
HAL Id: hal-04588687
https://imt-atlantique.hal.science/hal-04588687

Submitted on 27 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal partially superimposed pilot pattern for OTFS
communication

Rabah Ouchikh, Abdeldjalil Aissa El Bey, Thierry Chonavel, Nacerredine
Lassami

To cite this version:
Rabah Ouchikh, Abdeldjalil Aissa El Bey, Thierry Chonavel, Nacerredine Lassami. Optimal par-
tially superimposed pilot pattern for OTFS communication. VTC2024-Spring: IEEE 99th Vehicular
Technology Conference, Jun 2024, Singapour, Singapore. �hal-04588687�

https://imt-atlantique.hal.science/hal-04588687
https://hal.archives-ouvertes.fr


Optimal partially superimposed pilot pattern for
OTFS communication

Rabah Ouchikh
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Abstract—This paper tackles the intricate challenge of channel
estimation (CE) and symbol detection in high-mobility scenar-
ios for orthogonal time frequency space (OTFS) systems. We
introduce a novel partially superimposed pilots (PSP) pattern,
strategically balancing computational complexity and CE ac-
curacy by partially superimposing pilots and data symbols in
the delay-Doppler (DD) domain. Additionally, we propose a CE
and symbol detection (CESD) algorithm, employing an iterative
approach that combines low complexity minimum mean squared
error (LMMSE) for CE and simplicity-based detection for data
symbols. Key contributions encompass optimal pilot pattern de-
termination, a comprehensive iterative algorithm, and a thorough
performance evaluation. Comparative analyses with state-of-the-
art methods underscore the superior trade-off achieved by CESD
in terms of normalized mean square error for CE, bit error rate,
spectral efficiency, and computational complexity.

Index Terms—OTFS, Channel estimation, Symbol detection,
LMMSE, Simplicity, Pilot pattern.

I. INTRODUCTION

Future mobile communication systems encounter a signif-
icant challenge in ensuring reliable communication within
high-mobility scenarios. However, the widely used orthogonal
frequency division multiplexing (OFDM) modulation faces
performance degradation under such conditions [1]. Orthog-
onal time frequency space (OTFS) modulation, is designed to
address this challenge by effectively managing time-varying
channels [2]. OTFS convert a doubly-selective wireless chan-
nel into an almost flat one within the delay-Doppler (DD)
domain. To ensure resilient data transmission in an OTFS
system, the development of efficient channel estimation (CE)
and data detection algorithms becomes imperative.

Various CE approaches for OTFS in the DD domain fall into
three main categories. The first category involves conventional
pilot-aided (CPA) schemes using the initial frame handles
CE, while subsequent frames are dedicated to data detection
[3]. The second category, known as embedded pilots (EP),
integrates CE and data detection within the same frame [1],
[4]–[7]. This is achieved by interleaving pilots and data
symbols on the same DD grid, incorporating guard intervals
(GI) to prevent interference. The third category encompasses
schemes that superimposed pilots and data symbols in the DD
domain [8]–[10]. This category necessitates advanced iterative
algorithms for effective CE and precise data detection.

This paper introduces a novel pilot insertion strategy, named
partially superimposed pilots (PSP), in the OTFS framework.
As shown in Fig. 1c, PSP superimposes pilots and data
symbols in a portion of the DD grid, striking a balance
between computational complexity and CE accuracy. This
approach aims to find an optimal pilot number, offering a
compromise between the single superimposed pilots (SSP)
and fully superimposed pilots (FSP) schemes, shown in Fig.
1a and Fig. 1b, respectively. SSP minimizes interference by
superimposing a single pilot with a data symbol, employing a
threshold method for CE. However, it faces challenges related
to a high peak-to-average power ratio (PAPR). On the other
hand, FSP resolves the PAPR issue by superimposing all pilots
across the entire DD grid but introduces additional computa-
tional complexity, requiring an iterative algorithm for efficient
CE and data detection. In conjunction with the proposed pilot
pattern, we present a novel CE and symbol detection (CESD)
algorithm for OTFS systems. CESD iterates between LMMSE-
based CE and Simplicity-based symbol detection [11].

The main contributions of this paper are:

• The determination of the optimal number of pilots that al-
lows for efficient detection while reducing the complexity
of channel estimation computation.

• The proposal of an iterative algorithm for CE and symbol
detection, utilizing the proposed pilot pattern along with
LMMSE-based CE and simplicity-based detection.

• The performance evaluation showcases the favourable
balance achieved by the algorithm between bit error
rate (BER), spectral efficiency (SE), and computational
complexity when compared to state-of-the-art methods.

Notation: ⊙ and ⊗ represent the Hadamard product and the
Kronecker product. The column vectorization of an M × N
matrix and the invectorization of an MN column vector
are denoted as vec(.) and vec−1(.). CN (m,σ2) denotes the
circular complex Gaussian distribution with mean m and
variance σ2. diag{d1, d2, ..., dN} represents an N×N diagonal
matrix with diagonal entries d1, d2, ..., dN . Finally, IM , Fn,
and FH

n stand for the M × M identity matrix, the n-point
discrete Fourier transform (DFT) matrix, and the conjugate
transpose of the n-point DFT matrix.



II. OTFS WITH PSP SCHEME

We are examining a single-input single-output OTFS sys-
tem. The DD grid is segmented into N symbols and M
subcarriers. Here, ∆f , B = M∆f , and Tf = NT repre-
sent the subcarrier spacing, bandwidth, and frame duration,
respectively. Additionally, it is given that T∆f = 1.

Using the PSP scheme, the Tx DD signal X is given as:
X[k, l] = Xp[k, l] + Xd[k, l] for k ∈ [kp − Np, kp + Np],
l ∈ [lp, lp +Mp − 1] and X[k, l] = Xd[k, l] otherwise, where
Xp ∈ CM×N is constructed with pilots within the sub-grid
[lp, lp+Mp−1]× [kp−Np, kp+Np] and zeros elsewhere. On
the other hand, Xd ∈ CM×N holds data symbols in all DD
positions. The coordinates (kp, lp) indicate the central pilot
location. To achieve good CE, the size of pilot signals should
cover the maximum delay and Doppler spread, meaning Mp ≥
lτ , and 2Np + 1 ≥ kν . Therefore, the values of Mp and Np

are meticulously chosen to find the right balance between CE
accuracy and computational complexity.

The DD domain signal X is first converted to the time-
frequency domain XTF by the ISFFT and the window func-
tion. The OTFS Tx time domain signal is then formed by
applying the Heisenberg transform to XTF , yielding

s = (FH
N ⊗ IM )x, (1)

where x = vec(X). A cyclic prefix (CP) is appended to s(t)
before it is transmitted to prevent inter-symbol interference.

The signal s(t) passes through the sparse P -path DD time-
varying channel with the given impulse response:

h(τ, ν) =

P∑
i=1

hiδ (τ − li/M∆f) δ (ν − ki/NT ) , (2)

where hi, li, and ki are, respectively, the complex gain, the
delay and Doppler taps for the i-th path. The delays and
Doppler shifts are integer multiples of the sampling period.

After removing the CP, the Rx signal r is given. The Wigner
transform and the SFFT are applied to r, resulting in

y = (FN ⊗ IM )r, (3)

where r = Hs + v. v ∼ CN (0, σ2), and H =∑P
i=1 hiΠ

li∆(ki). Here, Π is the shift permutation matrix,
∆ = diag{exp(j2π(0)/MN), ..., exp(j2π(MN −1)/MN)}.

Upon substituting the expression of r into (3), y can be
related to, xd = vec(Xd), and xp = vec(Xp) by

y = Heffx+ n = Heffxd +Heffxp + n, (4)

where Heff = (FN ⊗ IM )H(FH
N ⊗ IM ), and n = (FN ⊗

IM )v ∼ CN (0, σ2).
The goal is to estimate the channel parameters

(li, ki, hi)i=1:P . Contrastingly, symbol detection involves
determining xd from (4). Since {li, ki} remain unchanged
for a period Ts, for a doubly-underspread (DU) channel, the
estimation of these parameters is done once every Ts = NTT
seconds, where NT is the number of frames in the period Ts.

III. PROPOSED ALGORITHM

Figure 1d shows the Rx pattern for the PSP scheme.
Elements represented by a blue square inside a red circle
represent the signal containing pilots and data symbols which
are used for CE. Elements represented by a red circle inside a
blue square represent data symbols affected by pilots. Once the
channel is estimated, an interference cancellation (IC) scheme
is executed to remove the pilot contribution from the data. The
blue squares designate data symbols unaffected by pilots.

A. Non iterative algorithm (NIA)

Here, we introduce the proposed non-iterative algorithm
(NIA) for CE and symbol detection.

To estimate the channel, we utilize K = (2Np + 1)Mp

pilots. It is noteworthy that the number of pilots K will be
determined subsequently to ensure a good trade-off between
computational complexity and the efficiency of CE. The re-
ceived vector yp ∈ CK×1 for lp ≤ l ≤ lp + Mp − 1 and
kp −Np ≤ k ≤ kp +Np can be expressed as

yp = Aph+Adh+ ñ, (5)

where Ap, Ad ∈ CK×P denote the pilot matrix and the
matrix containing K × P from the MN data symbols. h =
[h1, h2, ..., hP ]

T ∈ CP×1 ∼ CN (0, diag{σ2
h1
, σ2

h2
, ..., σ2

hP
}).

By treating data as interference, the received signal in (5)
can be reformulated as follows:

yp = Aph+ ñd, (6)

where ñd = Adh+ ñ ∼ CN (0, ((
∑P

i=1 σ
2
hi
)σ2

d + σ2)IK).
Using the observation model (6), we obtain the estimate

ĥNIA for h through an LMMSE estimator, given by:

ĥNIA = (AH
p C−1

ñd
Ap +C−1

h )−1AH
p C−1

ñd
yp. (7)

Note that this estimation capitalizes on the sparsity in the
DD domain by inverting a P × P matrix, with P ≪ MN .

Once the channel is estimated, an IC scheme is employed to
eliminate the contribution of pilots on data symbols before the
data detection step. Thus, the signal used for symbol detection
is obtained as follows:

yd = y − Ĥeffxp = Heffxd + ñe, (8)

where ñe = (Heff − Ĥeff)xp + n.
Now, the signal yd in (8) will be utilized to determine the

data symbols vector xd using a simplicity-based detector.
The entries of xd belong to an M-QAM modulation alphabet

denoted by A = {a1, a2, ..., aM}, where ai = αi + jβi,
i ∈ {1, ...,M} with (αi, βi) ∈ F × F . Then, equation (8)
is equivalent to the following real-valued system model:

yd = Heffxd + ñe, xd ∈ F2MN , (9)

where yd = [ℜ[yd],ℑ[yd]]
T , ñe = [ℜ[ñe],ℑ[ñe]]

T , and

Heff =

(
ℜ[Heff] −ℑ[Heff]
ℑ[Heff] ℜ[Heff]

)
. (10)



(a) SSP scheme (Tx). (b) FSP scheme (Tx). (c) Proposed PSP scheme (Tx). (d) Proposed PSP scheme (Rx).

Fig. 1: Tx and Rx patterns in the DD domain (◦: pilot symbol, ■: data symbol).

Our problem is the recovery of xd from yd given Heff and
F . The maximum likelihood (ML) problem reads

x̂d = argmin
xd

||yd −Heffxd||2 subject to xd ∈ F2MN .

(11)
Solving this problem is NP-hard. To address this challenge,

we propose a detector based on the signal simplicity as in
[11]. The signal is defined to be simple if the majority of its
elements are equal to the extremes of the finite alphabet [12].

Therefore, the issue of the finite alphabet constraint as
presented in (11) can be alleviated by relaxing it to a convex
box constraint, depending only on the constellation extremes
{α1, αm} (e.g., {−1,+1} for BPSK or {−3,+3} for 16-
QAM modulation). The relaxed optimization problem for the
determination of xd is formulated as follows:

ĝ = argmin
g

||yd−HeffBαg||2 subject to B1g = 12MN , g ≥ 0.

(12)
where g ∈ R4MN is the sparse transform of xd: xd = Bαg.
Bα = I2MN ⊗ [α1, αm], B1 = I2MN ⊗ [1, 1].

In addition to the convexity of this formulation, the com-
putation cost of the resulting detector does not depend on
the constellation size |A|. Please note that the efficiency of
this approach is determined by the number of points enclosed
within the square box delineated by the constellation boundary.

We solve this problem using the point interior method. Once
g is obtained, the real-valued vector xd can be obtained as
xd = Bαg. Then, xd can be easily obtained from xd.

B. Iterative algorithm (IA)

The performance of NIA degrades at high SNR levels, as
indicated in section V. To tackle this issue, we introduce
an iterative algorithm (IA), which iterates between CE and
symbol detection. The algorithm initiates with the symbol
estimate x̂

(0)
d = x̂d-NIA obtained from NIA. Using x̂

(0)
d , we

can compute an initial estimate A
(0)
d of Ad. The expression

for the received signal (6) can be reformulated as

yp = Â
(0)
x̂d,xp

h+ γ
(0)
ñ , (13)

where Â
(0)
x̂d,xp

= Ap+Â
(0)
d denotes the data-aided matrix and

γ
(0)
ñ = (Ad−Â

(0)
d )h+ñ ∼ CN (0, (2(

∑P
i=1 σ

2
h2
i
)σ2

d+σ2)IK)

is the noise-plus-interference vector.
The estimate of h in the n-th iteration of IA is given by

ĥ
(n)
IA = Φ(n)

(
Â

(n−1)
x̂d,xp

)H (
C(n−1)

γñ

)−1

yp, (14)

where Φ(n) =

((
Â

(n−1)
x̂d,xp

)H (
C

(n−1)
γñ

)−1

Â
(n−1)
x̂d,xp

+C−1
h

)−1

.

Once h is estimated, the effective channel matrix in
the n-th iteration can be computed as Ĥ

(n)
eff-IA = (FN ⊗

IM )
(∑P

i=1 ĥ
(n)
i Πli∆(ki)

)
(FH

N ⊗ IM ).
We now employ the proposed simplicity-based detector in

(12) to detect the symbol vector. The received signal for
symbol detection in the n-th iteration of IA is obtained as

y
(n)
d = y − Ĥ

(n)
eff-IAxp = Heffxd + ṽ(n)

e , (15)

where ṽ
(n)
e = (Heff − Ĥ

(n)
eff-IA)xp + ñ.

From (15), the symbol vector at the n-th iteration of IA
x
(n)
d can be found by resolving the following problem

ĝ(n) = argmin
g

||yd
(n) −Heff-IA

(n)Bαg
(n)||2

st. B1g
(n) = 12MN , g(n) ≥ 0,

(16)

where g(n) ∈ R4MN is the sparse transform of xd
(n): xd

(n) =
Bαg

(n). Bα = I2MN ⊗ [α1, αm], B1 = I2MN ⊗ [1, 1].
IA iterates between LMMSE-based CE in (14) and

simplicity-based data detection in (16) until |ĥ(n)−ĥ(n−1)| <
ϵ or when the maximum number of iterations Nmax is reached.

The proposed IA is summarized in Algorithm 1.

IV. COMPLEXITY ANALYSIS

EP and SP schemes use the MP algorithm for data detection,
its cost is µd = niterNM |A|P over niter iterations.

The computational complexity of the simplicity-based de-
tector stems from solving problem (16) using the interior point
method. This method’s complexity is influenced by the number
of constraints and the vector dimension. A convex optimization
problem in Rm with d constraints typically requires O(

√
d)

iterations and O(m2d) computations per iteration, totaling



Algorithm 1 Iterative algorithm for CE and symbol detection.

Input: y ∈ CMN×1, xp ∈ CMN×1, σ2

Initializations: initial symbol detection: x̂
(0)
d = x̂d-NIA

obtained from NIA, counter: n = 1.
repeat

Compute ĥ
(n)
IA = Φ(n)

(
Â

(n−1)
x̂d,xp

)H (
C

(n−1)
γñ

)−1

yp,

Compute y
(n)
d = y − Ĥ

(n)
eff-IAxp = Heffxd + ṽ

(n)
e ,

Compute x̂d by feeding the simplicity-based detector
with Ĥ

(n)
eff-IA and y

(n)
d ,

Compute ĥ
(n+1)
IA with the following noise approxima-

tion: γ(n)
ñ ∼ CN

(
0,

(
2
(∑P

i=1 σ
2
h2
i

)
σ2
d + σ2

)
IK

)
until |ĥ(n) − ĥ(n−1)| > ϵ or n = Nmax.

Output: ĥ, x̂d.

O(m2d) [11]. Applied to our problem, the simplicity-based
detector’s overall cost is (NM)3.

The computational complexity of CESD is CCESD =
Niter(O(µ1) + O(µ2)), where µ1 and µ2 are the costs of
the CE and symbol detection steps. For the CE step using an
LMMSE estimator, which require the inversion of a P × P
matrix, the cost is dominated by µ1 = P 3. Thus, the CESD’s
complexity is CCESD = NiterO(P 3) +O(N3M3).

The complexity of the EP algorithm is dominated by CEP =
O(Nlτ ) + O(µd), while that of the SP algorithm is CSP =
2O(µe), where µe = (4P 2 + 6L)MN + (P 3 + L) [8].

In practical scenarios where P,L, lτ ≪ MN , the com-
plexities of CESD, EP, and SP algorithms are dominated by
CCESD = NiterO((NM)3), CEP = O(niterNMAP ), and
CSP = (ns + 1)O(MN) + nsO(niterNMAP ).

In conclusion, the EP scheme offers the lower complexity
due to its use of GI to mitigate pilot-data interference. How-
ever, this comes at the expense of reduced SE. Our proposed
CESD, while introducing additional computational complexity,
effectively reduces the overall CE complexity while improving
BER performance. Additionally, CESD’s complexity is inde-
pendent of |A|, unlike for the SP design.

V. SIMULATION RESULTS

In this section, we evaluate the performance of CESD
concerning SE, NMSE, and BER in high-mobility scenarios.
We then compare these performance metrics with various
existing methods, including several state-of-the-art techniques.

A. Simulation parameters

The delay and Doppler bins are given as N = M = 16. The
carrier frequency is fc = 4 GHz and the subcarrier spacing is
∆f = 15 KHz. QPSK constellation is used. We employ the 5-
path DD channel model. The maximum delay shift is τmax =
20.8 µs, corresponding to a maximum delay tap lτ = 5 and
the maximum Doppler shift is νmax = 1850 Hz, indicating a
high-mobility scenario with a maximum Doppler tap kν = 2
and a maximum speed of vmax = 500 km/h.

TABLE I: Pilot overhead comparison between CESD and
state-of-the-art methods (M = N = 16, Kp = 4, Lp = 30,
and NG = 98, vmax = 500 km/h).

Design Pilot overhead (ηs) ηs value
CPA [3] (MN/2MN) 0.5
EP [1] ((NG + 1)/MN) 0.39

RG-BL [5] (Kp/(Kp +N)) 0.2
BSBL-BR [6]

(Lp/MN) 0.12NGR [7]
SP [8] (Lp + (Nf − 1)(0))/(MNNf ) 0.012

Proposed (CESD) (Lp + (Nf − 1)(0))/(MNNf ) 0.012

The channel used conforms to a DU channel [8]. The
number of frames Nf in which the delay and Doppler taps
remain constant is given by Nf = Ts/Tf , where Tf = N/∆f
is the frame duration. In this case, Nf ≈ 10. The value of Nf

increases as vmax decreases: for vmax = 250 km/h, Nf ≈ 20.
Our approach involves first estimating {li, ki}i=1:P using

the simple threshold method and the NGR scheme [13] in
the initial frame. In the subsequent Nf − 1 frames, CESD is
employed to estimate {hi}i=1:P . Consequently, the expression
for the SE is RCESD = (RNGR + (Nf − 1)RSP)/Nf , where
RNGR and RSP denote the SE of the NGR and SP schemes.

B. SE performance

The SE of a scheme s is given by R = (1− ηs) log2(|A|),
where ηs is the pilot overhead of s. Consequently, for a given
alphabet A, as the pilot overhead increases, the SE decreases,
and vice versa.

Table I presents the pilot overhead of CESD and state-
of-the-art schemes. Unlike other schemes, CESD does not
use GI and distributes data symbols across all locations in
the DD grid, minimizing pilot overhead. Analyzing Table
I, we observe that CESD performs similarly as SP design
and outperforms all the other state-of-the-art methods. This
superiority is attributed to the superposition of K pilots onto
data symbols in a sub-grid of the DD grid without using GI.

C. NMSE performance

Figure 2a depicts the NMSE performance of CESD (NIA),
CESD (IA), SP-I [8] method, and the two-stages [7] design.
From the figure, it is shown that the performance of CESD
(NIA) is degraded compared to other methods. This degrada-
tion can be attributed to imprecise CE resulting from pilot-
symbol interferences. On the other hand, CESD (IA) outper-
forms all the methods and surpasses the two-stages algorithm
by approximately 1 for SNR = 10 dB. This performance gain
is achieved by minimizing interferences through the proposed
strategic allocation of pilots and data symbols.

D. BER performance

Figure 2b illustrates the BER versus SNR of CESD as a
function of K/NM . This figure was obtained using the follow-
ing values of Mp and Np: 5 ≤ Mp ≤ 16 and 2 ≤ Np ≤ 7.5.
It is shown that the CE accuracy increases with the rise in the
number of pilots. However, in this superimposed scheme, as
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Fig. 2: (a) NMSE versus SNR performance. (b) BER versus K
MN . (c) BER versus SNR performance.

the number of pilots increases, interference with data symbols
also increases, leading to a degradation in symbol detection
probability. Additionally, the computational complexity of CE
increases with the growing of pilots number.

Based on these observations, we opted to determine the
minimal number of pilots that allows for effective data symbol
detection while reducing the computational complexity of CE.
From Fig. 2b, it is noticeable that beyond K/MN = 0.5,
the BER remains relatively constant. Therefore, by selecting
K = 0.5NM pilots, we achieve similar BER performance
compared to a higher number of pilots. This approach helps
in reducing the computational complexity during the CE step.

We now analyze the BER-SNR performance in Fig 2c, com-
paring CESD to SP design [8], two-stages method [7], OFDM
with perfect CSI and CESD with perfect CSI. It is shown
that the BER of the OTFS system, with the proposed designs,
is significantly lower than that of the OFDM system. It is
also shown from the figure that CESD and two-stages method
exhibit similar performance. Remarkably, CESD outperforms
all other methods, demonstrating performance close to CESD
with perfect CSI. It surpasses SP-I by 3 dB at a BER of 10−4.
This gain is ensured by not superimposing all the data symbols
with the pilots, minimizing interferences. In addition to the
gain in terms of PAPR compared with schemes using GI, the
proposed PSP pilot pattern and CESD algorithm achieves a
good balance between computational complexity, SE and BER
performance compared to state-of-the-art schemes.

VI. CONCLUSION

In this paper, we have proposed a pilot pattern called
partially superimposed pilots scheme for OTFS system. This
novel approach strategically balance computational complexity
and channel estimation (CE) accuracy. We also proposed an
iterative algorithm for CE and symbol detection, called CESD.
This algorithm employ linear minimum mean squared error
for CE and simplicity-based detection in an iterative way.
Simulation results, conducted under high-mobility environ-
ments, have shown that the proposed scheme achieves a good
compromise between bit error rate, spectral efficiency, PAPR,
and computational complexity.
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