each part of the high-level controller is implemented as a separate
module, so it is quite flexible and can be easily used to enlarge a variety
of desired robot behaviors. In particular, by redefining the set of robot
behavior modes/reactions and their transitions, the operator can adapt
the controller to any particular industrial process that assumes intensive
human–robot collaboration.

The external part of the above controller was implemented mainly
in C++ language, while the identification module was compiled as
a library from the MATLAB functions using MATLAB Coder, and the
Soft/Hard classification module was implemented in Python language
using Keras/TensorFlow libraries. The internal part of the controller
was written in Java language and included a number of modules from
the open source software iiwa_stack with relevant modifications.

The developed interaction handling controller proved to be reliable,
ensured safe human–robot collaboration in our experimental study and
was successfully used in the laboratory experiments validating the
proposed techniques.

7. Experimental validation of proposed interaction handling tech-
nique

In our experimental study, the robot was programmed to follow the
desired hexagon trajectory as shown in Fig. 7. While programming the
robot for this task, it was assumed that normally any physical interac-
tions may not occur, which corresponds to the Non-Contact Operation
Mode of the developed Finite State Machine. Nevertheless, to ensure
safe human–robot collaboration, some additional properties were as-
signed for each trajectory segment, which admits some unexpected
interaction with the operator, either Accidental (Accd) or Intentional
(Intl) ones. In particular, the complete trajectory was composed of
four closed loops 𝐩1 → 𝐩2 → ⋯ → 𝐩6 → 𝐩1, where the first two
loops treated all detected interactions as Accidental (Accd) ones and the
remaining loops treated them as Intentional (Intl) interactions. It should
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Fig. 6. General structure of developed adaptive interaction handling controller. It consists of two independent parts implemented using the original robot controller and the
external computer respectively.
Fig. 7. Experiment setup and benchmark trajectory for validation of proposed interaction handling technique.
be noted that in this experimental study, the general robot behavior was
controlled by the Finite State Machine described above.

During the experiment, while the robot followed its desired trajec-
tory, some interactions were created with their force applied either
at the robot end-effector (Tool) or its intermediate links (Link). In
addition, to verify the developed controller ability to distinguish Soft
and Hard interactions, some forces were applied by the human op-
erator (Soft) while other ones were caused by the collision with a
rigid object (Hard). Besides, the interaction duration was also different
(Short/Long), in order to evaluate the reasonableness of the controller
reactions.

The experimental setup included the collaborative robot KUKA LBR
iiwa 14, which was connected to the external PC with Intel Core i5
3 GHz CPU, 8 Gb RAM and RTX2080TI. The high-level interaction
handling controller was composed of two parts. The external part was
based on the PC with a Linux operation system, ensuring fast commu-
nication with the internal part. In this controller, the Identification and
Classification module implements the main theoretical contributions of
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this thesis. In general, the developed control system is capable of real-
time execution of the desired robot motion program, while ensuring
the maximum exchange rate between the internal and external parts
of 800 times per second. However, in this application example, the
exchange rate was reduced down to 100 times per second. The latter
was caused by the limitations of the communication bandwidth and
the necessity to obtain some additional service information from the
robot. In cases where there is no physical interaction with the robot,
the detection module evaluates the input robot torques during every
10 ms loop. However, when the interaction is applied to the robot, it is
not immediately detected due to transient processes in the joint torques
and observer dynamics. In practice, it takes an average of 28 ms for
the detection module to register the interaction. Once the interaction
is detected by the detection module, it simultaneously initiates the
interaction identification and classification processes. Their runtimes
are approximately 5 ms and 9 ms, respectively. Here, the input data for
the classification neural network consists of the 100 previous measure-
ments, which corresponds to approximately 1 s of data. This duration
includes a few last measurements corresponding to the interaction
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Fig. 8. Stage #1 of the experimental study corresponding to the first loop of the robot end-effector trajectory. Here, all interactions were considered as accidental and the robot
interacted with the human operator.
and transient process in joint torques, providing reliable interaction
classification. The total response time between applying the interaction
force and sending a new control command to the robot controller is
about 50 ms. It is also worth mentioning that this experimental study
involved the direct physical interaction between the human operator
and the robot, which must be definitely safe even in the case of
unexpected robot behavior during experimentation. So, to eliminate
the potential harm, the maximum stiffness of the robot joints was
deliberately set to some low values that caused the increased trajectory
tracking errors. It is clear that for real-life industrial applications such
stiffness modification is not required and the tracking errors will be
essentially low.

Another important issue related to this experimental study is the
natural operator behavior, who was allowed to apply the interaction
force to any robot link or even to interact with the robot using both
his hands. The latter is not in good agreement with the principal
assumptions implemented in the Identification and Classification mod-
ules, where a single interaction with the links #3...7 was admitted.
Nevertheless, the robot behavior observed in the experiments was safe
and the interactions were handled in the expected way.

The experimental study was composed of four stages corresponding
to four closed loops 𝐩1 → 𝐩2 → ⋯ → 𝐩1 of the robot end-effector
trajectory presented in Fig. 7. At each stage, assuming that Non-
Contact Mode was active, the collaborative robot was subject to phys-
ical interactions of different types (Soft/Hard, Short/Long, Accd/Intl,
Tool/Link). In more detail, these stages covering all possible combina-
tions of the interaction types are described below.

The Stage #1 is presented in Fig. 8, it corresponds to the first loop
of the desired robot end-effector trajectory. Here, three interactions
were detected, all of them were considered as accidental (Accd). The
first one was generated by the operator who briefly applied the force
at the robot end-effector. It was recognized as Soft/Short/Accd/Tool,
so the controller reaction was to stop the robot (Pause Mode). The
related end-effector position is shown in the figure with a red dot. The
subsequent brief human touch on the end-effector resumed the robot’s
motion. The second interaction was also generated by the operator who
grasped the robot end-effector for a certain time. It was recognized as
Soft/Long/Accd/Tool, so the controller reaction was to stop the robot
as well (Pause Mode). The related end-effector position is shown in the
figure with a yellow dot. In this case, the robot motions were suspended
until this interaction disappeared. The third interaction was generated
by the operator, who did not simply grasp the robot end-effector but
tried to move it away. It was recognized as Soft/Long/Accd/Tool, so the
controller reaction was to stop the trajectory tracking and essentially
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increase the joint compliances (Compliant Mode). Related end-effector
trajectory is shown in the figure with blue color and was clearly deter-
mined by the human operator. In contrast to the previous interaction,
here the force was applied for a certain time, its amplitude continuously
increased and the robot was switched to the compliant mode when the
force exceeded some predefined threshold.

The Stage #2 is presented in Fig. 9, it corresponds to the second
loop of the desired trajectory. Here, three interactions were detected,
all of them were considered as accidental (Accd) but in contrast to
the previous stage, some of them were caused by a collision with
a rigid object. The first interaction was generated by the operator,
who grasped the robot’s lower link and tried to move it away. It was
recognized as Soft/Long/Accd/Link, so the controller reaction was to
use the robot kinematic redundancy to continue the desired trajectory
(Redundant Mode). Related end-effector trajectory is shown in the
figure with a blue line, which is close to the desired path. Here, the
obtained trajectory slightly differed from the desired one since the joint
compliances were set to rather high values. The second interaction
was caused by the collision between the robot end-effector and a rigid
obstacle on its path. It was recognized as Hard/Long/Accd/Tool, so
the controller reaction was to stop the motions (Pause Mode). Related
the end-effector position is shown in the figure with a red dot. In
this case, the robot motions were suspended until the interaction force
disappeared. The third interaction was also caused by the collision
between the robot’s 3𝑟𝑑 link and the rigid obstacle on its path. It was
recognized as Hard/Long/Accd/Link, so the controller reaction was to
stop the robot (Pause Mode) until the force disappeared.

The Stage #3 is presented in Fig. 10 and corresponds to the third
loop of the desired trajectory. Here, two interactions were detected
only, all of them were considered as intentional (Intl). The first interac-
tion was generated by the operator who grasped the robot end-effector
and tried to move it away. It was recognized as Soft/Long/Intl/Tool,
so the controller reaction was to stop the trajectory tracking and
essentially increase the joint compliances (Compliant Mode) in or-
der to follow the human operator hand guiding. Related end-effector
trajectory is shown in the figure with a blue color. Here, the force
was applied for a certain time, its amplitude continuously increased
and the robot was switched to the compliant mode when the force
exceeded some predefined threshold. The second interaction was also
generated by the operator, who implemented a similar scenario but the
interaction force was applied to the robot 4𝑡ℎ link. It was recognized
as Soft/Long/Intl/Link, so the controller reaction was to use the robot
kinematic redundancy to continue the desired trajectory (Redundant
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Fig. 9. Stage #2 of the experimental study corresponding to the second loop of the robot end-effector trajectory. Here, all interactions were considered as accidental and the robot
interacted with the human or environment.
Fig. 10. Stage #3 of the experimental study corresponding to the second loop of the robot end-effector trajectory. Here, all interactions were considered as intentional and the
robot interacted with the human operator.
Mode). The related end-effector trajectory is shown in the figure with
a yellow line.

The Stage #4 is presented in Fig. 11 and corresponds to the fourth
loop of the desired trajectory. Here, three interactions with the rigid
objects were detected, all of them were considered as intentional (Intl).
The first and second interactions were caused by the collision between
the robot end-effector and rigid obstacles on its path. They both were
recognized as Hard/Short/Intl/Tool, so the controller reaction was to
avoid the obstacle by changing the robot’s path (Obstacle Avoidance
Mode). Relevant end-effector trajectories are presented in the figure
with red lines, showing how the robot avoids the obstacle. The third
interaction was caused by the collision between the robot’s 3𝑟𝑑 link and
a rigid obstacle on its path. It was recognized as Hard/Long/Intl/Link,
so the controller reaction was to use the robot kinematic redundancy
to continue the desired trajectory (Redundant Mode). The relevant
trajectory is shown in the figure with a blue line, which is close to the
desired path.

It should be noted that the above-described experiments cover all es-
sential combinations of the interaction types, which may be generated
from possible options Soft/Hard, Short/Long, Accd/Intl, Tool/Link. In
fact, in spite of that, the number of all possible combinations is 24 = 16,
only 8 of them are different from the practical point of view. For this
reason, the experimental study considered a lower number of sub-cases
related to the interaction types.
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Thus, the presented experimental study confirms validity of the
developed interaction handling techniques. The relevant high-level
controller implements the proposed identification algorithms as well
as the classification methods, it allows adapting the robot behavior to
the detected interaction. In particular, depending on the interaction
parameters and type, the robot behavior may be switched to one of the
predetermined modes ensuring safe human–robot collaboration while
executing the manufacturing task.

8. Conclusion

This paper presents a novel adaptive technique for handling physi-
cal interactions between humans and robots, which allows to improve
human safety and to enhance the performance of human–robot col-
laboration by means of artificial intelligence methods. The proposed
high-level controller integrates the interaction identification algorithms
and classification methods, which use data from the proprioceptive
sensors only. The developed controller is based on the finite state
machine and the deep residual neural network. It implements several
robot behavior modes that are predefined and executed depending on
the parameters and characteristics of the detected interaction, ensuring
the safety of the human operator during the collaboration process while
executing complex manufacturing tasks.

In contrast to other works, the extended set of interaction classes is
used, which includes interactions applied to the robot end-effector or
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Fig. 11. Stage #4 of the experimental study corresponding to the second loop of the robot end-effector trajectory. Here, all interactions were considered as intentional and the
robot interacted with its environment.
intermediate link (Tool/Link), having soft or hard nature (Soft/Hard),
as well as having different intention (Intl/Accd) or duration
(Short/Long). The classification of the interaction nature was im-
plemented using a ResNet-based deep neural network, achieving an
accuracy of 98% in the typical case study.

The validity of the developed technique is confirmed by the ex-
perimental results obtained for a collaborative task executed by the
industrial robot KUKA LBR iiwa in a shared environment with a human
operator. In future, it is planned to adapt the developed technique to a
collaborative assembly process. The latter could be done by redefining
the set of robot behavior modes and their transitions in the rele-
vant controller, which enables safe and efficient physical human–robot
interaction.

Future work may involve the exploration of the neural network
structure, focusing on its optimization, and discussing dataset creation
and training in more detail. It may include experimenting with different
types of neural network architectures for time series analyses and
relevant Ablation study to identify the most suitable network configu-
ration for the interaction classification task. Also, it may be interesting
to implement a unified neural network that expands its capabilities
beyond interaction classification to include interaction detection and
identification. Additionally, the applicability and adaptability of the
proposed methods can be addressed across diverse robotic systems,
varying in the number of degrees of freedom. This evaluation will also
consider the problems of transfer learning in the context of different
robot types.
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