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Abstract While Neural Architecture Search (NAS) methods help find optimal neural network architec-

tures for diverse tasks, they often come with unreasonable costs. To tackle such a drawback,

the one-shot NAS setting was introduced, where a supernet is used as a superposition of

all architectures in the space and performs the search in a single training phase. While

this method significantly reduces the cost of running NAS, the joint optimization of every

architecture degrades the performance of the search. The few-shot NAS line of work tackles

this issue by splitting the supernet into sub-supernets trained separately, each with a reduced

level of weight-sharing, which gives rise to the new challenge of finding the best way to split

the supernet. In particular, GM-NAS utilizes a gradient matching score to group operations

in a splitting schema. We extend and generalize this method by building a framework with

compatibility for any arbitrary architecture evaluation metric, enabling the generation of

numerous and diverse splits. We leverage this new framework in conjunction with various

metrics from the zero-shot NAS literature and investigate the benefits of splitting across

algorithms and metrics. We find that architectures are distributed in disadvantageous ways

inside splits, and that proposed supernet selection methods are flawed.

1 Introduction

Neural Architecture Search (NAS) [15, 19, 26], has gained traction in recent times as it holds

the promise to find the optimal neural network architecture for any given task. Early methods

relied on reinforcement learning [26] or evolutionary algorithms [17] and incurred unaffordable

training times when scaling up. Recent works use one-shot NAS [19] to reduce the computation

requirements down to a single training. In the traditional one-shot NAS setting, the search space

is reduced to a single directed acyclic graph (DAG) with searchable operations on all of its edges.

Training is conducted on the supernet, whose edges in the DAG constitute a superposition of all

possible operations. Namely, the weights of all architectures in the space are shared for every

operation they have in common.

Despite the significant improvements to search costs, one-shot NAS is criticized [2, 23] for

its reduced efficacy as a proxy to candidate architecture performance and difficulties discovering

better architectures in the search space. These flaws are linked to inherent properties of the joint

training, namely co-adaptation. Indeed, some groups of operations may descend to undesirable

directions when trained together. Few-shot NAS [8, 25] is introduced as a middle ground to reduce

one-shot disadvantages while still maintaining reasonable computational costs. By partitioning

the search space into smaller sets, the number of sub-supernets to train increases, but the quantity

of weight-sharing in each of them is decreased. In practice, the accuracy of the sub-supernets is

used as a proxy to choose a single sub-supernet to train, reducing the cost of few-shot NAS to be

equivalent to that of a single one-shot NAS search.

The authors of GM-NAS [8] argue that splitting exhaustively between all operations, as proposed

in [25], is wasteful as some operation groups could be less affected by co-adaptation. They propose
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(a) Few-shot NAS splitting tree, with depth 2 and

branching factor 2.

At each layer of the tree, operations on the

selected edge are partitioned into 2 groups.
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(b) Extended splitting procedure.

On the selected edge, using any metric, opera-

tions are individually scored and compared.

Partitions are formed via min-cut optimization.

Figure 1: Full supernet splitting framework

to build sub-supernets from a splitting tree created with the help of the gradient matching score,

which groups together operations whose gradients point to similar directions.

Taking inspiration from the splitting schema described in GM-NAS, we introduce a supernet

splitting framework which is, to the best of our knowledge, the most general framework in the

few-shot NAS field to this date. Importantly, this extended supernet splitting framework allows to

use any arbitrary metric in the decision-making of the splits. We make use of metrics first seen in

the zero-shot NAS [1, 3, 16] literature, which are designed with the intent of scoring architectures,

and implement them as splitting metrics in our framework.

We take full advantage of the increased quantity and variety of sub-spaces and splits generated

through this procedure to investigate several important assumptions for the few-shot NAS paradigm.

Firstly, we verify that supernet splitting is indeed beneficial to helping one-shot NAS algorithms

reach better-performing architectures. We also assess the impact of various metrics. Secondly,

we observe that splitting is unable to isolate the best architectures in their own subspace, which

undermines synergies with search algorithms. Finally, we show that commonly used proxies to

subspace selection, such as the accuracy of the supernet, are flawed and cannot recognize a good

supernet, much less indicate which contains the best architecture in the space.

Our code is available at https://github.com/brain-bzh/metric_driven_few_shot_nas.

2 Related Work

2.1 One-Shot NAS

Traditional NAS methods rely on reinforcement learning-based predictors [26], evolutionary

algorithms [17] or Bayesian kernels [21], all of which are computationally heavy as they require

the training of many candidate networks to act as labels in the search.

Early on, weight-sharing is proposed as an alternative way to conduct NAS in a single training

[19], leading to the parallel research branch known as one-shot NAS. In the one-shot NAS paradigm,

it is sufficient to train the supernet, which represents any candidate network in the search space.

This change in representation enables the joint training of all candidate architectures with a single

training phase.

Many methods build on top of the weight-sharing mechanism to discover new candidate

architectures. A popular setup [4, 7] is to utilize the trained supernet as a proxy for the search. The

weights of the supernet are copied onto a sampled candidate architecture to estimate its performance

without training and guide the search. Other lines of work aim to discover an architecture at the

same time as training. DARTS [15] equips the supernet with architecture parameters learned in a

differentiable manner. While this approach is simple and effective, it fails to find highly performing
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Figure 2: Structure of the supernet in the NAS-Bench-201 [6] search space. Candidate architectures

are sampled from the supernet by discarding all but one operation on each edge.

architectures as it hyperfocuses on non-parametric operations such as an identity [24]. Differently,

SNAS [22] uses the distribution of architectures as the main objective of the supernet’s training

DSNAS, and optimizes the likelihood of sampling good architectures. DSNAS [9] further discretizes

SNAS, while adopting progressive early stopping. In this work, we seek to evaluate the impact of

supernet splitting on these various one-shot NAS algorithms.

While one-shot NAS has made it possible to reduce search costs from several days down to a

few hours, its performance is lackluster. It is exposed [23] that the architecture rankings produced

by using a supernet proxy are highly degraded. This is largely attributed to co-adaptation [2].

Intuitively, the weights of each operation in the supernet after training converges are optimal

in the context of joint training with every other operation in the space, but translate poorly to

candidate architectures at evaluation time. This results in the mismatch between true and predicted

architecture rankings.

2.2 Search space and benchmarks

The search space introduced in DARTS [15] remains the standard for dedicated one-shot NAS

search spaces. In this search space, cells are the base unit of candidate architectures, and are

represented as a directed acyclic graph, where the nodes represent intermediate features while

the edges are selectable operations. Two types of cells are included, depending on whether the

features are downsampled in the same layer. Replicas of the searched cells are then stacked on top

of each other to form the full network (Figure 2). This structure puts high emphasis on searching

the right operations, with little concern for the size of the architecture. The NAS-Bench-201 [6]

space is a reduction of the DARTS space with a single type of searchable cell and a reduced number

of selectable operations. Due to its simplicity, it has been possible to exhaustively evaluate all of its

15625 candidate architectures on three datasets : CIFAR-10, CIFAR-100 [13] and ImageNet16-120,

which is a downscaled subset of ImageNet [5]. As such it has become an important benchmark for

one-shot NAS methods, which we leverage to assess key aspects of the few-shot NAS framework.

2.3 Few-Shot NAS

Few-shot NAS [25] techniques are introduced to reduce co-adaptation in an orthogonal way to

the one-shot search algorithm itself. Prior to the search, the supernet is splitted into several

sub-supernets along an edge of the graph (Figure 1a), such that operations located on that edge

are no longer trained jointly. This operation shrinks the search space and reduces the effects

of co-adaptation. By applying it several times, a splitting tree is created, with sub-supernets as

the resulting leaves. The final splits are affected by the branching factor, which corresponds to

the number of groups created at each branch, and the depth of the tree, which is the number of
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edges where splitting has been applied. The incurred time costs scale with the number of splits,

unless an effective sub-supernet selection strategy is adopted. For this reason, the few-shot NAS

paradigm can be seen as a middle-ground between the single-training procedure of one-shot NAS

and the architecture sampling of traditional NAS. Using a naive policy where the supernet is split

exhaustively along an edge, few-shot NAS reports an important gain to the correlation between

supernet proxy and architecture ranking.

GM-NAS [8] expands on few-shot NAS with the proposal to group together operations whose

standalone gradient is similar. They remark that different group of operations may suffer varying

degrees of co-adaptation, depending on whether the gradients of the operations are pointing to

similar directions. In order to measure whether this is the case, the gradient matching metric is

introduced :

𝐺𝑀𝑘 (𝑜𝑖 , 𝑜 𝑗 ) = S𝑐𝑜𝑠 [∇𝑤 (L(𝑚𝑘
𝑜𝑖
,𝑤)),∇𝑤 (L(𝑚𝑘

𝑜 𝑗
,𝑤))] (1)

where S𝑐𝑜𝑠 is the cosine similarity function, L is a loss function and𝑚𝑘
𝑜 is a sub-supernet with only

operation 𝑜 left enabled on edge 𝑘 .

After evaluating gradient matching for every pair of operations, groups can be formed via

bruteforced min-cut optimization. Due to the lesser number of generated sub-supernets, deeper

levels of the splitting tree can be considered. When combined with classic one-shot NAS algorithms,

GM-NAS reports significant improvement, notably reaching near-optimality on all three dataset of

NAS-Bench-201 and state-of-the-art performance in the DARTS space when used in conjunction

with SNAS.

While GM-NAS introduces the question of searching for the best way to split a supernet, the

underlying effects of splitting itself remain rather unexplored. Specifically, the results of the method

could be attributed to the effectiveness of gradient matching as a metric, or to the positive influence

of the splitting scheme. By generalizing the splitting framework further, we intend to give deeper

insights into these techniques.

2.4 Zero-Shot NAS

In contrast with traditional NAS techniques and one-shot NAS, zero-shot NAS proposes to search

for candidate architectures without training, relying instead on hand-crafted metrics to evaluate

models at initialization within a single backward pass. This novel approach allows for low-cost,

fast NAS that can be used in contexts such as edge computing [20]. Differently from their intended

usage, we use metrics originated from this line of work to help with supernet splitting.

NASWOT [16] introduced this paradigm by greedily searching the space with a metric con-

structed from the covariance of the jacobian, which we hereafter refer to as jacobcov. Further
zero-cost proxies were introduced in [1], which utilized the norm of the gradients gradnorm and
several saliency metrics introduced in the neural network litterature : snip, grasp and synflow.
These were used in conjunction with reinforcement learning or evolutionary algorithms.

Differently, TE-NAS [3] uses a mixture of metrics to prune a supernet down to a single path.

The condition number of the Neural Tangent Kernel [10] and the number of linear regions are

chosen to strike a balance of trainability and expressivity. In the following paragraphs, we use

these metrics in a standalone way and refer to them as ntk and #lr.
The effectiveness of zero-shot NASmethods has been criticized, with subsequent work observing

that naively counting the number of parameters in the model is a better proxy to model performance

than most metrics employed in zero-shot NAS [12]. We include this metric in our study and refer

to it as #params.
Further details about the zero-shot metrics can be found in Appendix B.
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3 Methods

In summary, one-shot NASmethods train a supernet as a superposition of all candidate architectures

in the space to guide architecture selection. Though, the joint training of all candidate architectures

degrades the performance of the search. Few-shot NAS is introduced to mitigate this drawback by

splitting the supernet into several sub-supernets, which are trained separately. The challenge of

few-shot NAS is as follows : what is the best way to split the supernet? Motivated by the recent

GM-NAS [8] which groups together architectures whose gradients are similar, we aim to extend

the concept of metric-driven splitting to other promising metrics. In the following paragraphs, we

introduce a further generalization of the GM-NAS framework to arbitrary network scoring metrics.

3.1 Supernet Splitting Framework

The effectiveness of GM-NAS [8] suggests that it is possible to learn how to split the original search

space into subsets such that some of the sub-spaces will be more favorable to one-shot search.

However, a single metric that does so has been introduced, with no guarantees to be the best metric

for this task. Furthermore, the effects of splitting itself on the search are not well-enough known to

ascertain that the choice of the metric is essential.

We seek to investigate the inner workings of supernet splitting. To do so, we introduce a

supernet splitting framework inspired by GM-NAS. We generalize GM-NAS by using any metric

that scores neural networks attributes to produce splits through pairwise comparison of each

operation’s impact on the metric. Intuitively, because these metrics are related to various aspects

of a neural network (e.g. performance, trainability, expressivity), they can also be used to evaluate

differences between several networks in terms of these aspects. Thus the relationship matrix of the

edge can be constructed from :

M𝑘 (𝑜𝑖 , 𝑜 𝑗 ) = ∥ 𝑓 (𝑚𝑘
𝑜𝑖
) − 𝑓 (𝑚𝑘

𝑜 𝑗
)∥ (2)

where 𝑓 is a given metric and𝑚𝑘
𝑜 is a sub-supernet with only operation 𝑜 left enabled on edge 𝑘 .

Groups are formed from min-cut optimization over the one-dimensional metric axis operations lie

on (Fig 1b).

In practice, metrics compute a score within a single forward and backward pass on a randomly

initialized model with all but the target operation removed at the target edge. The similarity

between each pair of operations with respect to the metric is the difference of the scores. Assuming

a small enough number of operations in the space, this optimization is performed exhaustively by

assessing the cost of every permutation, as in GM-NAS. Thus the optimization objective is similar :

U𝑘 = argmin

U𝑘⊆O

∑︁
𝑜∈U𝑘 ,𝑜

′∈O\U𝑘

M𝑘 (𝑜, 𝑜 ′) (3)

where {U𝑘 ,O\U𝑘 } are the obtained operation partitions for edge 𝑘 .

We implement the following metrics as the basis for supernet splitting: gradientmatching,
gradnorm, jacobcov, snip, grasp, synflow, ntk, #lr, #params.

3.2 Splitting Setup

We generate sub-supernets for every metric in the NAS-Bench-201 space, based on the same

supernet checkpoint. Training details for the supernet can be found in Appendix A.2. The splitting

tree goes to a depth of 3, with operations being split into two groups at each branch. In the end, we

obtain 8 sub-supernet for each metric.

Remark that the generation of a splitting tree supports other hyperparameters than the metric

alone. The number of groups at each branch, also referred to as branching factor [8], is an extra

hyperparameter, which can degenerate the method to vanilla few-shot NAS [25] when set to its
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CIFAR10

Metric One-shot NAS algorithms

DARTS-1st DARTS-2nd SNAS DSNAS

no splitting 70.92 91.52 93.66 ±0.08 92.10 ±0.13
random 88.71 92.96 93.74 ±0.03 93.88 ±0.34
gradientmatching 92.04 93.31 94.1394.13 ±0.30 94.22 ±0.00
gradnorm 91.89 93.6693.66 93.61 ±0.11 93.34 ±0.19
jacobcov 91.86 93.34 93.61 ±0.11 93.91 ±0.05
snip 92.1792.17 93.36 93.92 ±0.32 93.28 ±0.13
grasp 92.1792.17 92.69 93.57 ±0.09 93.46 ±0.21
synflow 86.51 92.84 93.76 ±0.00 93.86 ±0.27
ntk 90.44 93.59 93.71 ±0.00 93.53 ±0.26
#lr 86.51 92.94 93.76 ±0.00 94.3694.36 ±0.00
#params 91.88 92.71 93.91 ±0.32 94.30 ±0.09

Table 1: Test accuracy of the best found architecture across 8 sub-supernets on CIFAR10

CIFAR100

Metric One-shot NAS algorithms

DARTS-1st DARTS-2nd SNAS DSNAS

no splitting 38.97 55.70 70.91 ±0.00 58.20 ±0.25
random 61.29 68.42 71.56 ±1.07 71.75 ±1.25
gradientmatching 68.55 72.7572.75 71.59 ±1.05 73.5173.51 ±0.00
gradnorm 67.63 70.59 70.87 ±0.40 68.47 ±0.00
jacobcov 68.10 69.43 70.84 ±0.43 71.15 ±0.00
snip 69.2469.24 69.52 71.15 ±0.00 68.07 ±0.28
grasp 67.89 69.95 70.84 ±0.43 68.47 ±0.00
synflow 67.16 70.35 71.60 ±0.35 73.26 ±0.35
ntk 67.89 71.42 70.54 ±0.43 71.15 ±0.00
#lr 67.75 69.39 71.8571.85 ±0.00 73.5173.51 ±0.00
#params 58.31 69.60 70.37 ±0.49 72.23 ±0.86

Table 2: Test accuracy of the best found architecture across 8 sub-supernets on CIFAR100

upper limit. This parameter could also be controlled more finely at each level of the tree with a

dedicated policy. For the sake of simplicity, we fix the branching factor in subsequent experiments

and only split operations into two groups. However, we do not apply the strict condition to keep

splits balanced as in GM-NAS. We argue that some operations may behave so differently from

others with respect to a specific metric on a given edge that it is justified to separate them from the

others, even if this results in an uneven split.

Differently from GM-NAS, we do not select an edge to split at run time, instead opting to always

split the first three edges of the supernet in that order. In a framework with edge selection, various

metrics may result in different edges being selected, thus keeping splitted edges fixed ensures full

comparability between the metrics and keeps the focus on their operation selection capabilities.

Furthermore, we do not apply warmup to sub-supernets in between splits, as the weights and

gradients of the supernet, which all metrics are based on, have already converged. These weights

are instead restarted once all splitting has concluded to avoid bias to the performance of associated

one-shot NAS algorithms.

4 Analysis of supernet splitting

4.1 Impact of splitting
While the effectiveness of few-shot NAS approaches over regular one-shot NAS has been shown in

previous work, it remains unclear what the impact on performance of splitting is compared to the
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ImageNet16-120

Metric One-shot NAS algorithms

DARTS-1st DARTS-2nd SNAS DSNAS

no splitting 18.41 38.39 46.34 ±0.00 28.26 ±0.35
random 39.08 43.23 46.74 ±0.40 45.35 ±0.84
gradientmatching 40.02 45.4845.48 47.3147.31 ±0.00 46.07 ±0.19
gradnorm 39.90 44.60 44.23 ±0.00 43.25 ±1.71
jacobcov 41.0041.00 43.03 44.60 ±0.26 44.23 ±0.00
snip 36.60 43.77 44.23 ±0.00 43.99 ±1.76
grasp 39.90 44.17 44.23 ±0.00 45.23 ±0.00
synflow 27.88 39.33 46.85 ±0.00 46.68 ±0.24
ntk 41.0041.00 42.90 44.41 ±0.26 44.23 ±0.00
#lr 27.88 42.77 46.85 ±0.00 46.8546.85 ±0.00
#params 39.08 43.72 46.85 ±0.00 46.34 ±0.00

Table 3: Test accuracy of the best found architecture across 8 sub-supernets on ImageNet16-120

choice of the metric. In this section, we evaluate the splits generated with 9 different metrics on 4

different one-shot NAS algorithms. In order to assess the impact of splitting by itself against the

metrics, we also compare them against the random baseline, where splits are generated by sorting

operations randomly into 2 groups. For a fairer comparison, we report SNAS and DSNAS runs

with the same 3 seeds. In the case of DARTS algorithms, previous work [6] has shown that these

algorithms are fully deterministic in the NAS-Bench-201 search space, therefore conducting repeat

experiments is less relevant. We conduct these experiments on all 3 datasets of NAS-Bench-201

and report the results in Table 1, Table 2, and Table 3. Note that we report only the performance of

the best architecture found collectively by all sub-supernets, which is indicative of the maximum

potential of each split-algorithm pair. The search cost required to reach this potential is the cost

of running the one-shot NAS on all sub-supernets. Reducing this cost via e.g. supernet selection

strategies may yield lower performance. Our experimental setup for each algorithm can be found

in appendix A.

Our results confirm the positive impact of splitting on the performance of various one-shot

NAS algorithms. We observe that for most one-shot NAS algorithms, a better architecture is found

when splitting regardless of the metric used. Note that even for the SNAS [22] algorithms that

converge to a good architecture without splitting, performance is seldom degraded after splitting.

Therefore, obtained results reinforce the core assumption of the few-shot NAS framework [8, 25],

that partitioning the search space is beneficial to the performance of conjoined NAS algorithms.

As for the impact of the metrics used to generate sub-supernet networks, results reported in

the different tables show that partitioning operations randomly yields similar or better results

compared with other metrics. Furthermore, we find that the optimal metric varies across different

datasets and different algorithms. In many cases, this happens with low variance, indicating that

the splits generated by the metric are especially well suited for this combination of dataset and

algorithm. Intuitively, the accuracy of architectures in the space varies relative to each other as

tasks become more complex, while inherent properties of the supernet picked up by the selected

metrics may not change as much. This indicates that the choice of an appropriate metric is not

as important as the splitting operation itself. However, the fact that an algorithm searches more

effectively when the space is split in specific ways can be linked with how the architectures are

distributed within the splits. Therefore, we take a deeper look at sub-space distributions in the

following section.

4.2 What is in a split?
The contents of each split remain unexplored in previous works. Indeed, both few-shot NAS and

GM-NAS select a single sub-supernet based on its validation accuracy to cut costs down to similar
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Figure 3: Distribution of NAS-Bench-201 [6] architecture performance on ImageNet16-120 across

sub-spaces generated with gradientmatching. Each distribution represents all architectures

contained in a single sub-space. Overall distribution appears in gray.

(Top) : full distribution. (Bottom) : distribution restricted to top 1% architectures in the space.

levels to regular one-shot NAS. However, this disregards the fact that good architectures may

be located in more than one split. Moreover, the distribution of architectures in the splits could

explain why some metrics are more advantageous for particular algorithms. Specifically, the ideal

split would group architectures based on their performance, with all best-performing architectures

located in a single split.

For each metric and dataset, we use the same 8 splits described in 3.2 and plot the distribution of

architectures in each split with respect to their test accuracy from the tabulated NAS-Bench-201 [6]

benchmark. Due to the sub-spaces being disjointed, the union of all 8 distributions amounts to the

full search space. An example is shown in Fig 3 (top). However, the vast majority of architectures in

the search space have mediocre performance, while NAS algorithms will mostly converge towards

the best architectures. Therefore, looking at the full distribution gives no insight on whether a

good architecture is likely to be found in that sub-space. Thus, we display a second view of the

distribution, restricted to the top 1% of architectures in the search space. An example is represented

in Fig 3 (bottom). We refer to Appendix D for distribution plots with other metrics and datasets.

We observe that metrics create splits following two types of behaviors. Splitting with gradnorm,
jacobcov, snip, grasp or ntk creates balanced sub-spaces following closely the distribution of the

original space. Meanwhile, splitting with gradientmatching, synflow, #lr or #params groups a
small number of architectures in some spaces, and a number roughly equal to half the size of the full

space in another space. Importantly, we observe that across all metrics, the top 1% of architectures
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Figure 4: Search phase of SNAS [22] with 8 sub-supernets, splits obtained with gradientmatching.
(Left) Test accuracy of discovered candidate architecture at every epoch of the training. Red

dots denote the sub-supernet with best validation accuracy for the current epoch.

(Right) Successive halving simulation. At epochs 30 and 100, the bottom half of sub-supernets

with the lowest validation accuracy is discarded.

in the space is located in several sub-spaces, which is suboptimal. Unsurprisingly, when a larger

proportion of the space’s architecture is located in a single sub-space, a larger number of top 1%

architectures is also present. Therefore, while some metrics may separate architectures in more

advantageous ways, the performance gain could simply be attributed to the search taking place

in a smaller search space, rather than inherent co-adaptation reduction inside the sub-supernets.

Moreover, top architectures being spread out across multiple sub-spaces makes supernet selection

impractical, as one may simply discard the global optimum while doing so.

4.3 Evaluating supernet selection

While the performance ceiling of NAS with splitting can be reached by training all sub-supernets

exhaustively, past works strive to reduce the search down to similar costs as regular one-shot

NAS. Few-shot NAS [25] selects the top 𝑘 sub-supernets with the highest validation accuracy

after copying weights over from the source supernet. GM-NAS [8] propose a successive halving

approach inspired by bandit optimization [11, 14] and discard the bottom half of architectures

based on their validation accuracy following a set schedule, with a 2.5x cost increase only for

8 sub-supernets, compared to one-shot NAS. Interestingly, both approaches use sub-supernet

accuracy as a proxy to being a good supernet, but few guarantees of this relationship have been

given. In order to assess whether accuracy is a good proxy for supernet selection, we use splits

obtained with gradientmatching and run SNAS [22] on each of 8 sub-supernets, using the same

experimental setup described in (appendix), only extended to 600 epochs.

We report the results for CIFAR-10 in Fig 8. Firstly, we find that, by the end of 600 epochs

and for most of the training, the sub-supernet with highest validation accuracy is not the one that

finds the highest performing architecture with SNAS, which shows that validation accuracy is

not a suitable proxy to selecting a sub-supernet. Furthermore, by applying a successive halving

scheme similar to GM-NAS, where half of the sub-spaces are trimmed at epochs (30, 100, 600),

we observe that the best sub-space is discarded early on. This indicates that supernet accuracy is

especially inaccurate as a proxy in early stages of the training. As such, supernet selection with

validation accuracy is highly likely to degrade the final performance of few-shot NAS compared to

its maximum possible performance.
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5 Conclusion

One-shot NAS methods have been proposed to reduce the cost of running NAS, but they often

degrade the performance of the search. Few-shot NAS methods tackle this issue by splitting the

supernet into sub-supernets trained separately, each with a reduced level of weight-sharing. The

challenge is to find the best way to split the supernet. A significant contribution in this direction

is GM-NAS, which utilizes a gradient matching score to group operations in a splitting schema

rather than an exhaustive approach. We extend this splitting framework to support any given

splitting metric. By combining this generalization with several architecture scoring metrics from

the zero-shot NAS literature, we can generate a greater variety of sub-spaces. We observe that

partitioning the search space invariably increases the performance of one-shot NAS algorithms,

while the best metric may change unpredictably depending on the task and the conjoined algorithm.

Therefore, splitting itself is more important than the choice of a splitting metric. Moreover, we show

that top architectures in the space are spread out across multiple sub-spaces, making it difficult

to determine which sub-space is the best. Finally, we evaluate supernet selection techniques and

determine that sub-supernet accuracy is an inadequate proxy for finding a good sub-space and

might only degrade the performances. Overall, our work shows that, while few-shot NAS is a

promising line of work to boost NAS performances in the one-shot setting, it requires careful

tuning to reach its maximum performance with reduced costs.
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A Hyperparameters

In this section, we detail the hyperparameters used in our experiments.

A.1 Model hyperparameters

The models used in our work follow the NAS-Bench-201 space described in section 2.2, with the

following parameters: 16 initial channels, 2 reductions with 5 cells in-between each reduction, for

a total depth of 17 cells.

A.2 Supernet training hyperparameters

The trained supernet is used as the basis for splitting. It is trained by optimizing the cross-entropy

loss via SGD with batch size 128, initial learning rate 0.1, momentum 0.9 and weight decay 0.0005.

The learning rate is annealed down to 0 following a cosine scheduler over the course of 200 epochs.

A.3 DARTS hyperparameters

We follow the same hyperparameters to conduct the search over DARTS [15] 1st and 2nd order.

Half of the training examples are held out as the validation dataset for the search. We train the

supernet parameters by optimizing the cross-entropy loss using Nesterov SGD for 50 epochs with

batch size 64, initial learning rate 0.025, momentum 0.9 and weight decay 0.0003. The learning rate

is annealed down to 0.001 using a cosine scheduler. For the training of the architecture parameters,

we optimize them with Adam optimizer, fixed learning rate 0.0003 and weight decay 0.001.

A.4 SNAS hyperparameters

We detail the hyperparameters for the search over SNAS [22]. Half of the training examples are

held out as the validation dataset for the search. In order to speed up the experiments, we use

the same hyperparameters as in DARTS A.3 for both the supernet parameters and architecture

parameters. As for the temperature, it is annealed from 1.0 to 0.1 following the cosine schedule.

We conduct the training over 50 epochs. Note that this is significantly less than the 600 epochs

prescribed for SNAS [22]. Empirically, we find that by 50 epochs, most sub-supernets reach their

peak performance or convergence point (cf. Figure 8).

A.5 DSNAS hyperparameters

We detail the hyperparameters for the search over DSNAS [9]. Once more, half of the training

examples are held out as the validation dataset for the search. AWe use the same hyperparameters as

DARTS and DSNAS A.4 for supernet parameters and architecture parameters. For the progressive

early stopping, we follow the same condition as described in DSNAS and set a threshold of 0.8. We

conduct the search for 50 epochs.
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B Details of the metrics

In this section, we document the definition of each metric used.

B.1 gradnorm

Gradients of the model are computed over a single batch of training data, then concatenated. This

metric is equal to the norm of the obtained tensor :

gradnorm(𝑚) = ∥∇𝑤 (L(𝑚,𝑤)∥F (4)

where𝑚 is the evaluated model with parameters𝑤 , L is the cross-entropy loss and ∥ · ∥F is the

Frobenius norm.

B.2 jacobcov

As with gradnorm, gradients are computed over a single batch of training data then concatenated.

We first define the covariance matrix of obtained Jacobian tensor:

𝐶 (𝑚) = 𝐸 [(∇𝑤 (L(𝑚,𝑤) − 𝐸 (∇𝑤 (L(𝑚,𝑤))𝑇 (∇𝑤 (L(𝑚,𝑤) − 𝐸 (∇𝑤 (L(𝑚,𝑤))] (5)

where𝑚 is the evaluated model with parameters𝑤 and L is the cross-entropy loss.

Let 𝜆𝑚
1
. . . 𝜆𝑚𝑛 be the eigenvalues of 𝐶 (𝑚). The jacobcov metric is defined as follows:

jacobcov(𝑚) = −
𝑛∑︁
𝑖=1

(𝑙𝑜𝑔(𝜆𝑚𝑖 ) +
1

𝜆𝑚
𝑖

) (6)

B.3 snip

The snip metric is computed over single batches of training data and is defined as follows:

snip(𝑚) =
𝑁∑︁
𝑖

| 𝜕L
𝜕𝜃𝑖

⊙ 𝜃𝑖 | (7)

where 𝑖 are the layers of the model, with 𝑁 the total number of layers. 𝜃𝑖 are the parameters at

layer 𝑖 and L is the cross-entropy loss.

B.4 grasp

The grasp metric is computed over single batches of training data and is defined as follows:

grasp(𝑚) =
𝑁∑︁
𝑖

−(𝐻 𝜕L
𝜕𝜃𝑖

) ⊙ 𝜃𝑖 (8)

where 𝑖 are the layers of the model, with 𝑁 the total number of layers. 𝜃𝑖 are the parameters at

layer 𝑖 and L is the cross-entropy loss. 𝐻 is the Hessian, which is estimated following [18].

B.5 synflow

The synflow metric is similar to snip:

synflow(𝑚) =
𝑁∑︁
𝑖

| 𝜕L
𝜕𝜃𝑖

⊙ 𝜃𝑖 | (9)

However, it is not computed over batches of training data. Instead, a batch of synthetic data with

full matrices of 1s is passed to the model.
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B.6 ntk

The ntk metric is the condition number of the Neural Tangent Kernel (NTK) [10].

Gradients are computed over a single batch of training data then concatenated. Then, following

TE-NAS [3], the NTK is approximated as:

Θ(𝑚) = ∇𝑤 (L(𝑚,𝑤))𝑇∇𝑤 (L(𝑚,𝑤)) (10)

where 𝑚 is the evaluated model with parameters 𝑤 and L is the cross-entropy loss. Let

𝜆
Θ(𝑚)
0

. . . 𝜆
Θ(𝑚)
𝑛 the eigenvalues of Θ(𝑚) sorted in ascending order of magnitude, the condition

number of the NTK is defined as:

ntk(𝑚) = 𝜆
Θ(𝑚)
𝑛 /𝜆Θ(𝑚)

0
(11)

B.7 #lr

The #lr metric is defined as the number of linear regions after the activations of the model. In

practice, the number of linear regions is estimated from a batch of training data, through careful

analysis of the signs of the post-activations, following TE-NAS [3].

B.8 #params

The #params metric is simply defined as the number of parameters in the model, which is obtained

at initialization with no training data needed.
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C Ablation studies on architecture selection

In this section, we report the results of the experiment from section 4.3 when splitting using various

other metrics. All other parameters of the experiment remain the same, and we use SNAS [22] on

the CIFAR10 task for the search.
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Figure 5: Search phase of SNAS with 8 sub-supernets, splits obtained with gradnorm.
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Figure 6: Search phase of SNAS with 8 sub-supernets, splits obtained with jacobcov.
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Figure 7: Search phase of SNAS with 8 sub-supernets, splits obtained with ntk.
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Figure 8: Search phase of SNAS with 8 sub-supernets, splits obtained with params.

Out of 5 reported metrics including gradientmatching, gradnorm, jacobcov, ntk and params,
only the supernet selection phase of jacobcov yields satisfactory results, where the sub-supernet

that finds the best performing architecture is also clearly the one selected in the end, while not

being cut prematurely if applying successive halving.

We observe in the case of params that supernet selection remains very unstable up to the end

of the training, with no sub-supernet coming out as the clear winner, while the best performing

sub-supernet would be cut by applying successive halving.

Finally, the cases of gradnorm and ntk show that best-performing sub-supernets can experience

collapse towards the end of the training, resulting in the selection of a sub-optimal supernet

compared to the global peak over the search. This could indicate a mismatch of the search algorithm

with supernet selection.

Overall, supernet selection using validation accuracy as a proxy often exhibits undesirable

behaviors for finding the best performing sub-supernet.
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D Architecture distributions

D.1 CIFAR-10

D.1.1 gradientmaching.
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D.2.6 synflow.
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D.3 ImageNet16-120

D.3.1 gradientmatching.
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