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Adversary-Resilient Distributed Estimation
using Intermittent and Heterogeneous Data
with Application to Network Tomography

Gugan Thoppe∗†, Mihir Dhankshiru∗, Nibedita Roy∗, Alexandre Reiffers-Masson‡,
Naman∗, Alexandre Azor†

Abstract

Robustness to adversarial attacks in online distributed learning within a
single parameter server and multiple worker node framework is a critical
research area. Traditional methods for this setup achieve resilience through
a two-step process in each iteration. First, all worker nodes synchronize
to compute and communicate identical quantities, such as gradients at
a shared point, to the server. Then, the server uses a robust aggregate
of these quantities—obtained via techniques like the median or trimmed
mean—to update its solution estimate. However, this approach falls short
in applications like network tomography, where the measurements across
different nodes are sporadic and heterogeneous. A novel two-timescale
algorithm was recently proposed to deal with such scenarios. In this study,
we establish that its convergence rate is O(1/

√
n), which is optimal for

non-strongly convex optimization. Separately, due to the sporadic nature of
data, it is inevitable that this rate expression degrades when more honest
agents are incorporated into the system. For a fixed number of adversaries,
our work reveals that this degradation is of order O(

√
N), where N is the

number of worker nodes. Lastly, we demonstrate the applicability of this
algorithm and our theoretical results to network tomography.

1 Introduction

Distributed systems, involving a central server and multiple worker nodes, have emerged as
the prevailing approach in large-scale estimation [Fan et al., 2019, Castro et al., 2004] and
machine learning [Li et al., 2014, Verbraeken et al., 2020, Zhang et al., 2021]. In recent times,
though, the focus has shifted towards robust estimation or learning when some of worker
nodes are adversarial (Byzantine) or faulty [Yang et al., 2020, Bouhata et al., 2022]. Broadly,
these adversary-resilient methods can be grouped into two categories: those that rely on
some robust aggregation mechanism, such as trimmed mean or geometric median, to filter
out outlier or malicious measurements [Blanchard et al., 2017, Yin et al., 2018], and those
that employ coding schemes to add redundancy and enable recovery of the correct estimate
Chen et al. [2018]. A major limitation of most of these methods is their requirement for
worker nodes to synchronously compute and communicate their local measurements with
the server. However, in applications such as network tomography [Tsang et al., 2003, Vardi,
1996] or Vertical Federated Learning (VFL) [Liu et al., 2024], data from various worker
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nodes is only available intermittently. Hence, the above constraint limits the utility of the
aforementioned approaches to such applications.
The above discussion bring into focus robust distributed optimization methods that can work
with asynchronous workers. To our knowledge, there are only four such methods documented:
Kardam [Damaskinos et al., 2018], (ii.) Zeno++ [Xie et al., 2020], (iii.) AFLGuard [Fang
et al., 2022], and (iv.) BASGD [Yang and Li, 2021]. These techniques adapt the principles
of robust aggregation from synchronous methods to scenarios where inputs from only a few
workers are available at any given time. They are designed to manage situations where
worker nodes may lag due to varying computational or communication resources. Kardam,
Zeno++, and AFLGuard employ a complex scoring system to exclude malicious inputs, but
Kardam has the drawback of mistakenly filtering out correct estimates during attacks [Xie
et al., 2020]. Meanwhile, both Zeno++ and AFLGuard depend on a separate validation
dataset stored on the parameter server, which poses privacy concerns. Additionally, BASGD
operates asynchronously only on the client-side, with server updates still governed by the
slowest participating clients. On top of these limitations, all these methods need the worker
node measurements to be based on homogeneous datasets. Consequently, these methods
are also not useful to network tomography and VFL-type applications, wherein the data at
different worker nodes could be completely different.
Recently, Ganesh et al. [2023] proposed a novel coding-based algorithm, building upon ideas
from [Fawzi et al., 2014], for robustly estimating the mean of a random vector from an
(abstract) linear measurement model and established its convergence. In this work, we
study the convergence rate of this algorithm and discuss its utility as a robust distributed
estimation scheme for network tomography. We now provide a brief background on network
tomography and discuss how Ganesh et al. [2023]’s approach is applicable here.
Network tomography is a powerful tool to estimate the internal state of a closed network,
which cannot be measured directly, by using end-to-end external measurements. It is useful
for estimating network properties such as link delays or traffic volumes which are crucial in
network management and troubleshooting. Typically, this problem can be cast as follows:
Estimate statistics of a random vector X using samples of another random vector Y which
relates to X via the relation Y = PX, where P is the path-link matrix. The matrix P is
assumed to be a priori known and contains information about the different measurement
paths and the links/edges contained in them. The challenge in solving the above problem is
due to the fact that the Y = PX relation is usually underdetermined. The difficulty becomes
even more acute when the worker nodes responsible for path measurements are adversarial
or faulty [Zhao et al., 2017, Chiu and He, 2021]. The literature on this latter problem is
very sparse. There are a few works that study the case where some unknown set of links
fail; hence, measurements along paths containing those links are no longer available. To deal
with such scenarios, the algorithms proposed, e.g., [Tati et al., 2014], add redundancy to
measurements by including additional paths so that estimates along non-failed links can be
continued. These works do not consider the adversarial case. There are also a few works,
e.g., [Yao et al., 2012], that look at characterizing the network under conditions of errors,
which may be random or adversarial. These methods leverage network coding techniques
to identify and localize the errors they introduce into the network. Specifically, they rely
on the ability to observe the network’s overall response to known or controlled inputs and
compare these to the expected outcomes based on a network coding scheme. Due to these
reasons, these methods have high computational complexity and are extremely sophisticated
since they aim to identify the precise link that is the source of these errors.
Our main contributions are as follows. We first derive the convergence rate, in the L2 sense,
of the algorithm proposed in [Ganesh et al., 2023] (see Section 2). We show that its rate is
O(1/

√
n), which is optimal for the family of optimization methods it falls under (non-strongly

convex optimization). Note that we get this optimality even with adversaries, which is a
first for a distributed estimation scheme to our knowledge. Next, we show that, due its fully
asynchronous nature, there is a O(

√
N) degradation in its convergence rate as the number

N of measurement paths increases. Finally, in Section 4, we demonstrate how this algorithm
can be used as an extremely simple yet robust distributed estimation scheme for network
tomography. The simplicity is there because this algorithm does not to detect the adversarial
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Algorithm 1: Online distributed algorithm to estimate EX [Ganesh et al., 2023]
Input : stepsize sequences (αn) and (βn), projection set X , and observation matrix A

1 Initialize estimates of EX and EY at the server to x0 ∈ X and y0 = 0 ∈ RN ,
respectively

for each iteration n ≥ 0
Central server

2 Sample agent index i ≡ in+1 ∈ [N ] uniformly randomly

3 Update EX estimate using
xn+1 = ΠX

(
xn + αnaisign(yn(i) − a⊤

i xn)
)

Chosen agent i ∈ [N ]
if agent i is honest then

4 Obtain a sample Yn+1(i) IID∼ Y (i) and sent it to the central server
else

5 Assign some (possibly malicious) value to Yn+1(i) and send it to the central
server

6 end
Central server

7 Update EY estimate using
yn+1(j) = yn(j) + βn[NYn+1(i)1{j = i} − yn(j)], ∀j ∈ [N ]

8 end

paths, but only ensures robustness in estimation. We also provide empirical evidence for
tightness of our O(

√
N) degradation rate.

2 Setup, algorithm, and main result

Let X ∈ Rd and Y = AX ∈ RN be two random vectors, where A ∈ RN×d, with N > d, is
some a priori known tall matrix. Ganesh et al. [2023] proposed a novel online algorithm to
estimate EX, the mean of X, in a distributed framework with adversaries and only sporadic
access to samples of each Y (i), the i-th coordinate of Y. They also established this algorithm’s
almost sure convergence. Below, we describe the setup, the algorithm, and this convergence
result from [Ganesh et al., 2023]. Thereafter, we discuss this algorithm’s convergence rate,
which forms our main result. In Section 4, we additionally discuss how our work can be
utilized to solve the network tomography problem.
Setup: The distributed setup consists of a single parameter server and N (> d) worker
nodes, where a fixed but unknown subset A ⊆ [N ] := {1, . . . , N} of nodes, with |A| ≤ m,
is adversarial. Further, agent i ∈ [N ] is equipped to obtain an independent and identically
distributed (IID) sample of the random variable Y (i) := a⊤

i X, each time it is queried, where
a⊤

i is the i-th row of A.

Algorithm: The pseudo-code for the method proposed in [Ganesh et al., 2023] for estimating
EX in the above framework is given in Algorithm 1. Each iteration of this algorithm has
three phases. In the first phase, the server picks an agent index4 in+1 ∈ [N ] uniformly
at random and updates the estimate of EX using Step 3. In this step, ΠX refers to the
Euclidean projection on to the set X , which is presumed to contain EX. Further, for any
r ∈ R, sign(r) = 1 (resp. −1) if r > 0 (resp. r < 0) and = 0 when r = 0. In the second phase,
agent i sets Yn+1(i) to be an independently obtained sample of Y (i), if it is honest, and to
some (potentially malicious) value, otherwise. Thereafter, agent i communicates this value
to the server. In the final phase, the central server uses the value of Yn+1(i) to update its
estimate of EY as shown in Step 7. When all the agents are honest, the update rules for xn

4At several places, we suppress in+1’s dependence on n for notational simplicity.
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and yn at the server can be viewed as a stochastic gradient descent algorithm for minimizing

f(x) := N−1∥Ax − EY ∥1. (1)

To deal with adversaries, this algorithm relies on the redundancy in the measurement model
Y = AX that is enforced on account of the observation matrix A being tall.
Remark 2.1. In the distributed learning with adversaries literature, it is typically assumed
that the data at different agents is roughly similar and that their estimates are more or less
available at the same time. In contrast, the setup above has the following two significant
differences:

1. Heterogeneity: For i ̸= j, the measurement Y (i) at agent i could have a very different
distribution to that of Y (j) based on the dissimilarity in the values of ai and aj .

2. Sporadic or Intermittent Data: At any instance n ≥ 0, data from only one agent
is available at the server. Furthermore, the data from any agent i is available only
sporadically at the server with the mean time between two successive estimates being N.

The main contribution of [Ganesh et al., 2023] is in using differential inclusion theory to
show that xn

a.s.−→ E[X] for X = Rd, i.e., their result applies to the case where ΠX is identity.
Their result holds under the following set of assumptions:

A1. Target vector : There exist µ̄, σ̄ > 0 with |EX(j)| ≤ µ̄ and Var
(
X(j)

)
≤ σ̄2 for all

j ∈ [d].
A2. Observation matrix: The matrix A has full column rank and satisfies∑

i∈Sc

|aT
i x| >

∑
i∈S

|aT
i x| (2)

for all x ∈ Rd \ 0 and all S ⊆ [N ] with |S| = m.

A3. Stepsize: The sequences (αn)n≥0 and (βn)n≥0 are monotonically decreasing positive
numbers such that max{α0, β0} ≤ 1,

∑
n≥0 αn =

∑
n≥0 βn = ∞, limn→∞ αn/βn =

limn→∞ βn = 0, and max{
∑

n≥0 α2
n,
∑

n≥0 β2
n,
∑

n≥0 αnγn} < ∞, where γn =√
βn ln(

∑n
k=0 βk).

An example of the stepsizes satisfying A3 is αn = n−α, α ∈ (2/3, 1], and βn = n−β ,
β ∈ (1/2, 1] ∩ (2(1 − α), α). Because αn/βn → 0, Algorithm 1 is a two-timescale algorithm
with xn denoting the slow update and yn the fast one.
Main result: In Theorem 2.3, our main result, we state the convergence rate of Algorithm 1.
Unlike [Ganesh et al., 2023], though, we need the following assumptions on stepsize sequences
(αn) and (βn), instead of A3, and on X :

A′
3. Stepsize: For n ≥ 0, αn = 1/

√
n + 1 and βn = 1/(n + 1).

A′
4. Projection set: X is a non-empty, compact, and convex set containing EX.

Remark 2.2. With A′
3, we have that αn/βn → ∞, i.e., βn’s decay rate is faster than that

of αn. Clearly, this stepsize choice does not satisfy A3. Hence, the almost sure convergence
result from Ganesh et al. [2023] does not apply in this case. However, our main result below
shows that this stepsize choice leads to the optimal convergence rate in the L2 sense.

We need a few notations to state our main result. For 0 ≤ i ≤ n and i ≤ j ≤ n, let

α̃j ≡ α̃i,n
j = αj∑n

k=i αk
(3)

and

x̃n
i =

n∑
j=i

α̃jxj . (4)
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Further, let Ā := maxi∈[N ] ∥ai∥ and

η := min
S:|S|=m

min
x̸=0

1
N∥x∥

(∑
i∈Sc

|a⊤
i x| −

∑
i∈S

|a⊤
i x|

)
, (5)

where ∥ · ∥ denotes the Euclidean norm. From [Ganesh et al., 2023, Lemma 2], we have that
η > 0. Due to this reason, K := 2mĀ

Nη +1 is well defined. Finally, let DX := maxx∈X ∥x−x0∥,

where x0 ∈ X is the initial estimate for EX.

Theorem 2.3 (Main result). Suppose N ≥ 4, m ≤ N/2, and i = ⌈rn⌉ for some fixed
r ∈ (0, 1), where ⌈·⌉ is the ceil function. Further, suppose A1, A2, A′

3, and A′
4 hold. Then,

for any n ≥ 2,

0 ≤ E[f(x̃n
i ) − f(EX)] ≤

(
N − m√

N

)
Cx√

n
, (6)

and, for any n ≥ 1 and i ∈ Ac,

E|yn(i) − EY (i)| ≤
√

N
Cy√

n
, (7)

where Cx, Cy ≥ 0 are two constants given by

Cy :=
√

dĀ2(σ̄2 + µ̄2) and Cx := K(4D2
X − (4Cy + Ā2) ln r)
4 − 2

√
2r + 3

. (8)

Remark 2.4. By substituting βn = 1/(n+1) in Step 7 of Algorithm 1, it follows that yn(i) =
n−1∑n

k=1 NYk(ik)1{ik = i} for n ≥ 1. The RHS shows that other agents’ measurements do
not influence (yn(i))n≥0’s behavior when agent i is honest. In this case, the simple average
also confirms that the convergence rate of O(

√
N/

√
n) is optimal for how fast |yn(i) −EY (i)|

decays, where
√

N is due to the sporadic nature of obtaining Y (i)’s samples. In contrast,
since adversaries can do anything, no guarantee can be provided about (yn(i))’s behavior
when agent i is adversarial.
Remark 2.5. Step 3 in Algorithm 1 shows that the sequence (xn) is influenced by (yn(i))’s
behavior for all i ∈ [N ], including the adversarial ones. This influence is unavoidable since
the central server cannot identify the adversarial agents. However, the inclusion of the sign
function ensures that an adversary, at worst, can only invert the actual sign value at given
time instance. Our main result shows that the rate at which E

[
f(x̃n

i ) − Ef(EX)
]

decays to 0
is O(1/

√
n), which is optimal for the non-strongly convex optimization setting [Nemirovski

et al., 2009, Section 2.2] even in the absence of adversaries. Additionally, due to the sporadic
availability of measurements across agents and the fully asynchronous nature of the algorithm,
a degradation in its convergence rate is inevitable as the number of worker nodes N increases.
Our result shows that this degradation is O(

√
N) when N increases, provided there is a

consistent lower (resp. upper) bound on η (resp. Ā). The numerical study in Section4
provides compelling evidence that this degradation rate is indeed tight.

3 Proof of our main result

In this section, we give the full proof of yn’s convergence rate as it is straightforward. For
our proof of xn’s convergence rate, which is a bit involved, we only give an outline and focus
on highlighting the key challenges and our novelty in handling them. The actual proof is
given in Appendix A.
We first establish the convergence rate of the (yn) sequence.

Proof of (7) in Theorem 2.3. From Remark 2.4, we have yn(i) = 1
n

∑n
k=1 NYk(ik)1{ik = i}

for any n ≥ 1 and i ∈ [N ]. Let i ∈ Ac, i.e., suppose agent i is honest. Then,
(NYk(ik)1{ik = i}) is a sequence of IID random variables with ENYk(ik)1{ik = i} = EY (i).
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Hence, E|yn(i) − EY (i)|2 = n−2∑n
k=1 EZ2

k , where Zk := NYk(ik)1{ik = i} − EY (i). Now,
for any k ≥ 1,

EZ2
k

(a)= NE[Y (i) − EY (i)]2 + (N − 1)[EY (i)]2

(b)= NE[a⊤
i (X − EX)]2 + (N − 1)[a⊤

i EX]2

(c)
≤ Nd max

i
∥ai∥2 max

j

(
Var(X(j)) + [EX(j)]2

)
≤NdĀ2(σ̄2 + µ̄2),

where (a) holds because, on the event {ik = i}, Yk(ik) ∼ Y (i) is generated with independent
randomness, (b) holds since Y (i) = a⊤

i X, while (c) follows from the Cauchy-schwartz
inequality.
The desired result now follows.

We now discuss our approach to derive (xn)’s convergence rate. We begin by rewriting Step 3
of Algorithm 1 as

xn+1 = ΠX (xn + αn[g′
n + ϵn + Mn+1]) , (9)

where, for n ≥ 0,

g′
n := 1

N

[∑
i∈Ac

sign(EY (i) − a⊤
i xn) ai +

∑
i∈A

sign(yn(i) − a⊤
i xn) ai

]
(10)

ϵn := 1
N

∑
i∈Ac

[
sign(yn(i) − a⊤

i xn) − sign(EY (i) − a⊤
i xn)

]
ai (11)

and

Mn+1 := ain+1 sign(yn(in+1) − a⊤
in+1

xn) − g′
n − ϵn. (12)

Separately, let

gn := 1
N

N∑
i=1

sign(EY (i) − a⊤
i xn)ai. (13)

Then, an intuitive description of gn, g′
n, ϵn, and Mn+1 is as follows. First, −gn is a true

sub-gradient of f at xn, while −g′
n is its corrupted cousin, where the corruption is due to

the dependence on the yn(i) estimates given by the adversaries. Next, ϵn is the error in
estimating the non-corrupted part of g′

n that appears due to our lack of knowledge of EY.
Put differently, g′

n + ϵn is a corrupted approximation of the true sub-gradient of f at xn.
Finally, Mn+1 is the noise in the estimate of g′

n + ϵn which arises since only one randomly
picked coordinate of yn is used to update xn. Specifically, (Mn) is a martingale-difference
sequence with respect to the filtration (Fn), where

Fn := σ(x0, y0, i1, x1, y1, . . . , in, xn, yn). (14)

Suppose the adversaries were not there and yn ≡ EY so that −Ng′
n = −Ngn, ϵn = 0, and

Mn+1 = ain+1sign(EY (in+1) − a⊤
in+1

xn) − gn. Then, (9) would be the hypothetical algorithm

xn+1 = ΠX
(
xn + αn[gn + Mn+1]

)
, (15)

which can be viewed as stochastic subgradient descent method for minimizing the non-
strongly convex function f in (1). In which case, the analysis in [Nemirovski et al., 2009,
Section 2.2] would have directly applied and given us the convergence rate. The challenge
in our analysis stems from the corruption gn − g′

n and the approximation error ϵn in our
sub-gradient estimate that is introduced by the adversaries and our lack of knowledge of
EY, respectively. In particular, the adversaries could make g′

n an extremely poor estimate of
gn, while the discontinuity of the sign function implies showing ϵn → 0 is not trivial even
though yn(i) → EY (i) for any i ∈ Ac.
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We now recall the key ideas of [Nemirovski et al., 2009, Section 2.2] and briefly discuss their
role in deriving the convergence rate of the hypothetical (xn) sequence obtained from (15).
Let En := 1

2E∥xn − EX∥2. Since −gn is a subgradient of the convex function f, we have

E[(xn − EX)⊤(−gn)] ≥ E
[
f(xn) − f(EX)

]
. (16)

Separately, since ∥gn + Mn+1∥ ≤ Ā, E[Mn+1|Fn] = 0, and ∥ΠX (x) − ΠX (y)∥ ≤ ∥x − y∥, we
get

En+1 ≤ En + αnE[(xn − EX)⊤gn] + 1
2α2

nĀ2. (17)

A combination of (16) and (17) then gives

αnE[f(xn) − f(EX)] ≤ En − En+1 + 1
2α2

nĀ2. (18)

By exploiting the telescopic nature of En − En+1 above, it then follows that
n∑

j=i

E[α̃jf(xj) − f(EX)] ≤
Ei − En+1 + 1

2 Ā2 ∑n
j=i α2

j∑n
j=i αj

≤
Ei + 1

2 Ā2 ∑n
j=i α2

j∑n
j=i αj

, (19)

where α̃j is as defined in (3). Finally, by the convexity of f, we have f(x̃n
i ) ≤

∑n
j=i Eα̃jf(xj),

which shows that

E
[
f(x̃n

i ) − f(EX)
]

≤
Ei + 1

2 Ā2 ∑n
j=i α2

j∑n
j=i αj

. (20)

The use of the projection operator ΠX , along with the fact x0 ∈ X , ensures that xn ∈ X for
all n ≥ 0, which implies Ei ≤ 2D2

X for any i ≥ 0. By choosing i and αn as in Theorem 2.3,
it is easy to see that a similar convergence rate, as in (6), holds for our hypothetical (xn)
sequence.
Now, let us go back to (9). Recall that its key difference to (15) is that the hypothetical
version directly uses a noisy estimate of gn, while (9) relies on a noisy estimate of g′

n + ϵn.
Importantly, the latter quantity is only an approximate version of gn, since EY is unknown.
Moreover, this approximation is corrupted, since g′

n also depends on the yn(i) estimates
obtained from the adversaries. The main novelty in our proof is in showing that an inequality
similar to (16) also holds in the context of E[(xn −EX)⊤(g′

n + ϵn)]. This result is summarized
below.
Lemma 3.1. Let g′

n and ϵn be defined as in (10) and (11). Further, suppose the sequence (xn)
is generated using Algorithm 1 or, equivalently, (9). Then, for K and Cy as in Theorem 2.3,
we have

E(xn − EX)⊤g′
n ≤ 1

K
E(xn − EX)⊤gn, (21)

and

E(xn − EX)⊤ϵn ≤ 2(N − m)√
N

Cy√
n

. (22)

The proof of this result is given in Appendix A.
Remark 3.2. While g′

n could be corrupted by advesaries, we show that the redundancy and
robustness induced by our observation matrix A (see A2) ensures (21) holds, which leads to
a similar inequality like (16), but with an additional 1/K factor. Since m ≤ N/2, we get
K ≤ Ā

η + 1, a constant, which implies 1/K cannot be too small. Similarly, while the sign
function is discontinuous, we use the crucial inequality

|sign(yn(i) − a⊤
i xn) − sign(EY (i) − a⊤

i xn)| ≤ 1{|yn(i) − EY (i)| ≥ |a⊤
i xn − EY (i)|}

to show that
(xn − EX)⊤ϵn ≤ 2

N

∑
i∈Ac

|yn(i) − EY (i)|.

Our result about (yn)’s convergence rate then leads to (22), as desired.

Since (21) and (22) put together give the analogue of (16), the convergence rate in Theorem 2.3
now follows by repeating the arguments given in (17) (with g′

n + ϵn replacing gn) to (20).
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P :=



0 0 1 1 0 0 0 1
1 0 0 1 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 0 0 1 0 1
0 0 1 0 1 1 1 0
1 0 0 0 1 0 1 1
0 0 0 1 1 1 1 1

 A :=



2 0 0 1
2 1 0 0
2 0 1 0
2 1 0 1
2 1 1 0
2 0 1 1
2 1 1 1



Figure 1: Edge nodes Ei, i = 1, ..., 5 has different link delay but has the same mean,
Bi, i = 1, 2, 3 are backbone nodes.

4 Numerical illustrations

In this section of the paper, we show how to apply our algorithm to link delay tomography.
The goal of link delay tomography is to estimate link delay statistics from path delay
measurements (end-to-end measurement).
Consider a network G = (V, L) with nodes V and links L. Each link l ∈ L is associated
with a performance metric (e.g., delay, loss) drawn at each instant from a distribution with
unknown mean E[x(l)]. Let P be the set of probing paths. The network manager can inject
probes on all paths in P and observes their end-to-end performance. More precisely, we
assume that if at instant n, a probe on path p ∈ P is received, then the network manager
observes the path delay measurement:

yn(p) =
∑
l∈p

xn(l). (23)

Let us define a |P| × |L| matrix P , where the pl-entry Ppl = 1 if the link l is on path p
otherwise is equal to 0. At every time step n, the measurements can be summarized using
the following vectorial form:

yn = Pxn. (24)

It is unreasonable to expect that all probe packets injected at time n reach their destination
at the same time, or for the central server to wait until it receives measurements from all
the injected probe packets before it updates its estimate. This motivates the assumption of
sporadic or intermittent data in Section 2.
In standard network tomography, the true measurement yn, given in (24), is returned to
the central server. Here, we consider the possibility that one of the monitors can behave
maliciously by returning any arbitrary real number instead. To mimic the worst case, let
us consider the case where the adversary i ∈ |P|, whose identity is unknown to the central
server, always returns r ∈ R such that sign(r − aT

i xn) is the opposite of sign(yn(i) − aT
i xn).

For our simulations, we consider the path matrix P and the network in fig. 1. For each l ∈ L
and n ≥ 1, we sample µ ∼ exp(1) and ϵ ∼ N (0, 0.01) and set xn(l) = µ + ϵ. We generate yn

according to (24) with the IID samples of xn. Usually, the number of paths is much lower
than the number of links (i.e. P is a wide matrix), so (24) is an under-determined system
and directly estimating E[x] is impossible. Instead, we make the assumption that the delays
on edge links (links X1, . . . , X5 in fig. 1), which are links between edge nodes and backbone
nodes, have the same mean. This assumption is reasonable when we assume that links can
be of different classes with each class having a similar average delay. For instance, such an
assumption has been taken in [Kinsho et al., 2019, 2017], where they assume that delays at
neighboring base stations are comparable.
By taking A as in fig. 1, Y to be the expected value of y and X to be the vector whose first
entry is the expected delay on the edge links and the remaining entries are the expected
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delays on the non-edge links, it is easy to see that:

Y = AX.

The matrix A satisfies assumption A2 and the above system of equations is solvable. A proof
of the robustness of A is given in Appendix B.
In our first experiment, we run Algorithm 1 with the samples {yn(p)}n≥1,p∈[|P|] generated
using (24), αn = (1 +

⌊
n

100
⌋
)−1/2 and βn = (1 +

⌊
n

100
⌋
)−1. Let zn be the estimates from

Algorithm 1 and z̃n
i be their weighted average with i = ⌊ n

2 ⌋ as in (4).
In Fig. 2, we have displayed the evolution of 10 different runs of Algorithm 1 along with their
average ∥A(X − z̃n

i )∥1 error with the confidence interval (5-95%). We observe that most
runs begin converging towards 0 after approximately 2000 iterations. From 2000 iterations
onward, the convergence continues, with the error reducing and approaching 0 as the number
of iterations increases up to 5000. This verifies our claim of convergence of Algorithm 1 in
Theorem 2.3.
For the second experiment, we study the impact of the number of agents in the convergence
of Algorithm 1. We vary the number of paths, N := |P|, by creating new matrices as follows:
We start with the initial matrix A and generate 20 new matrices by adding 10 rows to A in
each iteration. More precisely, for each matrix, each new row is added by randomly selecting
a row from the previous matrix. This procedure ensures that all the matrices satisfy the
robustness condition in Assumption A2.
For each of the 20 new matrices, we select n, the number of iterations, randomly between
2000 and 5000 and we perform 10 runs of Algorithm 1, similar to the first experiment. In
fig. 3, for each value of N (which corresponds to one of the matrices), we plot

√
n times

the average ∥A(X − z̃n
i )∥1. We use non-linear regression to fit the equation a

√
N + b to

the points obtained and plot the fitted curve. We obtain a = 269.98 and b = −1065.23
The closeness of the fitted curve to our data in fig. 3 empirically validates that the error√

n∥A(X − z̃n
i )∥1 grows at a

√
N rate.

Figure 2: Evolution of ∥A(X − z̃n
i )∥1 over

5000 iterations for 10 different runs of Algo-
rithm 1 and their average.

Figure 3: Nonlinear regression of
√

n ×
E[∥A(X − z̃n

i )∥1] with respect to the num-
ber of lines in matrices A.

5 Conclusions and future directions

We establish the convergence rate of a two-timescale algorithm for online distributed learning
in the presence of adversaries, and sporadic and heterogeneous measurements. We also show
that for a fixed number of adversaries, the degradation in the convergence rate is of the order
O(

√
N), where N is the number of worker nodes. Finally, we demonstrate the utility of our

algorithm in the domain of network tomography.
There are two main limitations of this work. In this paper, we design a robust observation
matrix using brute-force methods. Developing a technique that can generate observation
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matrices for an arbitrary number of worker nodes is an unsolved challenge. The main results
of our paper currently only apply to the distributed estimation setting. In the future, we
hope to extend the techniques developed in the paper to solve related problems in distributed
machine learning.
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A Detailed proof of (xn)’s convergence rate

As discussed in Section 3, the key ingredient in the derivation of (xn)’s convergence rate is
Lemma 3.1. We begin with its proof. First, we need the following result.
Lemma A.1. Let K be as defined above Theorem 2.3. Then,∑

i∈Sc

|a⊤
i x| >

K + 1
K − 1

∑
i∈S

|a⊤
i x|

for every x ̸= 0 and every S ⊆ [N ] such that |S| = m.

Proof. For any x such that
∑

i∈S |a⊤
i x| = 0, the result trivially holds from our assumption

on A. Hence, suppose that
∑

i∈S |a⊤
i x| ≠ 0.

From the definition of η given in (5), we have∑
i∈Sc

|a⊤
i x| −

∑
i∈S

|a⊤
i x| ≥ Nη∥x∥.

Therefore, ∑
i∈Sc |a⊤

i x|∑
i∈S |a⊤

i x|
≥ 1 + Nη∥x∥∑

i∈S |a⊤
i x|

Now, from the Cauchy-Schwarz inequality, we have

max
x ̸=0

∑
i∈S |a⊤

i x|
∥x∥

≤
∑
i∈S

∥ai∥ ≤ mĀ

The desired result is now easy to see.

We now derive Lemma 3.1.

Proof of (21) in Lemma 3.1. From Lemma A.1, we have

(K − 1)
∑

i∈Ac

|(xn − EX)⊤ai| ≥ (K + 1)
∑
i∈A

|(xn − EX)⊤ai|.

Since |z| ≥ −zsign(r) for any real numbers z and r, the above relation implies

(K −1)
∑

i∈Ac

|(xn −EX)⊤ai| ≥
∑
i∈A

(
|(xn −EX)⊤ai|−K

[
(xn −EX)⊤ai

]
sign(yn(i)−a⊤

i xn)
)

.

Now, since a⊤
i EX = EY (i) and zsign(z) = |z|, the above relation implies

(K − 1)
∑

i∈Ac

(xn − EX)⊤ai sign(EY (i) − a⊤
i xn)

≤
∑
i∈A

(xn − EX)⊤ai

[
sign(EY (i) − a⊤

i xn) − Ksign(yn(i) − a⊤
i xn)

]
.

The desired relation in (21) now follows.

Proof of (22) in Lemma 3.1. First, for any three real numbers r, r1, and r2, we have

sign(r1 − r) − sign(r2 − r) ≤ 2 × 1{|r1 − r2| ≥ |r − r2|}. (25)
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This inequality can be verified by considering all possible ordering of r, r1, and r2. Hence,

(xn − EX)⊤ϵn
(a)= 1

N

∑
i∈Ac

(xn − EX)⊤ai

[
sign(yn(i) − a⊤

i xn) − sign(EY (i) − a⊤
i xn)

]
(b)
≤ 2

N

∑
i∈Ac

(xn − EX)⊤ai 1{|yn(i) − EY (i)| ≥ |a⊤
i xn − EY (i)|}

(c)
≤ 2

N

∑
i∈Ac

|yn(i) − EY (i)| 1{|yn(i) − EY (i)| ≥ |a⊤
i xn − EY (i)|}

≤ 2
N

∑
i∈Ac

|yn(i) − EY (i)|,

where (a) holds from the definition of ϵn in (11), (b) is due to (25), while (c) follows since

|(xn − EX)⊤ai| = |a⊤
i xn − EY (i)| ≤ |yn(i) − EY (i)|

when 1{|yn(i) − EY (i)| ≥ |a⊤
i xn − EY (i)|} = 1.

The claim in (22) now follows from (7).

We now derive the convergence rate for the (xn) sequence obtained from Algorithm 1.

Proof of (6) in Theorem 2.3. We have

∥xn+1 − EX∥2 (a)= ∥ΠX (xn + αn(g′
n + ϵn + Mn+1)) − ΠX (EX)∥2

(b)
≤ ∥xn + αn(g′

n + ϵn + Mn+1) − EX∥2

= ∥xn − EX∥2
2 + 2αn(xn − EX)⊤(g′

n + ϵn + Mn+1) + α2
n∥Mn+1∥2

(c)
≤ ∥xn − EX∥2

2 + 2αn(xn − EX)⊤(g′
n + ϵn + Mn+1) + α2

nĀ2,

where (a) follows from (9) and fact that EX ∈ X (which implies ΠX (EX) = EX), (b) holds
since ∥Π(x) − Π(y)∥2 ≤ ∥x − y∥2 for any x, y ∈ Rd, while (c) holds since ∥Mn+1∥ ≤ Ā.

Now, since En = 1
2E∥xn − EX∥2

2, the inequality in (c) above implies

En+1 ≤ En + αnE[(xn − EX)⊤(g′
n + ϵn + Mn+1)] + 1

2α2
nĀ

= En + αnE[(xn − EX)⊤(g′
n + ϵn)] + 1

2α2
nĀ,

where the last relation holds since E[Mn+1|Fn] = 0 with Fn being the σ-field defined in (14).
By substituting (21) and (22) from Lemma 3.1 above, we then get

En+1 ≤ En + αn

K
E(xn − EX)⊤gn + αn

2(N − m)√
N

Cy√
n

+ 1
2α2

nĀ2.

Note that the above relation is similar in spirit to (17). By combining the above relation
with (16), it then follows that

Eαn (f(xn) − f(EX)) ≤ K(En − En+1) + 2(N − m)KCy√
N

αn√
n

+ K

2 Ā2α2
n.

Since the above relation is true for any n, we get

E
n∑

k=i

αk(f(xk) − f(EX)) ≤ K(Ei − En+1) + 2(N − m)KCy√
N

n∑
k=i

αk√
k

+ K

2 Ā2
n∑

k=i

α2
k

≤ KEi + 2(N − m)KCy√
N

n∑
k=i

αk√
k

+ K

2 Ā2
n∑

k=i

α2
k.
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Therefore,[ n∑
j=i

αj

] [
E

n∑
k=i

α̃k(f(xk) − f(EX))
]

≤ KEi + 2(N − m)KCy√
N

n∑
k=i

αk√
k

+ K

2 Ā2
n∑

k=i

α2
k,

which is the relation that is similar in spirit to (19).
Now, Ei ≤ 2D2

X and, by the convexity of f, we have f(x̃n
i ) ≤

∑n
j=i Eα̃jf(xj). Therefore,[ n∑

j=i

αj

] [
Ef(x̃n

i ) − f(EX)
]

≤ 2KD2
X + 2(N − m)KCy√

N

n∑
k=i

αk√
k

+ K

2 Ā2
n∑

k=i

α2
k

≤
(

N − m√
N

)[
2KD2

X + 2KCy

n∑
k=i

αk√
k

+ K

2 Ā2
n∑

k=i

α2
k

]
,

where in the last relation we made use of the fact that (N − m) ≥
√

N for any m ≤ N/2
and N ≥ 4. Next, since αk = 1/

√
k + 1, we have that, for 1 ≤ i ≤ n,

max
{

αk√
k

,

n∑
k=i

α2
k

}
≤

n∑
k=i

1
k

≤ ln
(

n

i − 1

)
.

Similarly,
n∑

j=i

αj =
n∑

j=i

1√
j + 1

≥ 2
[√

n + 2 −
√

i + 1
]
.

By combining the last three relations, it now follows that

Ef(x̃n
i ) − f(EX) ≤

(
N − m√

N

) [2KD2
X + K(2Cy + Ā2/2) ln

(
n

i−1

)]
2(

√
n + 2 −

√
i + 1)

. (26)

Finally, by using the fact that i = ⌈rn⌉ + 1, we have rn + 1 ≤ i ≤ rn + 2, which implies

ln
(

n

i − 1

)
≤ − ln r.

Furtheremore, for n ≥ 2, we have that

2(
√

n + 2 −
√

i + 1) ≥ 2
√

n + 2
(

1 −
√

rn + 3
n + 2

)

≥ 2
√

n

(
1 −

√
rn + 3
n + 2

)

≥ 2
√

n

(
1 −

√
r

√
1 + 3/r − 2

n + 2

)

≥ 2
√

n

(
1 −

√
r

√
1 + 3/r − 2

4

)

= 2
√

n

(
1 −

√
r

2 + 3
4

)
≥

√
n
(
2 −

√
2r + 3

)
.

By substituting the above inequalities in (26), the desired result follows.

B Robustness of the A matrix in fig. 1

.
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Proposition B.1. The matrix A is robust.

Proof. We verify the robustness of the matrix A by checking condition 2 in the presence of
one adversary. The adversary can attack any path/row of the matrix A. We will verify the
robustness condition for one of the paths; the others can be verified in a similar way.
Case 1: Let us assume the adversary is on the second path. To verify A is robust we must
show
|2x1 + x2| < |2x1 + x3| + |2x1 + x4| + |2x1 + x2 + x3| + |2x1 + x3 + x4| + |2x1 + x2 + x4|

+ |2x1 + x2 + x3 + x4|.
(27)

Using the triangle inequality on the left hand side of (27), we get

|2x1 + x2| ≤ |2x1 + x2 + x3| + |x3 + 2x1 + x4| + |2x1 + x4|. (28)

(28) can also be rewritten as

|2x1 + x2| ≤ |2x1 + x2 + x3| + |x3 + 2x1 + x4| + |2x1 + x4| + |2x1 + x3| + |2x1 + x2 + x4|
+ |2x1 + x2 + x3 + x4|.

(29)

If equality occurs in (29), we have equality in (28) as well. Then equality in (28) and (29)
give us the following equations,

2x1 + x3 = 0, 2x1 + x2 + x4 = 0, 2x1 + x2 + x3 + x4 = 0. (30)

(30) gives x3 = x1 = 0. Using these values and equality in (28) we get the simplified form,

|x2| = |x2| + |x4| + |x4|. (31)

Hence from (31), |x4| = 0, i.e, x4 = 0, which implies x2 = 0, from (30). Thus equality in (29)
has the zero vector as the only solution. But, in A2, we assumed that x = (x1, x2, x3, x4) is
a non-zero vector, hence the strict inequality in (29) must hold.
In a similar way, A2 can be verified for the other paths. This shows that our matrix A is
robust.

C Compute Details

Our simulations were run on an Intel(R) Xeon(R) CPU and took approximately 3 hours to
complete.
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