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Abstract—This paper presents an efficient lossy compression
method based on sparse coding for received noisy signals (RX)
in satellite communication systems. The emergence of ground
station as a service (GSaaS) and centralized radio access net-
works (C-RAN) requires efficient data transfers between ground
stations and datacenters. Our approach employs sparse coding
to compress baseband signals via offline trained dictionaries. We
analyze the loss introduced by compression and its impact on
common modulation schemes across a Gaussian channel using the
Bit Error Rate (BER) measurement. Additionally, the proposed
method is compared to lossless linear prediction coding (LPC)
and uniform quantization. Our study highlights the potential
of lossy sparse coding to reduce bandwidth requirements while
preserving signal integrity by offering a potential compression
ratio of up to 8% higher than existing methods for the same
degradation.

Index Terms—dictionary learning, sparse coding, lossy com-
pression, entropy coding, C-RAN, GSaaS

I. INTRODUCTION
A. Context and Motivations

HE advent of Ground Station as a Service (GSaaS),

has revolutionized the provision of services, particularly
in the realm of Earth Observation. This innovation has de-
mocratized access to what was once prohibitively expensive
infrastructure for many organizations, enabling them to lever-
age ground stations and extensive terrestrial network systems
without the high investment. Drawing inspiration from the cost
effectiveness and operational agility seen in mobile networks,
these services have embraced the principles of centralized
radio access networks (C-RAN). Centralization, a hallmark
of C-RAN, offers notable advantages that include economical
maintenance, optimized resource distribution, and improved
efficiency in a widely deployed network. This approach neces-
sitates the bulk of digital processing to be centralized within
data centers, relegating base or ground stations to the role of
merely facilitating the transmission and reception of raw signal
samples to and from their analog front-ends. As depicted
in Figure 1, this architecture underscores the dependency on
complex raw sample transfers that encapsulate the baseband

Parts of these research have been funded by Safran Data Systems.

signal, demanding substantial bandwidth for network links
that connect ground stations with data centers to handle both
transmission (TX) and reception (RX) paths. The TX path is
characterized by its noiseless transmission of signals to the
antenna, whereas the RX path involves the reception of noisy
signals from the antenna.

To mitigate bandwidth demand and reduce consumption,
employing compression strategies is considered efficient. Al-
though several lossless compression methods have been ex-
plored [1]-[3], the exploration of lossy compression, which
is notably complex, has been predominantly concentrated on
traditional techniques such as quantization and resampling [4].
This article focuses on a new approach based on sparse coding
techniques.

B. Introduction to Sparse Coding

Sparse Coding is a powerful signal processing technique
that aims to represent signals as a linear combination of a small
number of elementary building blocks, also known as atoms,
from an dictionary. Mathematically, given a signal y € RM
and a dictionary D € RM*X where K > M, the goal is
to find a sparse representation « € R¥ such that y ~ Dzx.
The sparsity constraint implies that only a few entries in @
are nonzero, making it possible to efficiently represent and
transmit the signal using a reduced number of parameters.

In the context of satellite communication systems, sparse
coding can be used to find an efficient representation of the
received signals using their specific spectral and temporal
characteristics. By representing the incoming signals as a
sparse combination of atoms in a dictionary D, we can
efficiently compress the data transmitted between the antenna
and the data center.

C. Contribution

In this paper, we focus on the compression method suitable
for the receiver side (RX) of a satellite transceiver, where
signals are subject to noise. Our aim is to present an efficient,
lossy compression method based on sparse coding to reduce
the required bandwidth while preserving the integrity of the
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Fig. 1. Overview of a remote/centralized modem processing architecture used in satellite communications systems. The figure shows a comparison between
the traditional (top) C-RAN architecture and the enhanced (bottom) version with compression. The compressed C-RAN architecture results in reduced
network congestion and lower overall data rates, while also providing increased capacity that allows multiplexing of input data over the same network. These
improvements have the potential to enhance network efficiency and performance.

signal. We also provide a comprehensive analysis of the
loss introduced by this compression, examining its impact
on various types of modulation across a Gaussian channel
using metrics from digital communications (bit error rate,
E;/Ny...). Finally, we present theoretical insights into the
expected compression performance under these conditions
and compare them with other well-used methods such as
lossless linear prediction coding (LPC) [1], [2], [S] or simple
quantization.

II. Lossy COMPRESSION WITH SPARSE CODING

We define the compression ratio of an algorithm applied to
a dataset as follows:

Compressed size (in bits)

Cratio =1 —

Original size (in bits)

Furthermore, we characterize the impact of a compression
algorithm as the displacement, measured in decibels (dB),
towards the right of the signal’s Bit Error Rate (BER) curve
(Figure 3).

A. Dictionary Learning

In dictionary learning, we aim to find a dictionary D,, €
RM*K and a sparse representation € RX to approximate
input signal y € RM. We solve the following optimization
problem:

. 1
arg min 5”1/ — Dz}
DTO,w 1)
subject to  ||z|o < 70, (
ldill2=1,;i=1,..., K,
Where || - || is the Euclidean norm, || - ||o is the pseudo-norm

counting nonzero elements in a vector, d; is the ¢-th column
of D,,, and 79 > O represents a sparsity constraint parameter.
When K = M, D, is said to be complete and when K > M,
D, is said to be overcomplete.

Familiar techniques such as K-SVD [6] or Online Dictio-
nary Learning (ODL) [7] are applicable to learn the dictionary
D. The choice of method, along with the amount of data at
hand, determines whether the dictionary learning (DL) process
is carried out online (direct training on y) or offline (using a
dataset that simulates the properties of y).

Regarding the optimization problem to find x, there are
numerous sparse coding algorithms, the most known being
Orthogonal Matching Pursuit (OMP) [8]. Other methods such
as LASSO [9] or Coordinate Descent (CD) [7] use ¢; regular-
ization [10], [11] to achieve the same goal at lower complexity.

B. Managing loss when using sparse coding

Since only a few entries in the sparse representation vector
are nonzero, the signal can be transmitted or stored using a
reduced number of samples, resulting in efficient compression.
However, the benefits of sparse representations come with a
trade-off: The resulting compression is lossy in nature, which
implies that some degree of information loss may occur during
the compression/decompression process.

In contrast to image processing, where this compression
scheme is already well known and used [12]-[16], digital com-
munications require unbiased and meticulous considerations of
this loss, which can then be considered as compression noise.
Factors such as the noise statistical distribution law and power
spectral density (PSD), whether it is white or colored noise,
play crucial roles in evaluating the impact of noise on the
overall system performance.

Furthermore, the intricate nature of receivers and the se-
quence of nonlinear stages, such as synchronization, inter-
leaving, and error correction codes, contribute to the highly
nonlinear decoding process. As a result, traditional metrics
such as the mean squared error (MSE) or the mean absolute
error (MAE) cannot be relied upon for analysis. Instead, it
is necessary to undergo the complete decoding process to
accurately measure the Bit Error Rate (BER).
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Fig. 2. Proposed compression architecture diagram. The compression ratio is determined by the scaling factor Sy and the number of nonzero values 7g.
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Fig. 3. Measure of the degradation (in dB). To ensure convergence, we use
both FEC and interleaver.

To optimize the trade-off between compression efficiency,
computation time and reconstruction quality, many parame-
ters can be fine-tuned, such as the number of samples M,
the dictionary overcompleteness K, the number of nonzero
coefficients 7y or the choice of the sparse coding algorithm.
Our research presents results and ways to determine the best
parameters depending on requirements.

C. The art of sending sparse data

We examine two main approaches to enhance the efficiency
of data compression when dealing with sparse data.

The conventional approach, historically used in image pro-
cessing, involves the transmission of data in its complete
form, incorporating both nonzero and zero values. This method
fundamentally relies on entropy coding, like Huffman, using
the statistical distribution properties of sparse data to aid
in compression. The effectiveness of this strategy depends
primarily on the capacity of Huffman coding to construct an
optimally condensed tree, which effectively encapsulates the
distribution between nonzero and zero elements.

In contrast, this research introduces an optimized approach,
deviating from conventional approaches. This innovative strat-

egy is based on selective transmission, where only nonzero
samples and their corresponding positions are transmitted.
The nonzero data elements are further processed through
Huffman coding, optimizing the efficiency of transmission
by exploiting their statistical distribution. Simultaneously, the
positions of these nonzero elements are compressed using
a classical dictionary compressor, significantly reducing the
overhead associated with their transmission (see below). By
avoiding the transfer of zero values and utilizing these two
compression methods simultaneously, we noticed that this
method inherently reduces the volume of data that needs to
be transmitted.

D. The optimized way to send nonzero values positions

< K- > = K- >
0

Sparse
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Tolo] I

1.5665. 53,565 455458 0|0|0|0|0|
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Bit representatmn

Fig. 4. Two ways to send nonzeros positions. Each row represents the actual
bits transmitted to transmit nonzero values position, for each method.

Figure 4 presents the different way we can use to send
nonzero positions to the decompressor to reconstruct the data:

1) The S form is the simplest and non-optimized method for
transmitting positions. It involves sending a vector of K
bits, where a 0 represents a value of 0 and a 1 represents
a nonzero value.

2) SO form is an optimized form in which we use the fact
that there are precisely 7y nonzero values. We then stop
the bit vector at the 7pth bit equal to 1 and then start
directly the next vector.

3) SOC or SC forms are similar to the previous forms,
but the resulting bit vector is passed through a lossless



dictionary compressor: zSTD [17]. Figure 5 shows how
the application of this method actually decreases the
number of bits needed to transmit nonzero positions.
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Fig. 5. Evolution of the number of bits to send for each channel in order to
transmit the position of nonzeros values to the decompressor (M = K = 20).
zSTD could actually be replaced by another compression mechanism (gZIP,
LZMA,..)).

E. Application to digital communications

In this summary, we examine an 8-PSK baseband signal
shaped using a 0.25 roll-off root-raised-cosine (RRC) filter,
a standard waveform used in space telecommunications. Af-
ter sampling the signal with the analog-to-digital converter
(ADC), we employ the compression chain depicted in Figure
2. Table I lists all the main parameters chosen for the simula-
tion.

TABLE I
SIMULATION PARAMETERS

AGC target -6 dBFs
Interleaver size | 324,000
FEC LDPC 5/6 (DVB-S2 mod15)
BER goal 10-6
Quantization 8 bits
Oversampling 2 samples per symbol
M 120
K 120
N 44,000

The parameters are based on typical settings and constraints
for DVB-S2 signals. The AGC target of -6 dBFs accommo-
dates the typical noise range for DVB-S2. A 324,000-size
interleaver covers five DVB-S2 frames, providing a safety
margin for uncertainty in data segmentation for sparse coding.
The 5/6 LDPC FEC under modcod 15 is typical for moderate
SNR regions. An 8-bit quantization is standard, and 2 samples
per symbol for oversampling align with common practice. M
is set at 120, balancing the complexity of the algorithm and the
effectiveness of compression against degradation, particularly
since the efficient compression zones for 7y are narrow (based
on Figures 6 and 7, it can be observed that the effective range
of values for 7 is approximately between 20 and 60). K
equals M since the usage of overcomplete dictionaries did
not show any improvement in the final results, simplifying
our approach.

The dictionary for each value of 7y is learned offfine before
simulation on a noiseless signal of the same kind according
to Equation 1 using Mairal’s ODL algorithm [7]. The actual
implementation of the OMP used is the Order Magnitude
Matching Pursuit (ORMP) algorithm, which has slightly better
results than the classical OMP implementation. Here is the
sequence of procedures employed to compress the 1Q data:
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Fig. 6. Evolution of compression ratio depending on each parameters (for
SOC). M = K = 120. For 79 2 60, there is no compression gain.
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Fig. 7. Evolution of degradation depending on each parameters (for SOC).
M = K = 120. When 79 < 30, the degradation begins to grow
exponentially.

~

Step 1: Based on the desired level of degradation and the
target compression ratio, we select a pair of param-
eters (79,.Sy). Given the infinite number of pairs for
a particular degradation, it is necessary to identify
the pair that, for a fixed degradation, maximizes the
compression ratio. This involves examining all po-
tential pairs and choosing the most optimal one. The
preliminary investigation step, illustrated in Figure 8§,
is carried out offline before compression occurs.

The samples are divided into groups of M adjacent
samples, and a sparse coding operation is performed
on them using a dictionary trained offline D, .
Zeros are removed from the sparse representation,
and nonzero values pass through an entropy coder
(Huffman coder).

In order to reconstruct the sparse vector, nonzero
value positions are also sent over the network, but
are first packed and compressed using a dictionary
algorithm according to Section II-D. We chose zSTD

Step 2:

Step 3:

Step 4:



(zStandard) [17] because of its trade-off between
speed and performance.

Scaling factor Sy
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Fig. 8. Evolution of degradation depending on each parameters. Orange dots
represent the optimal parameter combinations that maximize compression.

Once reconstructed, the data are passed through the entire
demodulation process, including the interleaver and forward
error correction (FEC) processes. These two processes are
actually the most important part of the presented method. The
interleaver will spread the compression error across the entire
signal, while the FEC will ensure that the BER will reach the
target value even when strong degradation is applied.

F. Results
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Fig. 9. Expected compression ratio for each degradation. Simulations were
performed for an 8-PSK signal with a 5/6 LDPC FEC. See Table I for the
list of all simulations parameters.

To perform our simulations, we generate an artificial signal
with Matlab, add AWGN noise for a specific E;/Ny SNR,
compress and decompress it using our architecture, and finally
measure the output bit error rate (BER). Figure 9 shows that
the proposed architecture can offer up to 8% higher compres-
sion ratio than classical methods for equivalent degradation. It
also provides more flexibility than pure quantization, offering
a more reachable compression ratio range depending on M.

III. CONCLUSION

The proposed data compression method shows better results
compared to previous techniques [1], [4], achieving remark-
able compression ratios and a highly controllable loss. Future
studies could investigate alternative compressor architectures

or different entropy encoders, such as Golomb-Rice coding
[18], [19], to further enhance the efficiency and versatility
of the method while offering improvements in the practical
deployment capabilities of the solution, including hardware
and software implementations.
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