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ABSTRACT Vessel trajectory prediction plays a pivotal role in numerous maritime applications and
services. While the Automatic Identification System (AIS) offers a rich source of information to address
this task, forecasting vessel trajectory using AIS data remains challenging, even for modern machine
learning techniques, because of the inherent heterogeneous and multimodal nature of motion data. In this
paper, we propose a novel approach to tackle these challenges. We introduce a discrete, high-dimensional
representation of AIS data and a new loss function designed to explicitly address heterogeneity and
multimodality. The proposed model—referred to as TrAISformer—is a modified transformer network that
extracts long-term temporal patterns in AIS vessel trajectories in the proposed enriched space to forecast the
positions of vessels several hours ahead. We report experimental results on real, publicly available AIS data.
TrAISformer significantly outperforms state-of-the-art methods, with an average prediction performance
below 10 nautical miles up to ∼10 hours.

INDEX TERMS AIS, vessel trajectory, trajectory prediction, maritime surveillance, multimodal data, deep
learning, transformer.

I. INTRODUCTION
In the last decades, the development of maritime activities has
raised significant concerns relating to Maritime Surveillance
(MS) and Maritime Situational Awareness (MSA), with
vessel trajectory prediction being a focal point. Anticipating
the direction of vessels and their approximate locations at
medium-range time horizons, ranging from a few tens of
minutes to tens of hours ahead, is at the core of diverse MS
and MSA applications, including but not limited to search
and rescue [1], [2], traffic control [3], path planning [4],
[5], [6], port congestion avoidance [7], [8], [9], pollution
monitoring [10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

The Automatic Identification System—AIS provides
invaluable information for the monitoring and surveillance
of maritime traffic. AIS data provide vessels’ kinetic
information (the current position indicated by the latitude
and longitude coordinates, the current Speed Over Ground—
SOG, the current Course Over Ground–COG, etc.), the
information of the voyages, as well as the static information
(the identification number in the format a Maritime Mobile
Service Identity—MMSI number, the name of the vessel,
etc.) of vessels in the vicinity. Vessel trajectory prediction
using AIS data has been studied for more than a decade [11],
[12], [13], [14], [15], [16], [17], [18]. However, the achieve-
ments thus far have been still limited. Most state-of-the-art
schemes reach a relevant prediction performance only for
short time horizons (ranging from a few minutes to half an
hour) [14], [19], or for longer time horizons under particular
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FIGURE 1. Illustration of long-term1 dependence patterns in AIS vessel
trajectories: At E, vessels typically follow one of the two main maritime
routes indicated by the red and the yellow dashed arrows. In order to
forecast whether a vessel will continue straight ahead (the red path) or
turn right (the yellow path), the prediction model may need to roll back
several time steps to D, C, B, and A to understand the vessel’s previous
movements. Moreover, if the prediction model is not multimodal, it may
output as a prediction an unusual green dashed path, which is a merged
path of the true red and yellow ones.

movement patterns corresponding to predefined maritime
routes [20], [21] or unimodal movement patterns [18], [19].
Due to the complexity of vessel movement patterns and
the heterogeneous nature of AIS data, forecasting vessel
positions above several hours remains highly challenging.
As an illustration, we report in Fig. 1 two vessel paths
with very similar movement patterns on segment C→D but
heading to two different destinations.

Trajectory prediction has gained significant attention in
recent years, particularly in the context of pedestrian and
vehicle movement patterns [22], [23], [24], [25]. In this
context, deep learning schemes have emerged as the state-
of-the-art approach [26], [27], [28], [29], [30]. These
recent advances however barely transfer to AIS-based vessel
trajectory prediction [31], [32]. First, the targeted space-time
scales strongly differ (e.g., meters and a few seconds to a few
minutes for pedestrian movements vs. kilometers and hours
for vessel movements). Second, while interaction factors
are critical to understanding and predicting pedestrian and
vehicle trajectories, they have negligible effects on vessels’
movements in the open sea. Besides, long-term dependencies
are key factors for the latter and need to be explicitly
addressed in AIS-based vessel trajectory prediction models.

In the open sea, vessels often follow some common
movement patterns in order to optimize fuel consumption
and to conform with maritime traffic regulations [33], [34].

1In this paper, we use the terms ‘‘medium-range time horizon’’, ‘‘medium-
range forecasting’’, etc. to indicate the prediction horizons ranging from a
few tens of minutes to tens of hours. The terms ‘‘long-term dependency’’,
‘‘long-term correlation’’, etc., on the other hand, indicate the correlations
across several time steps in the series.

However, the analysis of the maritime traffic according
to a finite set of interconnected maritime routes using
clustering-based approaches [18], [19], [20], [21] appears too
simplistic to account for the heterogeneous and multimodal
characteristics of real-world AIS data. The core challenge
of vessel trajectory prediction for the targeted time horizon
in this paper (ranging from half an hour to tens of
hours) revolves around accurately predicting the turning
direction at the ‘‘intersections’’—commonly referred to as
waypoints—along maritime routes (see Fig. 1). From a
mathematical perspective, this involves developing a method
that effectively represents the multimodal nature of AIS data
at these waypoints, where each turning direction corresponds
to a distinct mode of the data distribution. In order to forecast
the trajectory correctly, the prediction model may need to
backtrack several time steps to know where the vessel comes
from and to fully understand large-scale movement patterns.
In essence, we can identify two primary methodological
challenges: i) learning how to represent maritime traffic flows
beyond a fully-structured network of maritime routes; and
ii) capturing multi-scale patterns in vessel trajectories.

To address these challenges, we propose a novel deep
learning model, referred to as TrAISformer. Our key contri-
butions are as follows:

• TrAISformer exploits a specific sparse, high-dimensional
representation of AIS data and frames the prediction
task as a classification problem to explicitly model the
heterogeneity of AIS data and the multimodality of
vessel trajectories.

• We leverage a probabilistic transformer architecture to
capture long-term dependencies in AIS vessel trajecto-
ries.

• We benchmark TrAISformer w.r.t. state-of-the-art
schemes on a real AIS dataset and report a prediction
error below 10 nmi (nautical mile) up to 10 hours,
which significantly outperforms previous works [14],
[18], [19].

The paper is organized as follows. Section II states the
problem and gives an overview of the related work and
current limitations for AIS-based vessel trajectory prediction.
We present the proposed approach in Section III. Section IV
details our numerical experiments. We further discuss our
main contributions and future work in Section V.

II. PROBLEM STATEMENT AND RELATED WORK
AIS-based vessel trajectory prediction involves forecasting
the future positions of vessels over a specific time horizon,
using a series of historical AIS data. Formally, let us denote
by xt an AIS observation at time step t , where xt comprises
the position of the vessel (indicated by the latitude and the
longitude coordinates), its Speed Over Ground—SOG, and
its Course Over Ground—COG.2

xt ≜ [lat, lon, SOG,COG]T . (1)

2We let the reader refer to [35] for a more detailed presentation of AIS
data streams.
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An AIS vessel trajectory is then represented by a series
of observations {xt0 , xt1 , . . . xtT } where ti < tj if i < j.
One can use some simple interpolation method to get a
series of T + 1 equally sampled observations x0:T ≜
{xt0 , xt0+1t , xt0+2∗1t , . . . , xt0+T∗1t }. The time step 1t is
chosen such that the error inherited from the interpolation
has a negligible effect on downstream tasks. In this paper,
we fix the time step at 10 minutes and omit 1t for the sake
of notation simplicity, i.e. xt0+n∗1t ≜ xt+n.
The L-step-ahead prediction problem comes to predict the

trajectory xT+1:T+L ≜ {xT+1, xT+2, . . . , xT+L} given T +

1 observations x0:T ≜ {x0, x1, . . . , xT } up to time T . Given
the nature of the prediction problem, it naturally arises as the
sampling of the following conditional distribution:

p(xT+1:T+L |x0:T ). (2)

We may point out that this probabilistic formulation also
covers deterministic prediction models [14], [36], which
reduce p to Dirac distributions.

There are two primary categories of approaches to AIS-
based vessel trajectory prediction. The first one relies on a
state-space formulation, which combines a dynamical prior
on vessel movements with a filtering method to infer or
sample the posterior (2).Models following this approach have
certain limitations. Firstly, the dynamical prior often relies
on a simplistic model, such as the Curvilinear Motion Model
(CMM) [37], which cannot account for complex patterns
including turning points. Secondly, filtering methods, such
as the Kalman filter [37], [38] or the particle filter [11], are
prone to error propagation issues. Consequently, they seem
less suitable for medium-range prediction.

In recent years, the second approach, known as the
learning-based approach, has gained substantial popular-
ity [39]. [40], [41], [42] leveraged LSTM (Long Short-Term
Memory) and GRU (Gated Recurrent Unit) to learn the
temporal patterns in x0:T . However, given the multi-path
patterns exhibited in AIS data, such schemes are likely
to fail [43]. More sophisticated models take into account
the interactions between vessels. [32] used a customized
pooling layer—referred to as Collision-Free Social Pooling
(CFSP), while [31] employed Graph Convolutional Neural
Networks (GCN) to model the interactions between vessels
in proximity. These models demonstrate improved prediction
performance in dense traffic scenarios with relatively short
prediction horizons, typically below one hour. However,
in the open sea, where vessel density is significantly lower,
and formedium-range horizons (spanning from a few hours to
tens of hours), the impacts of the interactions between vessels
are less pronounced. Furthermore, since the surrounding
environment of a vessel may change as vessels enter or exit
the considered zone, it is intractable to explicitly model such
interactions for these time horizons (see the Appendix).

To address the heterogeneous and multimodal nature of
AIS data, several methods rely on clustering [12], [14],
[18], [19], [44]. They assume that maritime traffic in a
given area can be represented as a graph, where each node

corresponds to a waypoint and each edge represents the
maritime route between two nodes. The prediction problem
then resorts to exploiting a forecastingmodel over the defined
graph. A rich literature exists and exploits among others the
constant velocity model and the particle filter [12], Gaussian
Processes [13] and neural networks [18], [19]. However, all
those schemes face a common limitation: they rely on a
route-based representation ofmaritime traffic, which is viable
only when the traffic is highly organized and structured.
In real life, a significant fraction of AIS trajectories cannot be
assigned to predefined routes [43], [45], limiting the practical
application of clustering-based techniques in operational
systems.

In this paper, we present a novel model for AIS-based
vessel trajectory prediction, referred to as TrAISformer.
To tackle the complexity and multimodality of AIS vessel
trajectories, we propose a new data representation and har-
ness the modeling capabilities of deep learning, specifically
transformer architectures [46]. Contrary to clustering-based
models which constrain the trajectories to a maritime traffic
graph structure [12], [14], [18], [19], [44], TrAISformer is
applicable to any trajectory within the region of interest,
without imposing constraints on an explicit graph of mar-
itime routes. Additionally, we re-frame the prediction as a
classification-based learning problem to best forecast the
positions of maritime vessels several hours into the future.

III. PROPOSED APPROACH
In this section, we detail the proposed approach.We introduce
a new representation of AIS data, derive a new loss
function, and provide a brief introduction of the transformer
architecture used in TrAISformer.

A. DISCRETE AND SPARSE REPRESENTATION OF AIS DATA
One of the primary challenges in trajectory prediction in
general, and AIS-based vessel trajectory prediction in partic-
ular, is the modeling of the heterogeneous and multimodal
nature of motion data given relatively low-dimensional
observations. Here, we introduce a novel representation of
AIS data, which addresses the heterogeneity aspect. The
multimodality part will be addressed in the next subsection
with a classification-based training loss.

The most prevalent way to represent an AIS message is
to use a 4-dimensional real-valued vector composed of the
position and the velocity of the vessel, as in (1).

However, as discussed in [43] and [45], it is chal-
lenging to encode complex vessel movement patterns in
this feature space. A natural approach is to expand the
feature space to a higher dimensional one. Specifically,
instead of modeling the conditional probability distribution
of the future trajectory given the past p(xT+1:T+L |x0:T ),
we consider p(eT+1:T+L |e0:T ), where et ∈ Rde represents
a high-dimensional embedding vector of xt . Recently, vari-
ational autoencoders have been very successful in learning
such effective mappings that encode et from xt , and decode
xt from et [47], [48], [49], [50], [51], [52]. However, when
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FIGURE 2. Proposed representation of AIS data: To overcome the
challenge of representing the heterogeneous and multimodal nature of
motion data with relatively low-dimensional observations in AIS-based
vessel trajectory prediction, a new representation of AIS data is proposed
in this study. For each attribute att ∈ {lat, lon, SOG, COG}), the observed
value (which is continuous) is discretized into a one-hot vector hatt

t . Each
hatt

t is then associated with a high dimensional real-valued embedding
vector eatt

t .

the dimension of et is much higher than that of xt , the training
becomes extremely difficult and prone to overfitting.

To overcome the overfitting problem, we exploit the
‘‘four-hot’’ representation vector ht , defined in our previous
works [43], [45]. Specifically, we discretize the latitude, the
longitude, the SOG, and the COG into Nlat , Nlon, NSOG, and
NCOG bins, respectively. We then build a one-hot vector for
each attribute {lat, lon, SOG,COG}. The ‘‘four-hot’’ vector
ht is the concatenation of the four one-hot vectors.

ht ≜ [1latt , 1lont , 1SOGt , 1COGt ]T (3)

with 1attt (att ∈ {lat, lon, SOG,COG}) being the one-hot
vector of att . The details are presented in Algorithm 1.

Each attribute bin of ht will be associated with a
high dimensional embedding vector, denoted as eattt . The
embedding vector et of an AIS observation xt is the
concatenation of eattt . This mapping is illustrated in Fig. 2.
The proposed approach ensures that in the embedding space,
only Nlat × Nlon × NSOG × NCOG values of et will be used.
By imposing this sparsity constraint, we effectively regularize
the mapping and avoid overfitting when augmenting the
original 4-dimensional AIS observation xt to a much higher
dimensional space of et [53]. An AIS vessel trajectory is then
represented by e0:T ≜ {e0, e1, . . . , eT }.
Note that the mapping ht → et is one-to-one, and

obtaining ht from xt is a straightforward process. However,
in the reverse direction, it is not possible find the exact
xt from ht because of the discretization. In this paper,
we employ a simplifying approximation where we use the
mid-points of the bins specified by ht to estimate xt . This
approximation introduces an error equivalent to half of the
resolution of the ht bins in the estimation of xt , even when
the bins estimation is perfect. Nevertheless, we argue that
this inherent error is negligible for medium-range vessel
trajectory prediction applications such as search and rescue,
traffic control, path planning, and port congestion avoidance.
To provide an illustration, let’s consider a resolution of 0.01°
for lat and lon. The approximation introduces an error of
around 0.15 nautical miles (nmi). This level of error does
not significantly impact the aforementioned applications, as it
remains well within acceptable limits.

FIGURE 3. Example of multi-resolution ‘‘four-hot’’ vectors for AIS data:
The model uses the fine-resolution vector ht in the embedding module
(see Fig.2), while the loss function uses both ht and a
coarse-resolution h′

t .

B. TRANSFORMER ARCHITECTURE
As depicted in Fig. 1, in order to forecast the trajectory of a
vessel correctly, a prediction model needs to capture possible
long-term dependencies in the historical AIS observations.
In this regard, transformer neural networks [46] naturally
arise as highly suitable candidates. In this work, we adopt a
transformer architecture akin to the GPT models [54]. The
model’s architecture is briefly presented in the following
paragraphs. Interested readers are encouraged to refer to [55]
for a more complete and formal introduction to transformer.

The transformer network in TrAISformer consists of a
series of attention layers that are stacked together. Each layer
functions as an auto-regressive model that employs the dot-
product multiple-head self-attention mechanism:

Attention(Q,K ,V ) = softmax
(
QKT
√
de

)
V , (4)

where Q,K ,V are linear projections of the input sequence
(which is {et } for the first layer, or the output sequence of
the previous layer for other layers), and de is the model size,
i.e. the dimension of et . At each layer, the input sequence
is projected into a new space V , and the output of the
attention block is a weighted sum in V , where the weights
signify the relative contribution of each time step. These
weights are computed as the softmax on the dot product
of Q and K , normalized by

√
de. The projection operators

of Q,K ,V are learned during the training phase, and the
calculation is performed in parallel. The parallel processing
capability allows the model to directly retrieve information
frommultiple past time steps simultaneously. This is a critical
advantage compared to recurrent networks, where the model
has to process data sequentially and may not be able to
retrieve long-term information.

The output of the transformer’s final layer is a vector lt with
the same dimension as ht . We will present in the next section
how TrAISformer uses this output to model p(hT+l |e0:T+l−1).

C. LEARNING SCHEME
In the learning literature, trajectory prediction is commonly
formulated as a regression problem where a model aims
to output the best possible continuous-valued eT+1:T+L (or
xT+1:T+L) given the input e0:T (or x0:T ) [14], [18]. Within a
deterministic setting, the most common loss function is the
mean square error, which measures the squared difference
between the predicted and the actual values [14], [19], [56]:

LMSE =
1
L

L∑
l=1

||xpredT+l − xtrueT+l ||
2
2, (5)
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FIGURE 4. Illustration of the loss function LCE to account for multimodal
posterior: Let’s consider a scenario where at a specific waypoint, half of
the vessels in the training set turn left and the other half turn right. The
true distribution of the longitude at the next time step forms a bimodal
normal distribution, depicted by the blue curve. If we use a real-valued
scalar to represent the longitude and use LMSE as the loss function, the
implicit distribution of the model is an unimodal Gaussian distribution.
Consequently, the model tends to merge the two modes of the true
distribution, as illustrated by the orange curve. By contrast, if we use a
one-hot vector to represent the longitude and use LCE as the loss
function, the implicit distribution of the model is a categorical
distribution. With this distribution, the model preserves the two modes,
as shown by the green curve.

where ||.||2 denotes the Euclidean norm L2. However, this
L2 loss function (which can be interpreted w.r.t. Gaussian
assumption on the conditional likelihood p(eT+l |e0:T+l−1) or
p(xT+l |x0:T+l−1)) may not be appropriate for posterior distri-
butions that exhibit multimodality, as illustrated by vessels’
trajectories in Fig.1. To explicitly account for multimodal
posteriors, we propose a classification-based formulation
that involves modeling p(eT :T+l |e0:T+l−1) as a concatenation
of four categorical distributions, each corresponding to
an attribute {lat, lon, SOG,COG}. Specifically, because the
mapping ht → et is one-to-one, we have:

p(hT+l |e0:T+l−1) = p(eT+l |e0:T+l−1). (6)

As ht is a ‘‘four-hot’’ vector, this transforms the prediction
into a classification problem with four heads, each corre-
sponding to one component of the one-hot vector ht ). Let us
denote pT+l ≜ p(hT+l |e0:T+l−1) = p(eT+l |e0:T+l−1), the
loss function is defined as:

LCE ≜
L∑
l=1

CE(hT+l, pT+l), (7)

with CE being the cross-entropy function. The details are
presented in Algorithm 2. We demonstrate how the proposed
loss function helps maintain the multimodal characteristics of
the data in Fig. 4.
Note that ht is a discrete representation of the continuous

xt . This discretization can be performed at different resolu-
tions. We empirically observed that the prediction could be
marginally improved if we use a multi-resolution version of
LCE as follows (see Fig. 3):

LCE =

L∑
l=1

CE(pT+l,hT+l) + βCE(p′
T+l,h

′
T+l). (8)

FIGURE 5. Sketch of the TrAISformer architecture: each AIS observation
xt is discretized into a ‘‘four-hot’’ vector ht (for visualization purposes,
we illustrate a one-hot vector instead of a ‘‘four-hot’’ vector for ht ).
Subsequently, each ht is paired with a high dimensional real-valued
embedding vector et . The sequence of embeddings the e0:t will be fed
into a transformer network to predict pt+1 ≜ p(ht+1|e0:t ). During the
training phase, the model is optimized to minimize the cross-entropy loss
between the true value ht+1 and pt+1. To enhance prediction accuracy,
we introduce a ‘‘multi-resolution’’ loss. This involves calculating the
cross-entropy at different spatial resolutions of ht+1. In the forecasting
phase, we generate vessel positions recursively. We sample hpred

t+1 from

pt+1, calculate the ‘‘pseudo-inverse’’ of it to derive xpred
t+1 . The predicted

xpred
t+1 is fed back into the network to sample the next position (as shown

by the red path in the diagram). This iterative process continues until we
reach the desired prediction horizon L.

where p′
T+l ≜ p(h′

T+l |e0:T+l−1), h′
T+l is a coarser version of

hT+l , β is a scalar balancing the relative importance of the
coarse-resolution loss.

The training procedure’s specifics are outlined in
Algorithm 3. For the sake of notation simplicity, we present
the training on a per-series basis. In practice, the model
processes the data in batches.

The proposed model is applied recursively. To predict a
vessel position at time T + l, we sample a ‘‘four-hot’’ vector
hpredT+l from p(hT+l |e0:T+l−1):

hpredT+l ∼ p(hT+l |e0:T+l−1) (9)

and compute the ‘‘pseudo-inverse’’ of the sampled ‘‘four-
hot’’ vector to output the new position xpredT+l . The latter
is subsequently fed into the network to sample similarly
a position at the next time step. We repeat this sampling
procedure until we achieve the desired trajectory length.
Multiple runs of this sampling procedure can be performed
for a given AIS vessel trajectory to generate different possible
predicted paths. This stochastic procedure allows us to
address the fact that two vessels currently having similar
movement patterns at present may diverge in their trajectories
at the next waypoint. The details are presented inAlgorithm 4.
We demonstrate in Section IV that if we do not sample hpredT+l
from p(hT+l |e0:T+l−1) according to (9), the performance of
the model will degrade.

A sketch of the resulting TrAISformer architecture is shown
in Fig. 5.
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Algorithm 1 fourhot(xt ,R, SOGmax,N)
Description: Create ‘‘four-hot’’ vector.
Input: AIS observation xt ≜ [lat, lon, SOG,COG]T ,

the limits of the ROI
R ≜ [latmin, latmax, lonmin, lonmax]T ,
SOGmax, the numbers of bins N ≜ [N lat , N lon,
N SOG, NCOG]T .

Output: ‘‘Four-hot’’ vector ht .
// Create the one-hot vector for

each attribute.
1latt = onehot(xlatt , latmin, latmax,N lat )
1lont = onehot(xlont , lonmin, lonmax,N lon)
1SOGt = onehot(xSOGt , 0, SOGmax,N SOG)
1COGt = onehot(xCOGt , 0, 360,NCOG)
// Concatenate the one-hot vectors
ht = [1latt , 1lont , 1SOGt , 1COGt ]T

Return: ht

IV. EXPERIMENTS AND RESULTS
In this section, we report the experimental results of our
model on a real AIS dataset introduced in [18]. We include a
benchmarking w.r.t state-of-the-art methods for a prediction
horizon up to 15 hours. Additionally, we also present an
ablation study to assess the relevance of each component
of the proposed model. To facilitate the reproducibility
of the work in this paper, we chose a publicly available
AIS dataset and made the code of the model available at
https://github.com/CIA-Oceanix/TrAISformer.

A. EXPERIMENTAL SET-UP
1) DATASET
We tested TrAISformer on a public AIS dataset provided
by the Danish Maritime Authority (DMA).3 The dataset
comprises AIS observations of cargo and tanker vessels
from January 01, 2019 to March 31, 2019. The Region of
Interest (ROI) is a rectangle from (55.5°, 10.3°) to (58.0°,
13.0°). Prior to preprocessing, the raw dataset contained
approximately 712 million AIS messages. We used AIS data
from January 01, 2019 to March 10, 2019 and from March
11, 2019 to March 20, 2019 to train the model and tune the
hyper-parameters, respectively. The test set comprises AIS
data from March 21, 2019 to March 31, 2019. A subset of
this dataset was exploited in [18] to evaluate state-of-the-art
models for AIS-based vessel trajectory prediction, including
deep learning models.

2) DATA PRE-PROCESSING
AIS data often contain outliers and missing data, which can
pose challenges to the prediction. In the training phase, the
presence of outliers and missing data introduces additional
noise and uncertainty, potentially affecting the convergence
of the learning process. During the evaluation phase, missing
data prevents us from calculating the prediction errors, while

3https://dma.dk/safety-at-sea/navigational-information/ais-data

Algorithm 2 ce_loss(ht , lt ,N)
Description: Calculate the cross-entropy loss LCE .
Input: "four-hot" vector ht , the output of the

transformer lt , the numbers of bins N.
Output: the cross-entropy CE(ht , lt ).
// Split ht back into 4 one-hot

vectors, each corresponding to an
attribute of the AIS observation.

1latt , 1latt , 1SOGt , 1COGt = split(ht ,N)
// Split lt into 4 heads.
llatt , llont , lSOGt , lCOGt = split(lt ,N)
// Calculate the cross-entropy for

each head.
platt = CE(Categorical(logit = llatt ), 1latt )
plont = CE(Categorical(logit = llont ), 1lont )
pSOGt = CE(Categorical(logit = lSOGt ), 1SOGt )
pCOGt = CE(Categorical(logit = lCOGt ), 1COGt )
// Calculate “total” cross-entropy.
ce_with_logit(ht , lt ) = platt ∗ plont ∗ pSOGt ∗ pCOGt
Return: ce_with_logit(ht , lt )

outliers can lead to an inaccurate assessment of prediction
accuracy. To mitigate the impact of outliers and missing data,
we implemented the following preprocessing steps:

• Remove AIS messages with unrealistic speed values
(SOG ≥ 30 knots);

• Remove moored or at-anchor vessels;
• Remove AIS observations within 1 nautical mile dis-
tance to the coastline;

• Split non-contiguous voyages into contiguous ones.
A contiguous voyage [43], [45] is a voyage whose
the maximum interval between two consecutive AIS
messages is smaller than a predefined value, here
2 hours;

• Remove AIS voyages whose length is smaller than 20 or
those that last less than 4h;

• Remove abnormal messages. An AIS message is
considered abnormal if the empirical speed (calculated
by dividing the distance traveled by the corresponding
interval between the two consecutive messages) is
unrealistic, here above 40 knots;

• Down-sample AIS data with a sampling rate of
10-minute;

• Split long voyages into shorter ones with a maximum
sequence length of 20 hours.

3) HYPER-PARAMETERS
the results reported in this paper were obtained using a
transformer architecture with 8 layers. Each layer contains
8 attention heads. The resolution of the ‘‘four-hot’’ vector
ht was set to 0.01° for lat and lon, 1 knot for SOG
and 5° for COG. With this resolution, the correspond-
ing sizes of elatt , elont , eSOGt , eCOGt were 256, 256, 128 and
128 for the ROI reported in this paper. This resulted in a
768-dimensional embedding et . The coarse vector h′

t was
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Algorithm 3 trAISformer_train({x0:T+L}, 2, R,
SOGmax, N, β)
Description: Train TrAISformer.
Input: The training set {x0:T+L}, the set of

TrAISformer’s parameters 2, the limits of the
ROI R, SOGmax, the numbers of bins N,
coefficient β.

Output: The learned set of parameters 2.
for x0:T+L in {x0:T+L} do

// Create the “four-hot” vectors
at different resolutions.

for t in 0 : T + L do
ht = fourhot(xt ,R, SOGmax,N)
h′
t = fourhot(xt ,R, SOGmax,N/3)

end
// Get the embeddings and apply

the transformer.
e0:T+L−1 = embedding(h0:T+L−1)
l1:T+L = transformer(e0:T+L−1)
l′1:T+L = conv1d(l1:T+L , kernel =

[1/3, 1/3, 1/3]T , stride = 3)
// Calculate the loss.
LCE = 0
for l in 1 : L do

ce(ht , lt ) = ce_loss(ht , lt ,N)
ce(h′

t , l
′
t ) = ce_loss(h′

t , l
′
t ,N/3)

LCE = LCE + ce(ht , lt ) + β ∗ ce(h′
t , l

′
t )

end
// Optimize 2.
2 = AdamW(LCE , 2, x0:T+L)

end
Return: 2

obtained by merging three consecutive bins of ht . We noticed
that when we reduced or increased the resolution of ht by 2,
the difference in the results was negligible. The historical
sequence length T was set to 3 hours and the prediction
horizon L was up to 15 hours. The model was trained using
AdamW optimizer [57] with cyclic cosine decay learning
rate scheduler [58]. The learning rate was set to 6e−4. Other
implementation details can be found in the GitHub repository
that we shared above. We trained the model on a single
GTX 1080 Ti GPU over 50 epochs with early stopping.
In terms of computational complexity, it took ∼60 minutes
to process 10 days of data in the test set, which suggests that
the model can run in real-time [59].

4) BENCHMARK MODELS
we compare the performance of TrAISformer against different
state-of-the-art deep learning models: LSTM seq2seq [14],
convolutional seq2seq [60], seq2seq with attention [18], [19],
GeoTrackNet [45].
It is challenging to conduct a fair quantitative comparison

with clustering-based methods [12], [14], [18], [19], [36],
[44]. First, those methods did not state clearly how to

Algorithm 4 trAISformer_predict(x0:T , 2, R,
SOGmax, N, L)
Description: Use TrAISformer to predict vessel

trajectory.
Input: The initial segment of the trajectory to predict

x0:T , the trained TrAISformer’s parameters 2,
the limits of the ROI R, SOGmax, the numbers
of bins N, the prediction horizon L.

Output: The predicted trajectory x0:T+L .
// Create the “four-hot” vectors of

the initial segment.
for t in 0 : T do

ht = fourhot(xt ,R, SOGmax,N)
end
// Get the embeddings of the initial

segment.
e0:T = embedding(h0:T )
// Iterate over the prediction

horizon.
for l in 1 : L do

l1:T+l = transformer(e0:T+l−1)
// Split lT+l into 4 heads.
llatT+l, l

lon
T+l, l

SOG
T+l , l

COG
T+l = split(lT+l,N)

// Create the categorical
distributions and sample hattT+l
from them.

for att in {lat, lon, SOG,COG} do
hattT+l ∼ Categorical(logit = lattT+l)

end
// Get the predicted hT+l, eT+l,

and xT+l

hT+l = [hlatT+l,h
lon
T+l,h

SOG
T+l ,h

COG
T+l ]

T

eT+l = embedding(hT+l)
xT+l = pseudo-inverse(hT+l)

end
Return: x0:T+L

address clustering noise and small clusters. Second, most
of them use a DBSCAN clustering, which is sensitive
to hyper-parameters [12], [19], [36]. Different sets of
hyper-parameters could lead to very different results. Third,
as mentioned in Section II, clustering-based approaches, such
as [19], assume vessels’ trajectories belong to a predefined
graph of maritime routes. This assumption does not hold for
the considered dataset. This is the reason why [18] restricted
their analysis to a subset of the whole dataset. That subset
is composed of tankers’ trajectories for a few predefined
routes. Though they only involve a subset of trajectories
compared with the other benchmarked approaches, we regard
the resulting score in [18] as a score under a best-case
scenario for clustering-based methods for the considered
ROI.

We may point out that, contrary to the whole dataset, that subset has not
been made available.
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TABLE 1. Mean prediction performance of the benchmarked models (in
nautical miles).

As the benchmarked models are not public, we conducted
an independent implementation and fine-tuned each model to
get optimal outcomes.

5) EVALUATION CRITERIA
for each prediction, the prediction error at time step t is
calculated as the haversine distance between the true position
and the predicted one:

dk = 2R arcsin
(√

sin2(φ̄) + cos(φ1)cos(φ2)sin2(λ̄)
)

,

(10)

with R the radius of the Earth, φ̄ ≜ 0.5(φ2 − φ1), λ̄ ≜
0.5(λ2−λ1), φ1 and φ2 denote the latitudes, λ1 and λ2 denote
the longitudes of the predicted position and the true position,
respectively.

We used a best-of-N criterion, i.e. for each model,
we sampled N predictions for each target trajectory and
reported the best result. In this paper, N = 16. This criterion
allows us to account for the effect of multimodality.

B. RESULTS
Table 1 shows the average prediction errors evaluated at 1,
2, and 3 hours ahead horizons. The ROI contains several
waypoints, rendering prediction for time horizons ranging
from 1 to 15 hours highly challenging. In the case of
incorrect prediction of turning directions at the waypoints,
the prediction errors of a model increase significantly, often
above a few nautical miles (nmi), as demonstrated by the
benchmarked models in Table 1. TrAISformer outperforms
all the benchmarked models by a large margin. For instance,
for the 2-hour-ahead prediction, it is the only model with an
average error below one nautical mile (41% better than the
second best model GeoTracknet). These results confirm the
capability of TrAISformer to capture the multimodal nature of
vessel trajectories, extract pertinent long-term dependencies,
and deliver accurate predictions of vessel paths.
TrAISformer improves by a factor of 2 the performance

of the model proposed in [18], which is one of the current

FIGURE 6. Prediction performance w.r.t. prediction time horizon: we plot
for each benchmarked model the mean prediction performance for
prediction time horizons from 10 minutes to 15 hours. We also highlight
the time horizon up to which the performance of a given model remains
below the maximum visibility under good weather conditions (i.e.,
10 nmi).

state-of-the-art schemes, with respective scores of 0.94 nmi
and 1.93 nmi. We may recall that the performance of
this clustering-based scheme refers to a best-case scenario,
as it only involves tankers’ trajectories for a few maritime
routes in the case-study region. We also note that the direct
application of state-of-the-art deep learning schemes on the
4-dimensional AIS feature vector, namely LSTM seq2seq
[14], convolutional seq2seq [60], seq2seq with attention [18],
[19], transformer [46], [54] (see Table. 2) leads to poor
prediction performances (mean error greater than 6 nmi for
a 2-hour-ahead prediction). The second best approach is our
previous work GeoTrackNet [43], [45]. It shares two key fea-
tures with TrAISformer: i) a similar sparse high-dimensional
representation of AIS data and ii) a probabilistic neural-
network-based learning scheme. However,GeoTrackNet uses
a Variational Recurrent Neural Network (VRNN) [61] instead
of a transformer architecture to capture the temporal patterns
in the AIS data. The improved performance of TrAISformer
over GeoTrackNet suggests that transformers may be a better
neural architecture for AIS data than VRNN.

To further highlight the importance of the probabilis-
tic feature of TrAISformer, we report the performance
of a deterministic version—denoted as TrAISformer_No-
Stoch—of TrAISformer. This model outputs the ‘‘four-
hot’’ vector with the highest probability, i.e. hpredT+l =

argmaxh p(hT+l |e0:T+l−1), instead of sampling hpredT+l like
in (9). The decrease in the prediction performance (from
0.94 to 2.88 for the 2-hour-ahead prediction) demonstrates
the importance of a multimodal representation of vessels’
trajectories for the considered case-study. As pointed out
previously, two vessels departing from the same port, having
the same current position and velocity, may follow different
paths at the next waypoint, making it impossible for the
prediction model to produce correct deterministic forecasts
all the time. Models that are capable of predicting multiple
possibilities are more relevant. Yet, the deterministic version
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FIGURE 7. Examples of AIS-based vessel trajectory predictions: each column depicts the predictions of a given real vessel trajectory. The rows
correspond to the various models used for benchmarking. For each example, we display the AIS observations x0:T used as the input by all models —,
the real vessel trajectory –, and the predicted trajectory •.
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TABLE 2. Mean prediction performance (in nautical miles) of the models in the ablation study.

of TrAISformer is still much better than standard seq2seq
models, which again stresses the relevance of the transformer
architecture as well as of the considered representation of AIS
feature vector.

In maritime downstream tasks, a crucial factor to consider
when using a prediction model is the maximum meaningful
prediction horizon, which is the longest time horizon where a
prediction is still useful. In some scenarios, such as search
and rescue operations, a prediction is deemed helpful if
the prediction error is smaller than the visibility, which
is generally assumed to be 10 nmi under clear weather
conditions [62]. Fig. 6 depicts such prediction horizons
of the benchmarked models. In the best case scenario,
TrAISformer can extend the prediction horizon by a factor of
∼5.8 compared with current state-of-the-art methods (9.67h
for TrAISformer vs. 1.67h for LSTM_seq2seq_att).

Fig. IV-B displays some examples of the predictions
made by TrAISformer and the other benchmarked methods.
TrAISformer successfully samples realistic turning directions
to forecast the potential paths taken by vessels. We recall
here that for probabilistic models such as GeoTrackNet,
TrAISformer, we report among 16 sampled trajectories the
one closest to the real trajectory. We may highlight that
the model applies not only to the main maritime routes
(the first three columns) but also to less frequent ones
(the last column). By contrast, clustering-based methods
struggle in such cases. The four examples show the relatively
poor performance of the direct application of sequence-
to-sequence deep learning models. GeoTrackNet samples
realistic trajectories for the first three examples, though not
as close to the real ones as the ones predicted by TrAIS-
former. However, for the last example, it performs poorly,
while TrAISformer still succeeds in sampling a realistic
path.

We further analyze in Fig. IV-B the behavior of
TrAISformer through the activation of an attention block in
the first layer of TrAISformer for the trajectory shown in
Fig. 1. Each row shows the relative importance of each time
step in the predicted output. Some remarks raised from this
analysis:

• On straight lines, only the information from recent time
steps is used to predict the next time step, which is
similar to constant velocity models [63];

• At the waypoints, the model needs to retrieve infor-
mation from much earlier time steps, especially at the
previous waypoints to predict the next time step. For
example, row 40 (the red rectangle) depicts the attention

FIGURE 8. Relative importance of each time step in the prediction:
Visualization of the activation of one attention block of TrAISformer for
the trajectory shown in Fig. 1. Horizontal axis: input time step; vertical
axis: output time step. Each row shows which parts of the input that the
model pays attention to in order to compute the output at the
corresponding time step.

weights to compute the prediction at E. The model pays
more attention to the inputs at A, B, C, D, and E. One
intuitive explanation is that the model needs to know
where the vessel comes from (points A, B, C), what the
movement pattern of the vessel is in the current segment
(point D), as well as the current position and velocity
(point E) to guess the movement pattern to come.

As such, this example demonstrates the ability of
TrAISformer to extract relevant long-term dependencies to
predict vessel trajectories.

C. ABLATION STUDY
To evaluate the significance of the different components of
TrAISformer architecture, we conducted an ablation study:

• Firstly, we removed et and ht to demonstrate the
significance of the high-dimensional encoding. This is
equivalent to applying directly a GPT model [54] to
4-dimensional AIS data streams.

• Secondly, we kept et but removed ht to assess the
relevance of the sparsity constraint. The embedding
xt → et in this model is a MultiLayer Perceptron
(MLP).

• Finally, we tested a model with the same architecture as
TrAISformer but used a regression loss as the training
loss to demonstrate the criticality of the classification
loss.

The results in Tab. 2 show that all the ablated models
lead to significantly worse performance compared with
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TrAISformer. Interestingly, the performance degradation is in
the same order of magnitude for the three ablated models,
though the impact of the classification-based loss is slightly
greater. Overall, these results highlight the importance
of integrating all the components of our architecture for
achieving the best prediction performance.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel model—referred to as
TrAISformer, for vessel trajectory prediction using AIS data.
The model uses an augmented, sparse, and high-dimensional
representation of AIS data as well as a state-of-the-art
transformer network architecture to learn complex patterns in
vessel trajectories. Using a classification-based training loss,
TrAISformer can capture the multimodal nature of trajectory
data. Experiments on real, public AIS data show TrAISformer
outperforms existing methods by a significant margin. With
a 9-hour-ahead prediction error below 10 nmi on a real AIS
dataset in a case-study region involving dense and complex
maritime traffic patterns, these results open new research
avenues for various applications such as search and rescue,
port congestion avoidance, and maritime surveillance.

Through an ablation study, we have shown that all the
above-mentioned components of TrAISformer have critical
roles in the reported performance. Though transformer
architectures are likely not fully explainable [64], [65],
we have also shown that the intermediate attention weights of
the transformer architecture provide a natural way to explore
how TrAISformer exploits the past AIS data to compute
its predictions of the future trajectory. This supports that
the learned transformer representation could be of interest
beyond the considered application to prediction tasks.

Future work could further improve the architecture and
develop the applications of TrAISformer framework. Among
others, we may cite the learning of conditional TrAISformer
w.r.t. weather conditions as the latter clearly impact vessels’
movement. While we currently omit the influence of vessel
interactions, future work could study the possibility of
integrating those interactions into the model. We may
also stress that the proposed TrAISformer architecture is
significantly more complex (see Tab. 3) with ∼300 times
more parameters than the second most complex architecture
among the benchmarked ones. While the greater complexity
likely contributes to the significant gain, recent advances
in model compression techniques, such as Neural Network
Pruning [66] and Knowledge Distillation [67], suggest that
we could reduce the model’s size typically by a factor of
tens to hundreds without compromising its performance. This
would promote the assessment and adoption of TrAISformer
in operational systems. The combination of TrAISformerwith
other learning-based modules for classification and anomaly
detections [45] is also of interest. Recent advances in the
exploitation of AIS data for the inversion of sea surface
parameters [68], [69] may also be an appealing line of
research for our future work.

FIGURE 9. Illustration of the intractability of the modeling of the
interactions between agents in medium-range trajectory prediction.
Consider the scenario where we aim to predict the medium-range
trajectory of agent s1 (denoted by the green dot). At time T , there are six
other agents (s2, . . . , s6) within its vicinity (enclosed by the dashed
rectangle). The interactions between s1 and these agents are depicted by
the double-headed arrows. As we project into the medium-range future
at time T + l − 1, s2 and s6 will have moved away from s1; and a new,
unknown agent s7 (denoted by the red dot) may appear near s1. The
prediction model would have no knowledge of this new vicinity, making
the modeling of interactions between agents intractable.

APPENDIX A
WHY PEDESTRIAN AND VEHICLE TRAJECTORY
PREDICTION MODELS DO NOT APPLY TO
MEDIUM-RANGE AIS-BASED VESSEL TRAJECTORY
PREDICTION
In this appendix, we present a mathematical demonstration
explaining why pedestrian and vehicle trajectory predic-
tion models are not directly applicable to medium-range
AIS-based vessel trajectory prediction.

Let us denote by xs
i

t an observation of an agent si at time t .
For instance, in pedestrian and vehicle trajectory prediction,
si can represent either a pedestrian or a vehicle, and xs

i

t
corresponds to their respective positions on the map. In AIS
trajectory prediction, si represents a vessel, and xs

i

t represents
its AIS message. The trajectory of agent si from t1 to t2
(t2 > t1) is then represented by a sequence of observations
xs

i

t1:t2 = {xs
i

t1 , x
si
t1+1, . . . , x

si
t2}. At time t , we denote the group

of other agents in the vicinity of si as Vi
t , and their historical

trajectories are denoted as xV
i
t

0:t .
In the context of this paper, using these notations, trajectory

prediction refers to forecasting the trajectory of an agent si

for L timesteps ahead, based on the historical observations
of this agent and the others in the vicinity up to time T ,
by maximizing the likelihood:

p(xs
i

T+1:T+L |x
si
0:T , xV

i
t

0:T ). (11)

Here we use p in the broad sense, which includes determinis-
tic models.

The conditioning side of (11) encompasses two crucial
components: the xs

i

0:T component embeds the intention of

the agent, while the xV
i
t

0:T part embeds the interactions with
the environment. State-of-the-art methods for pedestrian
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and vehicle trajectory prediction are centered on effectively
modeling and integrating these two terms. Prominent exam-
ples include S-LSTM [26], S-GAN [26], S-ATTN [27],
SoPhie [28], MATF [29], Trajection [70], Trajectron++ [30],
etc. Those models leverage deep neural networks such as
LSTM or GAN (Generative Adversarial Network) to capture
correlations in historical data, and some pooling techniques
to embed the interactions between agents. This idea has
been adopted for short-term AIS-based vessel trajectory
prediction [31], [32]. Although those methods have shown
promising results on the corresponding datasets, they are not
suitable for medium-range vessel trajectory prediction. First,
the prediction horizons considered in those works are from
a few seconds to a few minutes, which are too short for
maritime applications. Second, those works address different
types of maneuvers, of which the movement of an agent
depends highly on the interactions with other agents and the
surrounding environment. For maritime traffic contexts, and
at medium-range time horizons, the path that a vessel will
make depends mainly on where it wants to go. It is barely
affected by the interactions with other vessels in the vicinity
at the current moment. Mathematically, this means at time T
we have the approximation:

p(xs
i

T+l |x
si
0:T , xV

i
t

0:T ) ≈ p(xs
i

T+l |x
si
0:T )

∣∣∣∣
l»1

. (12)

One may argue that we could use the predicted value of

x
ViT+l−1
0:T+l−1 and x

si
0:T+l−1 to estimate xs

i

T+l . However, in order to

predict x
ViT+l−1
0:T+l−1, we need to predict the trajectory of all the

agents in the vicinity of si at T + l − 1. This is an expensive
or even intractable approach. For example, an unknown agent
may join the ROI, as illustrated in Fig. 9).

It’s important to note that if we remove xV
i
t

0:T from (11),
this objective function simplifies (2), which is the objec-
tive function used in medium-range AIS-based vessel
trajectory prediction. Likewise, if we remove the module
that encodes the interactions between agents in some of
the pedestrian and vehicle trajectory prediction models
mentioned above, we get models that have similar archi-
tectures to those designed for AIS trajectory prediction.
For example, if we remove the interactions between agents
part in Trajectron [70], it becomes an LSTM_seq2seq
model.

APPENDIX B
MODEL SELECTION STRATEGY
In this work, we used cross-validation as the model selection
strategy.

As suggested by Reviewers, another approach is to use
information criteria such as the Akaike Information Criterion
(AIC) [71], the Bayesian Information Criterion (BIC) [72],
the Hannan-Quinn Information Criterion (HQIC) [73].
We have calculated these criteria, the result is shown in

Tab.3.
The details of the calculation are as follows:

TABLE 3. AIC SBIC, and HQIC of the studied models.

• For deterministic models (LSTM_seq2seq, Conv_
seq2seq, LSTM_seq2seq_att), we calculated the approx-
imated likelihood as L̂ = RSS/n, with RSS being the
Residual Sum Squares of the fitting and n being the
number of observations [74].

• Although GeoTrackNet and TrAISformer are prob-
abilistic models, they use transformed data. Hence,
we also used RSS/n to approximate the likelihood in the
original data space.

• Since themodel in [18] (Clustering_LSTM_seq2seq_att)
works in a reduced scope, we did not include this model
in this comparison (because we can not compare the
information criteria of models trained on different data).

• TrAISformer_No-stoch is TrAISformer with a dif-
ferent inference strategy. The information criteria of
TrAISformer_No-stoch are the same as TrAISformer’s.

We can see that the values are dominated by the penalty
terms and more specifically the number of parameters.
The AIC, SBIC, and HQIC in Tab 3 favor models
with fewer parameters (LSTM_seq2seq, Conv_seq2seq,
LSTM_seq2seq_att). This is in line with the objective of
information criteria: to identify overparameterized mod-
els [75]. By contrast, neural networks can often be regarded
as over-parameterized. This motivates the exploitation of
regularization schemes during the training phase to avoid
overfitting patterns. To some extent, overparametrization can
yield positive effects [76], [77]).
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