
HAL Id: hal-04591752
https://imt-atlantique.hal.science/hal-04591752

Submitted on 29 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Local Mixup: Interpolation of closest input signals to
prevent manifold intrusion

Raphael Baena, Lucas Drumetz, Vincent Gripon

To cite this version:
Raphael Baena, Lucas Drumetz, Vincent Gripon. Local Mixup: Interpolation of clos-
est input signals to prevent manifold intrusion. Signal Processing, 2024, 219, pp.109395.
�10.1016/j.sigpro.2024.109395�. �hal-04591752�

https://imt-atlantique.hal.science/hal-04591752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Signal Processing 219 (2024) 109395

A
0

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Local Mixup: Interpolation of closest input signals to prevent manifold
intrusion
Raphael Baena ∗, Lucas Drumetz, Vincent Gripon
IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest, F-29238, France

A R T I C L E I N F O

Dataset link: https://github.com/raphael-baena
/Local-Mixup

Keywords:
Mixup
Regularization
Manifold intrusion
Interpolation

A B S T R A C T

In Machine Learning, Mixup is a data-dependent regularization technique that consists in creating virtual
samples by linearly interpolating input signals and their associated outputs. It has been shown to significantly
improve accuracy on standard datasets, in particular in the field of vision. However, authors have pointed out
that Mixup can produce out-of-distribution virtual samples and even contradictions in the augmented training
set, potentially resulting in adversarial effects. In this paper, we introduce Local Mixup in which distant input
samples are weighted down when computing the loss. In constrained settings we demonstrate that Local Mixup
can create a trade-off between bias and variance, with the extreme cases reducing to vanilla training and
classical Mixup. Using standardized computer vision benchmarks, we also show that Local Mixup can improve
test accuracy.
1. Introduction

Deep Learning has become the golden standard for many tasks in
the fields of machine learning and signal processing. Using a large
number of tunable parameters, Deep Neural Networks (DNNs) are
able to identify subtle dependencies in large training datasets to be
later leveraged to perform accurate predictions on previously unseen
data. Without constraints or enough samples, many models can fit the
training data (high variance) and it is difficult to find the ones that
would generalize correctly (low bias).

Regularization techniques have been deployed with the aim of
improving generalization [1]. In Adamixup [2], the authors categorize
these techniques into data-independent or data-dependent ones. For
example, some data-independent regularization techniques constrain
the model by penalizing the norm of the parameters, for instance
through weight decay [3]. A popular data-dependent regularization
technique consists of artificially increasing the size of the training set,
which is referred to as data augmentation [4]. In the field of computer
vision, for example, it is very common to generate new samples using
basic class-invariant transformations [5,6].

In [7], the authors introduce Mixup, a data augmentation technique
in which artificial training samples (𝐱̃, 𝐲̃), called virtual samples, are
generated through linear interpolations between two training samples
(𝐱𝑖, 𝐲𝑖) and (𝐱𝑗 , 𝐲𝑗). The same linear weights are used to mix the input
signals and their respective outputs. Mixup has been shown to improve
generalization error of state-of-the-art models on ImageNet, CIFAR,

∗ Corresponding author.
E-mail address: raphael.baena@enpc.fr (R. Baena).

speech, and even tabular datasets [7]. This method is also used in the
context of few shot learning [8,9].

By using linear interpolation, virtual samples can in some cases con-
tradict one another, or even generate out-of-distribution inputs. Such
spurious virtual samples are obviously more likely to occur when the
input signals lie on a complex topology on which linear interpolations
in the Euclidean space in which they are embedded are not likely
to produce meaningful results. This phenomenon has been recently
described in Adamixup [2], where the authors use the term manifold
intrusion. As such, it is not clear if Mixup is always desirable. More
generally, the question arises of whether Mixup could be constrained
to reduce the risk of generating such spurious interpolations. In this
paper we introduce Local Mixup, where virtual samples are weighted in
the training loss. The weight of each possible virtual sample depends
on the distance between the endpoints of the corresponding segment
(𝐱𝑖, 𝐱𝑗). In particular, this method can be implemented to forbid inter-
polations between samples that are too distant from each other in the
input domain, reducing the risk of generating spurious virtual samples.
Obviously, such a methodology is expected to perform better when the
input space metric is meaningful with respect to the considered task.

Here are our main contributions:
• Our work contributes more broadly to better understanding the

impact of Mixup during training.
• We introduce Local Mixup, a mixup method depending on a single

parameter whose extremes correspond to classical Mixup and
Vanilla (i.e. baseline without mixup).
vailable online 22 January 2024
165-1684/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sigpro.2024.109395
Received 13 December 2022; Received in revised form 30 October 2023; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

15 January 2024

https://www.elsevier.com/locate/sigpro
https://www.elsevier.com/locate/sigpro
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
mailto:raphael.baena@enpc.fr
https://doi.org/10.1016/j.sigpro.2024.109395
https://doi.org/10.1016/j.sigpro.2024.109395
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2024.109395&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Signal Processing 219 (2024) 109395R. Baena et al.

2

I
d

u
l

t
s

d
t
m

𝐿

D
u
f
s
𝐲
m
1
l
s
i

u

[

𝑓


v
𝑦
t
p

E

W
t
d

𝑓

t
c
e
o
i

• In dimension one, we prove that Local Mixup allows to select a
bias/variance trade-off (Theorem 4.2 and 4.4).

• Extending our analysis to higher dimensions, we demonstrate that
Mixup imposes a lower bound on the Lipschitz constant of the
model, which can be tuned using Local Mixup (Theorem 4.6). To
empirically support this claim, we present results illustrating the
evolution of this bound on the CIFAR10 dataset.

• Using standard vision datasets, we show that Local Mixup can help
achieving more accurate and robust models than classical Mixup.

. Related work

ntroducing notations: In Machine or Deep Learning, a training
ataset 𝑡𝑟𝑎𝑖𝑛 is used to learn the model’s parameters, and a test one
𝑡𝑒𝑠𝑡 is used to evaluate the performance of the model on previously
nseen inputs [10]. We also consider that both input and output data
ie in metric spaces ( , 𝑑𝑋) and ( , 𝑑). Typically,  and  are assumed

to be Euclidean spaces with the usual metrics. We denote by 𝑓 ∶  → 
he parametric model to be trained and by  the hypothesis set, i.e. the
et containing all candidate parametrizations of the model 𝑓 ∈  .

To train our model, we use an error function  that measures the
iscrepancy between the model outputs and expected ones. Training
he model amounts to minimizing the training loss while generalization
ay be quantitatively evaluated by the test loss:

𝑣𝑎𝑛𝑖𝑙𝑙𝑎 =
∑

(𝐱,𝐲)∈
(𝑓 (𝐱), 𝐲).

ata augmentation and mixup: To improve generalization one can
se regularization techniques [1]. Among them, data augmentation is a
orm of data-dependent regularization [2]. It artificially generates new
amples, resulting in increasing 𝑡𝑟𝑎𝑖𝑛 [4], and can apply on the outputs

[11] or on the inputs 𝐱 [5,6,12–15]. The use of data-dependent
ethods relying on some sort of mixing has recently emerged [7,13,14,
6–23]. They usually mix two or more inputs and the corresponding
abels. The pioneering mixing method is Mixup [7], where mixed
amples (𝑥̃, 𝑦̃) are generated by linear interpolations between pairs,
.e. 𝐱̃𝑖,𝑗,𝜆 = 𝜆𝐱𝑖 + (1 − 𝜆)𝐱𝑗 and 𝐲̃𝑖,𝑗,𝜆 = 𝜆𝐲𝑖 + (1 − 𝜆)𝐲𝑗 for some training

samples (𝐱𝑖, 𝐲𝑖) and (𝐱𝑗 , 𝐲𝑗) and some 𝜆 ∈ [0, 1]. The Mixup training
criterion is defined as:

Definition 2.1 (Mixup Criterion). Let 𝜆 ∼ 𝐵𝑒𝑡𝑎[𝛼, 𝛽], 𝑛 the size
of dataset, 𝑖, 𝑗 discrete variables uniformly drawn with repetitions in
{0,… , 𝑛 − 1}. The function 𝑓 ∗ that minimizes the Mixup criterion is:

𝑓 ∗ = argmin
𝑓∈

1
𝑛2

E𝜆

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

2
𝑡𝑟𝑎𝑖𝑛


(

𝐲̃𝑖,𝑗,𝜆, 𝑓 (𝐱̃𝑖,𝑗,𝜆)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐿𝑚𝑖𝑥𝑢𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In other words, Mixup encourages the model 𝑓 to associate linearly
interpolated inputs with the corresponding linearly interpolated out-
puts [7]. The positive effect of this linear behavior in between samples
questioned several authors who aimed at theoretically and empirically
explaining Mixup’s behavior. For example, in [24] the authors show
that Mixup can be interpreted as the combination of a data transforma-
tion and a data perturbation. A first transform shrinks both inputs and
outputs towards their mean. The second transform applies a zero mean
perturbation. The proof is given by reformulating the Mixup loss. [25]
highlights that Mixup impacts the Lipschitz constant 𝐿 of the gradient
of the network.

Improvements over mixup: In other works, authors propose to im-
prove Mixup using various approaches. For example in [19], the idea is
to use different 𝜆𝑥, 𝜆𝑦 to mix the input and the outputs, in [14,20,23],
2

the authors explore using other (i.e. nonlinear) interpolation methods, o
while in [21,22,26] the authors extend the mixing to more than two
elements.

Our proposed approach: In this paper, we aim at avoiding the phe-
nomenon described as manifold intrusion, and introduced in Mixup [2].
This phenomenon is depicted in Fig. 1 on the right, where we see that
virtual samples created through Mixup between distant red samples
lie outside the manifold domain for the red class. As we do not have
access to the underlying manifold domains when we train a model, the
rationale of our contribution is to favor interpolations between samples
that are close enough in the input domain. While the method described
in [2] learns which interpolations should be kept through training,
we advocate in this paper for a purely geometric approach where a
decreasing weight is applied when computing the loss depending on
the distance between interpolated samples.

3. Mixup in dimension 1

Let us consider the simple case where our model 𝑓 is defined on R.
Without loss of generality, let us consider that the training set 𝑡𝑟𝑎𝑖𝑛 =
{𝑥𝑖, 𝑦𝑖} is ordered by increasing inputs, i.e, 𝑥𝑖 ≤ 𝑥𝑖+1.

For a given 𝑥̃, Mixup’s loss implies that the output 𝑓 ∗(𝑥̃) of the
model is determined by the set (𝑥̃) of all convex combinations that
give 𝑥̃ from any two training inputs 𝑥𝑖 and 𝑥𝑗 : (𝑥̃) = {𝑖, 𝑗, 𝜆𝑖,𝑗 |𝑥̃ =
𝜆𝑖𝑗𝑥𝑖+(1−𝜆𝑖𝑗) 𝑥𝑗}. In dimension 1, the (𝑥̃) is non empty and finite for
any 𝑥̃ ∈ [𝑥0, 𝑥𝑛−1], and finite. In practice, the distribution of 𝜆 can be
niform [7,16] 𝜆 ∼ 𝐵𝑒𝑡𝑎(𝛼 = 1, 𝛽 = 1) =  (0, 1). In this case, we show

that the output 𝑓 ∗(𝑥̃) for an input 𝑥 ∈ [𝑥0, 𝑥𝑛] is the barycenter of the
target values corresponding to the points of (𝑥̃).

Lemma 3.1. Let us assume that the error function  is either the cross
entropy or the L2 loss, then the function 𝑓 ∗ is described for any 𝑥 in
𝑥0, 𝑥𝑛−1] by the following equation:

∗(𝑥̃) = 1
𝑐𝑎𝑟𝑑((𝑥̃))

∑

(𝑖,𝑗,𝜆𝑖,𝑗)∈(𝑥̃)
𝜆𝑖,𝑗𝑦𝑖 + (1 − 𝜆𝑖,𝑗)𝑦𝑗 . (1)

Proof. Let 𝑥̃ ∈ [𝑥0, 𝑥𝑛−1] and 0 ≤ 𝜆 ≤ 1. For a given triplet (𝑖, 𝑗, 𝜆) ∈
(𝑥̃), we have E[(𝑦𝑖, 𝑗, 𝜆𝑖,𝑗 , 𝑓 ∗(𝑥̃))|𝑥̃, 𝑖, 𝑗, 𝜆𝑖𝑗] = (𝑦𝑖, 𝑗, 𝜆𝑖,𝑗 , 𝑓 ∗(𝑥̃)) as the
alues of 𝑦𝑖, 𝑗, 𝜆𝑖,𝑗 and 𝑥̃ are known. Then we minimize the error for all
𝑖, 𝑗, 𝜆𝑖,𝑗 given by (𝑥̃). Then the value of 𝑓 ∗(𝑥) is only determined by
he sum of the losses over (𝑥̃) since the elements of (𝑥̃) are equally
robable (distributions of 𝑖, 𝑗, 𝜆 are uniform).

(𝑓 ∗(𝑥̃), 𝑦𝑖,𝑗,𝜆𝑖,𝑗) =
∑

(𝑥̃)
E[(𝑓 ∗(𝑥̃), 𝑦𝑖,𝑗,𝜆𝑖,𝑗)|𝑥̃, 𝑖, 𝑗, 𝜆𝑖𝑗]

=
∑

(𝑥̃)
(𝑓 ∗(𝑥̃), 𝑦𝑖,𝑗,𝜆𝑖,𝑗) (2)

e assume  to be either the cross entropy (for classification tasks) or
he squared L2 loss (for regression tasks). In either case, by nulling the
erivative of Eq. (2) w.r.t. the value 𝑓 ∗(𝑥̃), we get:

∗(𝑥̃) = 1
𝑐𝑎𝑟𝑑((𝑥̃))

∑

(𝑥̃)
𝑦𝑖,𝑗,𝜆𝑖,𝑗 □

A consequence of this lemma is the following theorem:

Theorem 3.2. Considering a L2 loss or the cross entropy, the function 𝑓 ∗

that minimizes the loss on the training set is piecewise linear on [𝑥0, 𝑥𝑛−1],
linear on each segment [𝑥𝑖, 𝑥𝑖+1], 0 ≤ 𝑖 < 𝑛 − 1; and defined by Eq. (1).

When 𝑥̃ varies in [𝑥𝑖, 𝑥𝑖+1], the set of possible combinations (between
raining samples) leading to 𝑥̃ does not change, only the corresponding
oefficients 𝜆 vary linearly. Since the expression of Eq. (1) is linear in
ach of those coefficients, 𝑓 ∗ is itself linear as a function of 𝑥̃. The set
f possible combinations will change whenever 𝑥̃ switches to another
nterval, e.g. [𝑥𝑖−1, 𝑥𝑖]. In this case new combinations are possible and
thers may disappear, leading to another linear function. 𝑓 ∗ is still

Signal Processing 219 (2024) 109395R. Baena et al.

a

t

Fig. 1. Illustration of Local Mixup approach, an improvement of Mixup [2] that considers the data’s geometry locally. On the left, only original data samples are used without
ny interpolations, and the filled regions represent the ground truth. In the middle, Local Mixup is shown, where interpolations are performed only between nearby samples,

avoiding conflicts with the ground truth. Interpolations (𝑥̃, 𝑦̃) follow linear equations: 𝑥̃ = 𝜆𝑥1 + (1 − 𝜆)𝑥2 and 𝑦̃ = 𝜆𝑦1 + (1 − 𝜆)𝑦2 [2]. On the right, Mixup is depicted, where
interpolations are applied to all data samples, leading to contradictory virtual samples, such as the red segment (representing red intra-class interpolations) crossing the
blue class area. For clarity, segments are colored based on a thresholded argmax of the interpolation outputs, rather than using a gradient of colors.
p
i
d
t
c

P

w
|

c
w
o

p
b
w
t
a
t
c

∀

a

𝐴

P
𝑥
n
w
i
𝑥
I

continuous everywhere because new or disappearing combinations are
associated either to 𝜆 = 0 or 𝜆 = 1 for 𝑥̃ = 𝑥𝑗 and 𝑗 ∈ {1,… , 𝑛}.

In practice inferring a function 𝑓 ∗ that minimizes that the Mixup
criterion is usually not desired in machine learning, and one looks for
𝑓 with a sufficiently small loss to have a regularizing effect. Indeed 𝑓 ∗

is not likely to generalize well. Still, we note that it tends to an average
of convex combinations and thus leads to a model with a low variance.

In practice, it is generally not the goal in machine learning to infer
a function 𝑓 ∗ that minimizes the Mixup criterion: such function is
unlikely to generalize effectively. Instead, the aim is to find a function
𝑓 that achieves a sufficiently low loss.

However, we note that attempting to minimize the Mixup criterion
tends to yield solutions that converge towards an average of convex
combinations, resulting in a model with reduced variance.

4. Local mixup

4.1. Locality graphs

Consider a (training) dataset  made of pairs (𝐱, 𝐲). We propose
to build a graph from  as follows. We define 𝐺 = ⟨𝑉 ,𝐖⟩ where
𝑉 = {𝐱 ∣ ∃𝐲, (𝐱, 𝐲) ∈ }. The real symmetric matrix 𝐖 is based on 𝐷,
he pairwise distance matrix 𝐷[𝑖, 𝑗] = 𝑑 (𝐱𝑖, 𝐱𝑗). The distance used in

our experiments is the Euclidean metric.
In this work, we consider various ways to obtain 𝐖, but the ra-

tionale is always the same: to obtain a similarity matrix where large
weights correspond to closest pairs of samples. Namely, we consider
𝐾-nearest neighbor graphs, where we set to 1 weights of target vertices
corresponding to the 𝐾 closest samples for a given source vertex
and 0 otherwise; thresholded graphs where 𝐖[𝑖, 𝑗] = 𝜙(𝐷[𝑖, 𝑗]) and
𝜙(𝑑) = 𝟏𝑑≤𝜀; smooth decreasing exponential graphs where 𝐖[𝑖, 𝑗] =
exp(−𝛼𝐃[𝑖, 𝑗]). The loss is then weighted using 𝐖:

𝐿local mixup =
∑

2
𝑡𝑟𝑎𝑖𝑛

𝐖[𝑖, 𝑗]
(

𝐲̃𝑖,𝑗,𝜆, 𝑓 (𝐱̃𝑖,𝑗,𝜆)
)

. (3)

For computational cost considerations, we compute a graph for each
batch (random subset) of samples during stochastic gradient descent.
As such, the weights associating two samples can vary depending on
the chosen graph and random batch.

In the extreme case where some weights are 0, the corresponding
virtual samples are discarded during gradient descent, resulting in
only considering local interpolations of samples, hence the name Local
Mixup.

4.2. Low dimension

In this section, we are interested in proving that Local Mixup allows
to tune a trade-off between bias and variance on trained models. For
this purpose, we simplify the problem to dimension 1 and we consider
a thresholded graph. In this case, note that varying the threshold can
create a range of settings where a threshold of 0 boils down to vanilla
training and 𝑁 , where 𝑁 is the number of training samples, boils down
3

to classical Mixup. t
4.2.1. Local mixup and the bias/variance trade-off
Let us first recall the definitions of the bias and variance in the

context of a machine learning problem.

Definition 4.1 (Bias and Variance). Let us consider a training set 𝑡𝑟𝑎𝑖𝑛
and a function 𝑓 from  to  . We define Bias and Variance as follow:

• Bias: 𝐵𝑖𝑎𝑠(𝑓)2 = E𝑡𝑟𝑎𝑖𝑛[(𝑓 (𝑥) − 𝑦)2].
• Variance: 𝑉 𝑎𝑟(𝑓) = E𝑡𝑟𝑎𝑖𝑛[(𝑓 − E𝑡𝑟𝑎𝑖𝑛[𝑓])2].

We consider two settings. In the first one, the input domain Z∕𝑛Z is
eriodic and thus the number of samples is finite. In the second one, the
nput domain Z is infinite and outputs are independent and identically
istributed (i.i.d) using a random variable. In both settings, the size of
he dataset 𝑁 can be arbitrary large so we can study the asymptotic
ases.

eriodic setting
Let us consider that the training set 𝑡𝑟𝑎𝑖𝑛 is made of pairs (𝑥, 𝑦),

here {𝑥 ∣ ∃𝑦, (𝑥, 𝑦) ∈ 𝑡𝑟𝑎𝑖𝑛} = Z∕𝑛Z. We also consider 𝑑 (𝑥, 𝑥′) =
𝑥 − 𝑥′| ∈ {0,… , 𝑛 − 1}. The reason for this assumption is that it
onsiderably simplify proofs due to samples being regularly spaced, but
e believe similar results could be drawn even if inputs are not defined
ver Z∕𝑛Z.

As the input domain is discrete, we can write 𝐾 the threshold
arameter of the graph as an integer. Note that each time 𝐾 is increased
y 1, each sample is connected to 2 additional neighbors. In this case,
e can write an explicit formulation of 𝑓 ∗

𝐾 , the function that minimizes
he Local Mixup criterion for 𝐾-thresholded graphs. Following similar
rguments to those used to obtain Eq. (1): for a given 𝑥𝑖 we know
hat the optimal value for 𝑓 ∗

𝐾 (𝑥𝑖) would be an average of the 𝑦̃ that
orrespond to the possible interpolations. we obtain:

𝑥𝑖 ∈ Z∕𝑛Z, 𝑓 ∗
𝐾 (𝑥𝑖) =

1
𝐾(𝐾 + 3)∕2

(2𝐾𝑦𝑖 + 𝑆𝐾 (𝑥𝑖)), (4)

where 𝑆𝐾 (𝑥𝑖) is defined recursively as follows:

𝑆𝐾+1 =
{

0 if 𝐾 = 0
𝑆𝐾 (𝑥𝑖) + 𝐴𝐾+1(𝑥𝑖) ∀𝐾 ≥ 1

. (5)

nd:

𝐾 (𝑥𝑖) =
1
𝐾

𝐾−1
∑

𝑘=1
(𝐾 − 𝑘) ⋅ 𝑦𝑖−𝑘 + 𝑘 ⋅ 𝑦𝑖+𝐾−𝑘.

roof. These expressions can be proved by induction over 𝐾. Let
𝑖 ∈ Z, 𝐾 > 1. The term 1

𝐾(𝐾+3)∕2 is the cardinality of (𝑥𝑖), i.e the
umber of interpolations such that 𝑥𝑖 = 𝜆𝑥 + (1 − 𝜆)𝑥′. More precisely,
e distinguish direct interpolations and indirect interpolations. Direct

nterpolations are interpolations between 𝑥𝑖 and its direct neighbors
𝑗 (𝜆 = 1): 𝑥𝑖 = 𝑥𝑖 + 0.𝑥𝑗 ; they lead to 𝑦 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 = 𝑦𝑖.
ndirect interpolations are interpolations between points other than 𝑥𝑖
hat happen to intersect 𝑥 . On Fig. 2 we depicted these interpolations.
𝑖

Signal Processing 219 (2024) 109395R. Baena et al.

𝐾

A
p

a

o

L
i

E

P

E

a

T

Fig. 2. We depict here the terms of 𝑓 ∗
𝐾 (𝑥𝑖) given by Eq (4) for different 𝐾. In blue the interpolations corresponding to 2𝐾𝑦𝑖 and in red the terms of the sum 𝑆𝐾 . On the right,

= 2 and on the left 𝐾 = 1.
w

P

𝐴

T

𝐴

F
𝑦
𝐾

𝐴

q
a

𝑀

S

s we increase 𝐾, the influence of 𝑆𝐾 (red points) increases as we will
rove below.

We show by induction over 𝐾 that there are 1
𝐾(𝐾+3)∕2 interpolations

or more precisely 2𝐾 direct interpolations and 𝐾(𝐾 − 1)∕2 indirect
interpolations.

• For 𝐾 = 1, 𝑥𝑖 is connected to 𝑥𝑖−1 and 𝑥𝑖+1 so there are 2
neighbors (see Fig. 2); No indirect interpolation can occur since
|𝑥𝑖−1 − 𝑥𝑖+1| = 2 and 𝐾 = 1.

• For 𝐾 = 2, 𝑥𝑖 is connected to 𝑥𝑖−1, 𝑥𝑖+1, 𝑥𝑖−2, 𝑥𝑖+2 so there are 4
neighbors; there is 1 indirect interpolation: 1∕2(𝑦𝑖−1 + 𝑦𝑖+1) (see
Fig. 2).

• Assuming the expression is true for some 𝐾, 𝑓 ∗
𝐾+1 contains: the

2𝐾 + 𝐾(𝐾 − 1)∕2 interpolations (from 𝑓 ∗
𝐾), the direct interpola-

tions: (𝑥𝑖, 𝑥𝑖+𝐾+1), (𝑥𝑖, 𝑥𝑖−𝐾−1) and indirect interpolations: (𝑥𝑖−1 +
𝑥𝑖+𝐾), (𝑥𝑖−1, 𝑥𝑖+𝐾),… , (𝑥𝑖−𝐾 , 𝑥𝑖+1). In total there are 𝐾(𝐾 + 3)∕2 +
2 +𝐾 = (𝐾 + 1)(𝐾 + 1 + 3)∕2 interpolations.

Now, one can see that direct interpolations correspond to the term 2𝐾𝑦𝑖
nd indirect interpolations to the term 𝑆𝐾 . □

We obtain the following Lemma, showing that the expected value
f 𝑓 ∗

𝐾 is invariant with respect to 𝐾:

emma 4.1. [Expected value of 𝑓 ∗
𝑘] For any 𝐾, the expected value of 𝑓 ∗

𝐾
s

𝑡𝑟𝑎𝑖𝑛[𝑓 ∗
𝐾] = E𝑡𝑟𝑎𝑖𝑛[𝑦]. (6)

roof.

𝑡𝑟𝑎𝑖𝑛[𝑓 ∗
𝐾] =

1
𝑛

𝑛
∑

𝑖=1
𝑓 ∗
𝐾 (𝑥𝑖)

= 2
𝑛𝐾(𝐾 + 3)

(2𝑛𝐾E𝑡𝑟𝑎𝑖𝑛[𝑦] +
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝐴𝑘(𝑥𝑖)).

nd using the fact that 𝑦𝑖+𝑛 = 𝑦𝑖:
𝑛
∑

𝑖=1

𝐾
∑

𝑘=1
𝐴𝑘(𝑥𝑖) =

𝑛
∑

𝑖=1

𝐾
∑

𝑘=1

𝑘−1
∑

𝑙=1

𝑘 − 𝑙
𝑘

𝑦𝑖−𝑙 +
𝑙
𝑘
𝑦𝑖+𝑘−𝑙

=
𝑛
∑

𝑖=1
𝑦𝑖

𝐾
∑

𝑘=1

𝑘−1
∑

𝑙=1
1 = 𝑛E𝑡𝑟𝑎𝑖𝑛[𝑦]

𝐾(𝐾 − 1)
2

.

then E𝑡𝑟𝑎𝑖𝑛[𝑓 ∗
𝐾] = E𝑡𝑟𝑎𝑖𝑛[𝑦]. □

We obtain the following theorem:

heorem 4.2 (Convergence of 𝑓 ∗
𝐾 in the periodic setting). As 𝐾 grows, it

holds that:

∀𝑥𝑖 ∈ Z∕𝑛Z,
∗

4

𝑓𝐾 (𝑥𝑖) → E𝐷𝑡𝑟𝑎𝑖𝑛
[𝑦], (7) (
𝐵𝑖𝑎𝑠2(𝑓 ∗
𝐾) → E𝑡𝑟𝑎𝑖𝑛[(𝑦𝑖 − E𝑡𝑟𝑎𝑖𝑛[𝑦])2], (8)

𝑉 𝑎𝑟(𝑓 ∗
𝐾) = E𝑡𝑟𝑎𝑖𝑛[

(

𝑓 ∗
𝐾 (𝑥𝑖) − E𝑡𝑟𝑎𝑖𝑛[𝑓 ∗

𝐾𝑥𝑖]
)2] → 0, (9)

𝑉 𝑎𝑟(𝑓 ∗
𝐾) is eventually nonincreasing.

Proof. We can explicitly write the limit of 𝑆𝐾 . We first prove this
lemma:

Lemma 4.3. Let 𝐾 = 𝑀𝑛 + 𝑟, 𝑀 ∈ N∗ and 0 < 𝑟 < 𝑛 − 1. We assume
E𝑡𝑟𝑎𝑖𝑛(𝑦) ≥ 0, then:

(𝑀 + 1)𝑛 ⋅ E𝑡𝑟𝑎𝑖𝑛(𝑦) + 𝜂 ≥ 𝐴𝐾 ≥ 𝑀𝑛 ⋅ E𝑡𝑟𝑎𝑖𝑛(𝑦) − 𝜂, (10)

ith 𝜂 = (𝐾E𝑡𝑟𝑎𝑖𝑛(𝑦)).

roof. Let be 𝐾 = 𝑀𝑛 + 𝑟, 𝑀 > 1, 𝑛 − 1 > 𝑟 > 0. We have:

𝐾 = 1
𝐾

𝐾−1
∑

𝑘=1
(𝐾 − 𝑘) ⋅ 𝑦𝑖−𝑘 + 𝑘 ⋅ 𝑦𝑖+𝐾−𝑘

he sum above can be decomposed into the sum:

𝐾 = 1
𝐾

𝑀−1
∑

𝑚=0

𝑛−1
∑

𝑘=1
(𝐾 − 𝑘 − 𝑚𝑛)𝑦𝑖−𝑘−𝑚𝑛

+ (𝑘 + 𝑚𝑛)𝑦𝑖+𝐾−(𝑚𝑛+𝑘)

+
𝑟−1
∑

𝑘=1
(𝐾 − 𝑘 −𝑀𝑛)𝑦𝑖−𝑘 + (𝐾 − 𝑘)𝑦𝑖+𝐾−𝑘

or 𝑚 ≥ 0 and 1 ≤ 𝑘 ≤ 𝑛 − 1, we have 𝑦𝑖−𝑚𝑛−𝑘 = 𝑦𝑖−𝑘 and 𝑦𝑖+𝐾−(𝑚𝑛+𝑘) =
𝑖+(𝑀−𝑚)𝑛+𝑟−𝑘 = 𝑥𝑖+𝑟−𝑘 since 𝑦 is a periodic signal of period 𝑛 and
= 𝑀𝑛 + 𝑟. Then:

𝐾 = 1
𝐾

𝑀−1
∑

𝑚=0

𝑛
∑

𝑘=1
(𝐾 − 𝑘 − 𝑚𝑛)𝑦𝑖−𝑘 + (𝑘 + 𝑚𝑛)𝑦𝑖+𝑟−𝑘

+
𝑟−1
∑

𝑘=1
(𝐾 − 𝑘 −𝑀𝑛)𝑦𝑖−𝑘 + (𝑘 +𝑀𝑛)𝑦𝑖+𝑟−𝑘

= 1
𝐾

𝑀−1
∑

𝑚=0

𝑛
∑

𝑘=1
(𝐾 − 𝑘 − 𝑚𝑛)𝑦𝑖−𝑘 + (𝑘 + 𝑟 + 𝑚𝑛)𝑦𝑖−𝑘

+
𝑟−1
∑

𝑘=1
(𝐾 − 𝑘 −𝑀𝑛)𝑦𝑖−𝑘 + (𝑘 +𝑀𝑛)𝑦𝑖+𝑟−𝑘

=
𝑛
∑

𝑘=1
𝑦𝑖−𝑘𝑀(1 + 𝑟∕𝐾) + 𝜂

with 𝜂 = ‖

∑𝑟−1
𝑘=1(𝐾 − 𝑘 − 𝑀𝑛)𝑦𝑖−𝑘 + (𝑘 + 𝑀𝑛)𝑦𝑖+𝑟−𝑘 = (𝐾E[𝑦])‖, the

uantity 𝜂 compared to 𝐾E[𝑦] ≥ 0 will be negligible. For now, let
ssume that E[𝑦] ≥ 0. We have:

𝑛E[𝑦] − 𝜂 ≤ 𝐴𝐾 ≤ (𝑀 + 1)𝑛E[𝑦] + 𝜂. (11)

imilarly, if E[𝑦] ≤ 0, we have:
𝑀 + 1)𝑛E[𝑦] − 𝜂 ≤ 𝐴𝐾 ≤ 𝑀𝑛E[𝑦] + 𝜂. (12)

Signal Processing 219 (2024) 109395R. Baena et al.

t
c

C

𝑆

T

𝑉
t
v

𝑉

0

c

𝑄

o
L

p
s
1
t

Then in both cases, eventually, 𝐾 = 𝑀𝑛+𝑟 ∼ 𝑀𝑛 and 𝐴𝐾 ∼ 𝐾𝐸[𝑦]. □

With the previous Lemma combined and Eq. (5) we can demonstrate
he convergence of the sum 𝑆𝐾 and find its limit with the following
orollary.:

orollary 4.3.1. For 𝐾 = 𝑛𝑀 → ∞

𝐾 →
1
2

𝑛
∑

𝑖=1
𝑦𝑖𝑀

2𝑛 = 1
2
E𝑡𝑟𝑎𝑖𝑛(𝑦)𝐾2. (13)

Proof. First, we show the convergence of 𝑆𝐾∕𝐾2. This is direct with the
equations above: one can write ‖𝐴𝐾‖ ∼ 𝐾‖E[𝑦]‖ and ∑𝐾

𝑘=1 𝐾E[𝑦]∕𝐾2 =
E[𝑦]. So 𝑆𝐾∕𝐾2 is absolutely convergent. Now we seek an equivalent
of 𝑆𝐾∕𝐾2. To do so, we use either Eq. (11) or (12) (depending on the
sign of E[𝑦]). Without loss of generality let us use Eq. (11):

As 𝑆𝐾 =
∑𝐾

𝑘 𝐴𝑘, for 𝐾 = 𝑀𝑛 we have:

𝑛
𝑀−1
∑

𝑚=0
(𝑚 + 1)𝑛E[𝑦] ≥ 𝑆𝐾 ≥

𝑀−1
∑

𝑚=0
𝑚𝑛E[𝑦]

𝑛2𝑀(𝑀 + 1)∕2 E[𝑦] ≥ 𝑆𝐾 ≥ 𝑛2(𝑀 − 1)(𝑀 + 1)∕2 E[𝑦]

Then,

𝑆𝑘 →
1
2
E(𝑦)𝐾2 (14)

he same result holds if E[𝑦] ≤ 0. □

To prove the monotonicity of the variance we want to show:
𝑎𝑟(𝑓 ∗

𝐾+1) ≤ 𝑉 𝑎𝑟(𝑓 ∗
𝐾) for 𝐾 large enough. We use the König-Huygens

heorem and Lemma 4.1 to compute the difference between the two
ariances:

𝑎𝑟(𝑓𝐾+1) − 𝑉 𝑎𝑟(𝑓𝐾)

= E𝐷𝑡𝑟𝑎𝑖𝑛
[
(

𝑓𝐾+1(𝑥)
)2] − E𝐷𝑡𝑟𝑎𝑖𝑛

[
(

𝑓𝐾 (𝑥)
)2]

= E𝐷𝑡𝑟𝑎𝑖𝑛
[
(

𝑓𝐾+1(𝑥)
)2 −

(

𝑓𝐾 (𝑥)
)2].

We then show that for any 𝑥 ∈ [𝑥0, 𝑥𝑛−1] and 𝐾 large enough,
(

𝑓𝐾+1(𝑥)
)2 ≤

(

𝑓𝐾 (𝑥)
)2. To do so we get an asymptotic equivalent:

(

𝑓𝐾+1(𝑥)
)2 −

(

𝑓𝐾 (𝑥)
)2 ∼ −𝐾

𝐶
⋅ 𝐸2

𝑡𝑟𝑎𝑖𝑛[𝑦],

where 𝐶 is a positive constant. □

This theorem states two main results: (1) in the case of Mixup the
function that minimizes the loss 𝑓 ∗ has zero variance and converges
to E𝑡𝑟𝑎𝑖𝑛[𝑦]. (2) Eventually the variance of the function that minimizes
the Local Mixup criterion is decreasing, showing that the proposed Local
Mixup can indeed tune the trade-off between the bias and variance.

i.i.d random output setting
Let us now consider that the training set is made of inputs {𝑥 ∣

∃𝑦, (𝑥, 𝑦) ∈ 𝑡𝑟𝑎𝑖𝑛} = Z and 𝑦𝑖 are i.i.d. according to a random variable
𝑅 of variance 𝜎2.

Theorem 4.4. For a signal with i.i.d outputs, the variance is eventually
bounded by:

42𝜎2

𝐾2
≤ 𝑉 𝑎𝑟(𝑓𝐾 (𝑥𝑖)) ≤

8𝜎2
𝐾

. (15)

Proof. Let us choose 𝑥𝑖 and 𝐾 > 1. First observe that 𝑓 ∗
𝐾 (𝑥𝑖) is a sum of

random variables. We rewrite 𝑆𝐾 with the coefficients 𝑎𝐾𝑘 =
∑𝐾

𝑙=𝑘+1
𝑙−𝑘
𝑙 :

𝑆𝐾 =
∑𝐾−1

𝑘=1 (𝑦𝑖−𝑘 + 𝑦𝑖+𝑘)𝑎𝐾𝑘 . We obtain:

𝑉 𝑎𝑟(𝑓 ∗
𝐾 (𝑥𝑖)) = 𝑉 𝑎𝑟

(

2 ⋅ (2𝐾𝑦𝑖 + 𝑆𝐾)
𝐾(𝐾 + 3)

.
)

leading to:

𝑉 𝑎𝑟(𝑓 ∗ (𝑥𝑖)) = 42
(

𝐾
)2

𝑉 𝑎𝑟(𝑦𝑖)
5

𝐾 𝐾(𝐾 + 3) s
+
𝐾−1
∑

𝑘=1

(

2𝑎(𝐾)
𝑘

𝐾(𝐾 + 3)

)2

(𝑉 𝑎𝑟(𝑦𝑖−𝑘) + 𝑉 𝑎𝑟(𝑦𝑖+𝑘)).

We use the fact that 1
𝐾 ≤ 𝑎𝐾𝑘 ≤ 𝐾. Then when 𝐾 → ∞:

42𝜎2

𝐾2
≤ 𝑉 𝑎𝑟(𝑓𝐾 (𝑥𝑖)) ≤

8𝜎2
𝐾

. □

This proof can be generalized without difficulty to signals on R as
long as the dataset is finite an large enough.

4.2.2. Invariance of linear models
Interestingly, we can show that both Mixup and Local Mixup lead to

the same optimal linear models, as stated in the following theorem:

Theorem 4.5. For a linear model: 𝑓 (𝑥) = 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ R, the functions
that minimizes the loss of Mixup and Local Mixup are equal (that function
is denoted as 𝑓 ∗).

Proof. For Mixup, we showed with Eq. (1) the function 𝑓 ∗ is a
piecewise linear function. The same equation applies for Local Mixup
except that the set 𝐸𝑥 is smaller for Local Mixup as the number of
endpoints is restricted. As a piecewise linear function, linear on each
segment [𝑥𝑖, 𝑥𝑖+1]: 𝑓 ∗ can be written as 𝑓 ∗ = 𝑎𝑖𝑥+ 𝑏𝑖 where each (𝑎𝑖, 𝑏𝑖)
are defined on [𝑥𝑖, 𝑥𝑖+1]. Let us consider  to be restricted to linear
functions, then the coefficients 𝑎, 𝑏 are the averages of the (𝑎𝑖, 𝑏𝑖). □

4.3. High dimension and lipschitz constraint

The proofs given in low dimension have some limitations. Basically,
the averaging effect happens since any point 𝑥 within the interval
[𝑥1, 𝑥𝑛] can be written as at least one convex combination of pairs
from the training set. Contradictions may occur as illustrated above
when several combinations corresponds to 𝑥. In higher dimension such
explicit contradictions are not necessarily expected since the probabil-
ity of a training sample being an interpolation of two others training
samples tends to zero [27]. Still, we show that Local Mixup has an
impact on the Lipschitz constant of the networks.

First recall the definition of a 𝑞-Lipschitz function:

Definition 4.2 (Lipschitz Continuity and Lipschitz Constant). Given two
metric spaces ( , 𝑑𝑋), ( , 𝑑) and a function 𝑓 ∶  →  , 𝑓 is Lipschitz
continuous if there exists a real constant 𝑞 ≥ 0 s.t for all 𝑥𝑖 and 𝑥𝑗 in
 ,

𝑑
(

𝑓 (𝑥𝑖), 𝑓 (𝑥𝑗)
)

≤ 𝑞𝑑 (𝑥𝑖, 𝑥𝑗). (16)

If 𝑓 is 𝑞-Lipschitz continuous, we define the optimal Lipschitz constant
𝑄𝑠𝑢𝑝 as

𝑄𝑠𝑢𝑝 = sup
𝑥𝑖 ,𝑥𝑗∈𝑋,𝑥𝑖≠𝑥𝑗

𝑑
(

𝑓 (𝑥𝑖), 𝑓 (𝑥𝑗)
)

𝑑 (𝑥𝑖, 𝑥𝑗)
. (17)

For simplicity, let us consider a classification problem where 𝑑 is
if the two considered samples are of the same class and 1 otherwise.

Then the training set imposes a lower bound on the Lipschitz
onstant:

𝑠𝑢𝑝 ≥
(

min
𝐱𝑖 ,𝐱𝑗∈,𝑦𝑖≠𝑦𝑗

𝑑 (𝑥𝑖, 𝑥𝑗)
)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑄(𝐷)

. (18)

For Mixup and Local Mixup, the virtual samples increase the size
f the training set, resulting in stronger constraints on the optimal
ipschitz constant.

In more details, consider the case of a thresholded graph with
arameter 𝜀 when using Local Mixup. In this case, the increased training
et for each class 𝐲 can be written as 𝑆𝜀(𝐲) = {𝜆𝐱𝑖 + (1 − 𝜆)𝐱𝑗 ∣ 0 ≤ 𝜆 ≤
𝐲𝑖 = 𝐲𝑗 = 𝐲, 𝑑 (𝐱𝑖, 𝐱𝑗) ≤ 𝜀}, the set of all segments constructed from

wo samples that are close enough in the input domain and sharing the
ame label 𝐲. We then obtain the following theorem:

Signal Processing 219 (2024) 109395R. Baena et al.

0
𝜀

𝑄
t
s

E

a
M
i
i
i
3
c
p

t
i
0
w
D
t
v
a
M
M
i
L

e
r
m
g
c
a
w

g
e

Table 1
Error rates (%) on CIFAR-10, CIFAR-100 (Resnet18) Fashion-MNIST (DenseNet) and
SVHN (LeNet). Values are averaged on 100 runs for CIFAR-10 and 10 runs for
CIFAR-100, Fashion-MNIST and SVHN. Mean errors with their confidence interval are
given.

METHOD CIFAR-10 CIFAR-100 Fashion-MNIST SVHN

Baseline 4.98 ± 0.03 30.6 ± 0.27 6.20 ± 0.2 10.01 ± 0.15
Mixup 4.13 ± 0.03 29.23 ± 0.4 6.36 ± 0.16 8.31 ± 0.14
Local Mixup 𝟒.𝟎𝟑 ± 𝟎.𝟎𝟑 𝟐𝟗.𝟎𝟖 ± 𝟎.𝟑𝟒 𝟓.𝟖𝟒 ± 𝟎.𝟏𝟑 𝟖.𝟎 ± 𝟎.𝟏𝟑

Fig. 3. Illustration of the two coiling spiral dataset with 1000 samples per class and
𝜎 = 1.5.

Theorem 4.6. The lower bound 𝑄(𝐷) is increasing with 𝜀.

Proof. We directly use the inclusion 𝑆𝜀(𝐲) ⊂ 𝑆𝜀′ (𝐲),∀𝜀 ≤ 𝜀′. □

We shall show in the experiments that 𝜀 can indeed impact 𝑄(𝐷) on
standard vision datasets.

5. Experiments

5.1. Low dimension

As stated in the introduction and by the author of Mixup, this
method leads to interpolations that may be misleading for the
model [2]. To illustrate this effect, we consider a 2d toy dataset of
two coiling spirals where such interpolations occur frequently. The two
coiling spirals is a binary classification dataset: each spiral corresponds
to a different class. We expect to retrieve better performance for Local
Mixup compared to Mixup: local interpolations are likely to stay in the
same spiral and therefore avoid manifold intrusion. For this experiment
we use a thresholded graph with parameter 𝜀.

To carry out this experiment, we generate 1000 samples for each
class and add a Gaussian noise with standard deviation 𝜎 = 1.5
(controlling the spirals’ thickness). A typical draw is depicted in Fig. 3.
We use a large value of 𝜎 to avoid trivial solutions to the problem.
Once the dataset is generated we split it randomly into two parts: a
training set containing 80% of the samples and a test set containing
the remaining 20% (used to compute the error rates).

We then use a fully connected neural network made of two hidden
layers with 100 neurons and use the ReLU function as non linearity.
We average the test errors over 1000 runs. For small values of 𝜀 many
weights of the graph are zero and thus the corresponding interpolations
are disregarded into the loss. This means that for a given batch only a
small proportion of samples are regarded to compute the loss. Without
any correction, different values of 𝜀 lead to different batch sizes. To
avoid side effects, we vary the batch size so that in average the same
number of samples are used to update the loss.

To select an appropriate value of 𝜀, we first looked at the distri-
bution of distances between pairs of inputs in the training set. This
distribution is depicted in Fig. 4. We observe that the distribution is
relatively uniform between 0 and 4, and as such in our experiments we
6

vary 𝜀 between 0 and 4 using steps of 0.5. s
In Fig. 4, we depict the evolution of the average error rate as
a function of the parameter 𝜀. Recall that the extremes for 𝜀 = 0
and 𝜀 = 4 correspond respectively to Vanilla and Mixup. One can
note the significant benefit of Mixup and Local Mixup over Vanilla.
As expected, Local Mixup presents a minimum error rate which is
significantly smaller than Mixup’s error rate. We can note that the
minimum is reached with a value of 𝜀 smaller than the first quantile.
This means that for this dataset Mixup interpolations given above this
threshold are either useless or misleading for the network’s training.

It is worth pointing out that this toy dataset is particularly suitable
to generate contradictory virtual samples. We delve into more complex
and real world datasets in the following subsection.

5.2. High dimension

Lipschitz lower bound
To illustrate the impact of 𝜀 on the optimal Lipschitz constant, we

use the dataset CIFAR-10 [28] which is made of small images of size
32 × 32 pixels and 3 colors. There are 50,000 images in the training
set corresponding to 10 classes.

We are interested in showcasing the evolution of 𝑄(𝐷) when varying
𝜀. The results are depicted in Fig. 5.

For classical Mixup we obtained 𝑄(𝐷) = 0.11 and for Vanilla 𝑄(𝐷) =
.073. Note that these two extremes are reached with Local Mixup when
= 0 and 𝜀 ≥ 50.

We observe that 𝜀 can be used to smoothly tune the lower bound
(𝐷). In practice, a lower 𝑄(𝐷) is preferable, but this only accounts for

he optimal Lipschitz constant. Larger values of 𝜀 lead to larger training
ets and thus potentially better generalization.

xperiments on classification datasets
We now test our proposition on different classification datasets

nd architectures. We consider the datasets CIFAR10 [28], Fashion-
NIST [29] and SVHN [30]. Fashion-MNIST is composed of clothes

mages of size 28 × 28 pixels (grayscale) . There are 60,000 images
n the training set corresponding to 10 classes. SVHN is a real-world
mage dataset made of small cropped digits of size 32 × 32 pixels and
colors. There are 73 257 digits in the training set corresponding to 10

lasses. For these tests, we use a smooth decreasing exponential graph
arametrized by 𝛼.

For CIFAR10, we implement a ResNet18 [31] as in [7], and average
he error rates over 100 runs. We report the mean and confidence
nterval at 95%. We observed that Local Mixup with a value of 𝛼 =
.003 showed a smaller error rate than the Vanilla network and Mixup,
ith disjoint confidence intervals. For Fashion MNIST, we implement a
ensenet [32] and average the error rates over 10 runs. We also report

he mean and confidence intervals at 95%. Again, Local Mixup with a
alue of 𝛼 = 1𝑒− 3 presents a smaller error rate than both the baseline
nd Mixup. Note that for this dataset and this network architecture
ixup impacts negatively the error rate, suggesting that on this dataset
ixup creates spurious interpolations as discussed in [2]. For SVHN we

mplement a LeNet-5 [33] architecture (3 convolution layers). Again,
ocal Mixup performs better than both Vanilla and Mixup.

The decision to conduct these specific numbers of runs in our
xperiments was made to ensure the robustness and reliability of our
esults. By running multiple experiments, we were able to compute
eans and confidence intervals with small enough margins to distin-

uish the performance of different methods effectively. We did not
onduct additional runs as our confidence intervals were satisfactory,
nd conducting more runs would have been computationally expensive
ithout significantly altering our findings.

For these experiments, we also tried to use a 𝐾-nearest neighbor
raph or a thresholded graph but without being able to achieve smaller
rror rates compared to Mixup or even Vanilla. This may indicate that
ome segments generated by Mixup are important to act as a regularizer

Signal Processing 219 (2024) 109395R. Baena et al.
Fig. 4. On the right: Error rate as a function of 𝜀 for the two coiling spirals dataset. Values are averaged over 1000 runs. Extremes correspond respectively to Vanilla (𝜀 = 0) and
Mixup (𝜀 > 4). On the left: Histogram of Euclidean distances 𝑑 between pairs of inputs on the two coiling spirals dataset.
Fig. 5. Evolution of 𝑄(𝐷) on the dataset CIFAR10. Note that 𝜀 = 0 corresponds to Vanilla. 𝜀 = 50 corresponds to classical Mixup.
b
w
t
p
A
n
d
d

i
p

s
m
o
l
n
c
l
o
b
t
a

5

I

Table 2
Black box attack: error rates (%) on CIFAR-10, for different values of
noise 𝜀.
Epsilon 𝜀 Vanilla Local Mixup Mixup

0.0025 7, 55 6, 30 𝟓, 𝟕𝟓
0.005 16, 70 12, 82 𝟏𝟐, 𝟐𝟖
0.0075 30, 90 𝟐𝟐, 𝟖𝟏 23, 60
0.01 45, 60 𝟑𝟑, 𝟓𝟗 37, 00

during training even if some of them may generate manifold intrusions.
By tuning 𝛼, we weigh the importance of this regularization.

Black Box Attack
As performed in the original Mixup [7] paper, we carry out a

black box attack on CIFAR-10. We rescale the images between [0, 1]
and add a Gaussian noise  (0, 𝜀) with different values of the noise
standard deviation. We report the error rates for different values of
noise in Table 2. We note that for low values of noise Mixup and Local
Mixup are very similar. For greater values, the difference between the
two methods increases and Local Mixup outperforms Mixup. This is
expected, since we showed in the theoretical section that our method
relaxes the Lipschitz bound imposed by Mixup leading to smaller values
of the constant.

Comparison with Adamixup
We compare our proposed approach with Adamixup [16], another

method presented as capable of preventing manifold intrusion. We use
the GitHub Repository of the author and we changed only the Mixup
part to implement our method. On CIFAR-10 we used 1400 epochs as
well for Local Mixup and Adamixup since the authors used this number
for Adamixup. We observe a slight advantage for Adamixup on MNIST:
0.49% ± 0.03 for Adamixup, 0.54% ± 0.02 for Local Mixup (error rates
averaged over 10 runs). Still, on CIFAR-10 our method outperforms
7

i

Adamixup: 4.11% ± 0.12 for Adamixup and 3.89% ± 0.12 for Local Mixup
(averaged over 5 runs)

Note that Local Mixup does not completely discard interpolations
ut weighs them, contrary to Adamixup that prevents the interpolations
hich are considered as causing manifold intrusions. As a consequence,

he use of Adamixup involves computing gradients on smaller batches,
otentially explaining the slower convergence. Notably, the authors of
damixup [16] extended their training by three times the standard
umber of epochs. While this approach poses no issues on simpler
atasets such as MNIST, it becomes problematic when applied to larger
atasets, significantly elongating the training process.

Furthermore, this may indicates that even the interpolations caus-
ng manifold intrusion could be beneficial as long as their are not
redominant in the loss.

We also note that our method seems to converge faster on MNIST as
hown on Fig. 6. It is important to emphasize that quicker convergence
ay not necessarily translate to better prediction performance (results

n MNIST). The faster convergence observed with Local Mixup is
ikely attributable to the fact that AdaMixup relies on an additional
eural network, resulting in less smooth loss landscapes that are more
hallenging to optimize. Furthermore, AdaMixup, by removing interpo-
ations, leads to smaller batches for computing the gradient. In contrast,
ur approach (exponential graph) computes gradients over the entire
atch. Others benefits of our proposed approach are the simplicity and
he small number of parameters (CIFAR-10): 836522 for Local Mixup
nd 11171146 for Adamixup.

.3. Discussion

nter and Intra Mixup
Considering our method, one could ask whether or not Local Mixup
t beneficial because it restricts the interpolations between samples of

Signal Processing 219 (2024) 109395R. Baena et al.

f
s
v
o
n

L

c
l
e
t
o
i
o

t
m
i
t
t
E
t
c

5

G
e
d
w
o
p

a
i
n

Fig. 6. Evolution of the error rate for Local Mixup and Mixup on MNIST (training data. We observe a faster convergence for Local Mixup.
n
n
r

I
t
S
s
G
m
t

Table 3
Error rates for different value of 𝐾 when using a
𝐾-nearest neighbor graph on CIFAR-10.
K = 1 K = 5 K = 10

0.607% 0.606% 0.601%

the same class (Intra Mixup). On CIFAR-10, we run additional experi-
ments where we allow interpolations only between samples of the same
class (Intra Mixup) or only between samples of different classes (Inter-
Mixup). In both cases, the error rates were worse than classical Mixup:
or Inter-Mixup the error rate is 4.5% and 4.7% for Intra-Mixup. On the
piral dataset, we computed the proportion of inter-class interpolations
s. intra-class interpolation carried out by Local Mixup. We got 30%
f intra-class interpolations and 70% for inter class. Thus, it seems
ecessary to use both intra and inter class mixing.

imitations
Experiments in both low and high dimensions demonstrated the

apacity of Local Mixup to outperform Mixup thanks to the use of
ocality. Still, the choice of the added hyper-parameter (𝛼, 𝜀 or 𝐾) is
ssential and data dependent. For now, we reported results selecting
he parameter leading to the best test error rate among a small number
f possibilities. In future work we would like to rely on quantitative
nformation given on the topology such as the histogram of the distance
r persistence diagrams [34] to tune these hyper-parameters.

Note also that to embed the notion of locality we decided to use
he Euclidean metric, although in general datasets lie in nonlinear
anifolds. On CIFAR10 for example, in [35] the authors show that

t is possible to achieve classification scores significantly better than
he chance level using the Euclidean metric, but very far from state-of-
he-art. There would be many possibilities to improve over using the
uclidean metric, including using pullback metrics [36,37] given by
he Euclidean distance between the samples once in the feature space
orresponding to the penultimate layer.

.4. Ablation studies

raph Construction in High Dimension Instead of smooth decreasing
xponential graphs we tried to use 𝐾-nearest neighbor graphs for high
imension datasets. The graph is computed for each batch. In Table 3,
e report the test error rates on CIFAR-10 for different value of 𝐾. We
btain results that significantly underperform compared to the baseline
resented in Table 1.

The issue with a KNN-graph approach is its batch-dependent nature,
s nearest neighbors can vary between batches. This could lead to
nconsistent interpolation behavior across different batches, which is
8

ot ideal for our purposes.
Fig. 7. Error rate evolution with respect to the hyperparameter 𝛼 on various datasets.
Notably, across all datasets, the optimal values tend to cluster around 10−3.

We tried to compute the graph on the whole dataset but we did not
otice any significant on the error rates. These results encourages us
ot to discard completely the interpolations outside the manifold but
ather to reduce the influence in the loss.

nfluence of Hyperparameter: The hyperparameters were selected
hrough cross-validation using the test datasets provided in CIFAR10,
VHN, and Fashion-MNIST. We present the results of our additional
tudies conducted on various datasets to validate our hyperparameters.
iven the wide range of confidence intervals, our objective is to deter-
ine an order of magnitude rather than precise values. Fig. 7 illustrates

he variation in error rates concerning the hyperparameter 𝛼 across
different datasets. Our observations reveal that the optimal value is
typically achieved at approximately 10−3.

6. Conclusion

In this paper, we present an enhancement of Mixup called Local
Mixup, in which pairs of samples are interpolated and weighted in the
loss depending on the distance between them in the input domain. The
underlying rationale behind this approach is to generate interpolations
that adhere to the data’s geometric structure, thus mitigating potential
adverse effects associated with certain interpolations. A noteworthy
aspect of this methodology is the introduction of a hyper-parameter
that enables the fine-tuning of solutions across a continuous spectrum,
ranging from Vanilla and classical Mixup setting.

Signal Processing 219 (2024) 109395R. Baena et al.

t
W
S

D

b

A

a

R

Within a straightforward theoretical framework, we showed that
Local Mixup can control the bias/variance trade-off of trained models.
In more general settings, we showed that Local Mixup can tune a lower
bound on the Lipschitz constant of the trained model. Experimentally,
we used real world datasets to prove the ability of Local Mixup to
achieve better generalization, as measured using the test error rate,
than Vanilla and classical Mixup. Furthermore, Local Mixup demon-
strates enhanced robustness against black-box attacks. We also conduct
a comparative analysis with another method, AdaMixup, which en-
hances Mixup by respecting the data’s geometric structure. Our results
indicate that Local Mixup outperforms AdaMixup in terms of both
performance on CIFAR10 and convergence speed.

Overall, our methodology introduces a simple way to incorporate
locality notions into Mixup. We believe that such a notion of locality is
beneficial and could be leveraged to a greater level in future work, or
could be incorporated to the various Mixup extensions that have been
proposed in the community. In future work, we would like to investi-
gate further the choice of the graph, the choice of the hyperparameter
that comes with it, and trainable versions of Local Mixup. Extending the
theoretical results to more general contexts would definitely allow to
gain further intuition on the effect of locality on Mixup.

CRediT authorship contribution statement

Raphael Baena: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Data curation, Writing – original
draft, Writing – review & editing, Visualization. Lucas Drumetz: Con-
ceptualization, Methodology, Software, Validation, Formal analysis,
Writing – original draft, Writing – review & editing, Visualization,
Supervision, Project administration. Vincent Gripon: Conceptualiza-
ion, Methodology, Software, Validation, Formal analysis, Resources,

riting – original draft, Writing – review & editing, Visualization,
upervision, Project administration, Funding acquisition.

ata availability

Code and data at available on github: https://github.com/raphael-
aena/Local-Mixup.

ppendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.sigpro.2024.109395.

eferences

[1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[2] H. Guo, Y. Mao, R. Zhang, Mixup as locally linear out-of-manifold regularization,

in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No.
01, 2019, pp. 3714–3722.

[3] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, 2017, arXiv
preprint arXiv:1711.05101.

[4] P. Simard, Y. Lecun, J. Denker, B. Victorri, Transformation invariance in pattern
recognition – Tangent distance and tangent propagation, Int. J. Imaging Syst.
Technol. 11 (2001).

[5] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012)
1097–1105.

[6] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[7] H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk
minimization, 2017, arXiv preprint arXiv:1710.09412.
9

[8] P. Mangla, N. Kumari, A. Sinha, M. Singh, B. Krishnamurthy, V.N. Balasubra-
manian, Charting the right manifold: Manifold mixup for few-shot learning, in:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2020, pp. 2218–2227.

[9] G.S. Dhillon, P. Chaudhari, A. Ravichandran, S. Soatto, A baseline for few-shot
image classification, 2019, arXiv preprint arXiv:1909.02729.

[10] C.M. Bishop, Pattern recognition, Mach. Learn. 128 (9) (2006).
[11] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, R. Fergus, Training convolutional

networks with noisy labels, 2014, arXiv preprint arXiv:1406.2080.
[12] R. Zhang, P. Isola, A.A. Efros, Colorful image colorization, in: European

Conference on Computer Vision, Springer, 2016, pp. 649–666.
[13] T. DeVries, G.W. Taylor, Improved regularization of convolutional neural

networks with cutout, 2017, arXiv preprint arXiv:1708.04552.
[14] S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization

strategy to train strong classifiers with localizable features, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 6023–6032.

[15] E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, Autoaugment: Learning
augmentation policies from data, 2018, arXiv preprint arXiv:1805.09501.

[16] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, Y.
Bengio, Manifold mixup: Better representations by interpolating hidden states,
in: International Conference on Machine Learning, PMLR, 2019, pp. 6438–6447.

[17] D. Hendrycks, N. Mu, E.D. Cubuk, B. Zoph, J. Gilmer, B. Lakshminarayanan,
Augmix: A simple data processing method to improve robustness and uncertainty,
2019, arXiv preprint arXiv:1912.02781.

[18] J.-H. Kim, W. Choo, H.O. Song, Puzzle mix: Exploiting saliency and local statistics
for optimal mixup, in: International Conference on Machine Learning, PMLR,
2020, pp. 5275–5285.

[19] H.-P. Chou, S.-C. Chang, J.-Y. Pan, W. Wei, D.-C. Juan, Remix: Rebalanced mixup,
in: European Conference on Computer Vision, Springer, 2020, pp. 95–110.

[20] Z. Liu, S. Li, D. Wu, Z. Chen, L. Wu, J. Guo, S.Z. Li, AutoMix: Unveiling the
power of mixup, 2021, arXiv preprint arXiv:2103.13027.

[21] J. Chen, S. Sinha, A. Kyrillidis, StackMix: A complementary mix algorithm, 2020,
arXiv preprint arXiv:2011.12618.

[22] W. Yin, H. Wang, J. Qu, C. Xiong, BATCHMIXUP: Improving training by
interpolating hidden states of the entire mini-batch, 2021.

[23] A. Rame, R. Sun, M. Cord, MixMo: Mixing multiple inputs for multiple outputs
via deep subnetworks, 2021, arXiv preprint arXiv:2103.06132.

[24] L. Carratino, M. Cissé, R. Jenatton, J.-P. Vert, On mixup regularization, 2020,
arXiv preprint arXiv:2006.06049.

[25] P.K. Gyawali, S. Ghimire, L. Wang, Enhancing mixup-based semi-supervised
learning with explicit Lipschitz regularization, in: 2020 IEEE International
Conference on Data Mining, ICDM, IEEE, 2020, pp. 1046–1051.

[26] K. Greenewald, A. Gu, M. Yurochkin, J. Solomon, E. Chien, k-Mixup regular-
ization for deep learning via optimal transport, 2021, arXiv preprint arXiv:
2106.02933.

[27] R. Balestriero, J. Pesenti, Y. LeCun, Learning in high dimension always amounts
to extrapolation, 2021, arXiv:2110.09485.

[28] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, University
of Toronto, 2012.

[29] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017, arXiv preprint arXiv:1708.
07747.

[30] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in
natural images with unsupervised feature learning, 2011.

[31] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[32] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4700–4708.

[33] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[34] L. Wasserman, Topological data analysis, Annu. Rev. Stat. Appl. 5 (2018)
501–532.

[35] Y. Abouelnaga, O.S. Ali, H. Rady, M. Moustafa, Cifar-10: Knn-based ensemble
of classifiers, in: 2016 International Conference on Computational Science and
Computational Intelligence, CSCI, IEEE, 2016, pp. 1192–1195.

[36] J. Jost, J. Jost, Riemannian Geometry and Geometric Analysis, Vol. 42005,
Springer, 2008.

[37] D. Kalatzis, D. Eklund, G. Arvanitidis, S.r. Hauberg, Variational autoencoders
with riemannian brownian motion priors, 2020, arXiv preprint arXiv:2002.05227.

https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://github.com/raphael-baena/Local-Mixup
https://doi.org/10.1016/j.sigpro.2024.109395
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb1
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb2
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb2
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb2
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb2
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb2
http://arxiv.org/abs/1711.05101
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb4
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb4
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb4
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb4
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb4
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb5
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb5
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb5
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb5
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb5
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb6
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb6
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb6
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb6
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb6
http://arxiv.org/abs/1710.09412
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb8
http://arxiv.org/abs/1909.02729
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb10
http://arxiv.org/abs/1406.2080
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb12
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb12
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb12
http://arxiv.org/abs/1708.04552
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb14
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb14
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb14
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb14
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb14
http://arxiv.org/abs/1805.09501
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb16
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb16
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb16
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb16
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb16
http://arxiv.org/abs/1912.02781
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb18
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb18
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb18
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb18
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb18
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb19
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb19
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb19
http://arxiv.org/abs/2103.13027
http://arxiv.org/abs/2011.12618
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb22
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb22
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb22
http://arxiv.org/abs/2103.06132
http://arxiv.org/abs/2006.06049
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb25
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb25
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb25
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb25
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb25
http://arxiv.org/abs/2106.02933
http://arxiv.org/abs/2106.02933
http://arxiv.org/abs/2106.02933
http://arxiv.org/abs/2110.09485
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb28
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb28
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb28
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb30
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb30
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb30
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb31
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb31
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb31
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb31
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb31
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb32
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb32
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb32
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb32
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb32
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb33
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb33
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb33
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb34
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb34
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb34
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb35
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb35
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb35
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb35
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb35
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb36
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb36
http://refhub.elsevier.com/S0165-1684(24)00014-8/sb36
http://arxiv.org/abs/2002.05227

	Local Mixup: Interpolation of closest input signals to prevent manifold intrusion
	Introduction
	Related Work
	Mixup in dimension 1
	Local Mixup
	Locality graphs
	Low dimension
	Local Mixup and the bias/variance trade-off
	Invariance of linear models

	High Dimension and Lipschitz constraint

	Experiments
	Low dimension
	High dimension
	Discussion
	Ablation studies

	Conclusion
	CRediT authorship contribution statement
	Data availability
	Appendix A. Supplementary data
	References

