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Quantifying forecast uncertainty is a key aspect of state-of-
the-art numerical weather prediction and data assimilation
systems. Ensemble-based data assimilation systems incor-
porate state-dependent uncertainty quantification based on
multiple model integrations. However, this approach is de-
manding in terms of computations and development. In
this work a machine learning method is presented based
on convolutional neural networks that estimates the state-
dependent forecast uncertainty represented by the fore-
cast error covariance matrix using a single dynamical model
integration. This is achieved by the use of a loss function
that takes into account the fact that the forecast errors are
heteroscedastic. The performance of this approach is ex-
amined within a hybrid data assimilation method that com-
bines a Kalman-like analysis update and the machine learn-
ing based estimation of a state-dependent forecast error
covariancematrix. Observing system simulation experiments
are conducted using the Lorenz’96model as a proof-of-concept.
The promising results show that themachine learningmethod
is able to predict precise values of the forecast covariance
matrix in relatively high-dimensional states. Moreover, the
hybrid data assimilationmethod shows similar performance
to the ensemble Kalman filter outperforming it when the
ensembles are relatively small.
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1 | INTRODUCTION

Quantifying forecast uncertainty is a key aspect of data assimilation (DA) systems. In particular most DAmethods rely
on an accurate estimation of the forecast mean and error covariance matrix. Together they describe the probability
density function under the assumption that errors are unbiased and Gaussian.

Data assimilation approaches such as optimal interpolation (OI, Gandin 1965) or 3-dimensional variational meth-
ods (3DVar, Parrish and Derber 1992) assumes that the forecast error covariance matrix is independent of the state
of the system. Currently, DA methods that provide an implicit (e.g. 4-dimensional varitional methods, 4DVAR, Rabier
et al. 2000) or explicit (e.g. ensemble Kalman filters, EnKFs, Houtekamer and Zhang 2016, particle filters, PFs, van
Leeuwen et al. 2019) or hybrid (Bannister, 2017), estimation of the state dependent forecast probability density func-
tion produce a remarkable improvement in the accuracy of the initial conditions and of the forecast skill (Kalnay, 2003;
Carrassi et al., 2018). However, these improvements come at the expense of a significant increase in the computa-
tional cost. Moreover, even when state-dependent error covariances are well represented, an accurate estimation of
the contribution of model errors to the forecast error covariance in 4Dvar and EnKF frameworks is still challenging
(Tandeo et al., 2020).

Recently, machine learning methods—trainable statistical models that can represent complex functional depen-
dencies among different groups of variables given a large enough dataset— have emerged as a promising alternative
to estimate the forecast uncertainty (e.g. Tandeo et al. 2015; Ouala et al. 2018; Wang et al. 2018; Camporeale et al.
2019; Grönquist et al. 2019; Irrgang et al. 2020; Grooms 2021; Sacco et al. 2022, among others). These methods do
not require multiple integrations of the numerical model or its adjoint to provide an accurate estimate of the forecast
uncertainty, and in this sense are less computationally demanding. Training them, however, can often be computation-
ally demanding and require large training datasets. Apart from the forecast uncertainty quantification, some of these
methods capture also an estimation of the uncertainty associated with model errors, which are difficult to estimate
(e.gCamporeale 2018; Ouala et al. 2018; Wang et al. 2018; Sacco et al. 2022). These methods rely on uncertainty-
aware loss functions allowing the ML algorithms to learn the error statistics directly from the data (see for example,
Bishop 2006, Chapter 5.6).

Most of these works have focused on the estimation of the forecast error variance (e.g. Wang et al. 2018; Campo-
reale 2018; Grönquist et al. 2019; Irrgang et al. 2020; Sacco et al. 2022 among others). However, the estimation of the
full error covariance structure is essential for data assimilation. Grooms (2021) estimated the full covariance structure
based on a machine learning method designed to provide an ensemble of perturbations of the state variables that rep-
resents possible realizations of the forecast error. This approach emulates the one used in ensemble forecasting but
without the need to integrate the computationally demanding numerical model to generate the ensemble members.
Lguensat et al. (2017) replace the numerical model for a surrogate model based on a local linear analog regression,
thus significantly reducing the computational cost associated with the numerical integration of the ensemble. Ouala
et al. (2018) use a neural network and a Gaussian likelihood based loss function to estimate a diagonal error covariance
in a subspace defined by the leading principal components of the state variables resulting in an approximation of the
full forecast error covariance.

The estimation of a full error covariance matrix from data has been investigated in other contexts. Williams



(1996) used a neural network to estimate the parameters of a multivariate Gaussian distribution. Hu and Kantor
(2015) presented a parametric covariance prediction for heteroscedastic noise and Liu et al. (2018) implemented a
deep learning model for the inference of the observation error covariance matrix and applied it to position estimation
for navigation applications. In these cases, a Cholesky decomposition of the covariance matrix is estimated based on
the Gaussian likelihood.

The use of machine learning (ML) techniques in the context of data assimilation have been discussed in several
works. The similarities between DA and ML and their potential synergism has been introduced in Hsieh and Tang
(1998) and reviewed in Cheng et al. (2023). Bocquet et al. (2019); Brajard et al. (2020); Farchi et al. (2021a, 2022)
proposed a framework in which machine learning is used for the estimation of the system dynamics and to represent
model errors, while data assimilation provides an online continuous optimization of the data-driven model. Along the
same line, Brajard et al. (2021); Farchi et al. (2021b), use a data assimilation approach to train anML-based parameteri-
zation of the effect of unresolved scale dynamics within a numerical model. Other approaches aimed to a replacement
of the full DA system by a neural network as in Härter and de Campos Velho (2008). In this approach the authors
train a neural network that learns, from a given DA system, the magnitude and spatial patterns of the state update
introduced by the observations. Buizza et al. (2022) introduced the name "data learning" to describe several examples
in which ML and DA can be combined to overcome their mutual weaknesses.

Relatively few works investigated how ML-based forecast error covariance estimation, can be coupled with a DA
system (e.g., Lguensat et al. 2017; Ouala et al. 2018). In particular, Ouala et al. (2018), coupled a neural network-
based estimation of the forecast error covariance with a Kalman like analysis update in a high dimensional state space
and compared the results with an ensemble Kalman filter approach and the analog-based approach of Lguensat et al.
(2017) with promising results. In this work. we investigate the impact on the quality of the estimation of the state of a
dynamical system, particularly when a localized version of the full error covariance matrix is directly estimated using
an extension of the novel loss function presented in Sacco et al. (2022). The neural network covariance estimation
uses a single forecast as input variable which is obtained bymeans of a numerical model. The stability of the method is
investigated by performing several assimilation cycles. This Uncertainty estimation with neural networks is integrated
with a Kalman filter-based data assimilation system, forming a hybrid technique referred as UnnKF.

This work is structured as follows: Section 2 describes the different approaches for the estimation of the forecast
error covariance including a brief review of the ensemble Kalman filter and the experimental settings. The design of all
the experiments that were carried out in this work are described in Section 3. Section 4 analyzes the results obtained.
Section 5 draws the main conclusions of this work as well as a discussion of future perspectives.

2 | METHODOLOGY

2.1 | Sequential data assimilation

In a sequential data assimilation cycle, we aim to estimate the state of a dynamical system at regular time intervals,
by combining the information provided by a surrogate numerical model and a set of partial and noisy observations
(Carrassi et al., 2018). We start by considering a chaotic dynamical system, represented via the following Markov
process

xk = Mk :k −1 (xk −1 ) + ηk , (1)



where xk is an Nx -dimensional vector representing the state of the system at time k , Mk :k −1 is a known nonlinear
and chaotic imperfect model of the system dynamics that maps the state at time k − 1 into time k , and ηk represents
the discrepancy between xk andMk :k −1 (xk −1 ) due to the model imperfection (i.e., the model error). In this work, we
assume that the model error is a random variable sampled from a Gaussian probability distribution.

Given a pointwise estimation of the state of the system at time k − 1 (xa
k −1) a deterministic forecast of the state

at time k can be obtained by integrating the dynamical model and neglecting model errors,

xfk = Mk :k −1 (xak −1 ), (2)
Forecasts for longer lead times can be obtained by a recursive application of the numerical model. The forecast error
can be defined as:

ϵfk = xfk − xtk , (3)
where xt

k
is the unknown true state of the system at time k . Forecast errors are the consequence of an imperfect

estimation of the state of the system at time k −1 andmodel errors. Themagnitude and structure of both contributions
to the forecast error depend strongly on the state, so that the structure and magnitude of the component of the
forecast error covariance matrix at time k (P f

k
= [ϵf

k
ϵf
k

⊤ ]) are a function of the state. Data assimilation methods rely
on the assumption that these errors have zero-mean, which is not usually the case.

The state of the system is related to the observable quantities through the observation equation,
yk = H (xtk ) + νk , (4)

where yk is the Ny -dimensional vector containing the observable quantities, H is the observation operator (i.e. the
function mapping state variables into the observation space) and νk is the observation error which is assumed to be
drawn from a Gaussian distribution with zero-mean and known covariance denoted Rk .

Given the forecast (xf
k
), a set of observations (yk ), and assuming that their errors are unbiased , the best linear

estimator that minimizes the root mean square error with respect to the true state of the system is given by:

xak = xfk +K (yk −H (xfk ) ), (5a)
K = P f

k H
⊤ (HP f

k H
⊤ +Rk )−1, (5b)

where xa
k
is the estimation of the system state (a.k.a the analysis) at time k , H is the tangent linear approximation

of the observation operator and K is the Kalman gain matrix which projects and weights the discrepancy between
the observations and the forecasted observed quantities into the state space. This estimate of the state is also the
maximum likelihood estimation of the state of the system under the assumption that the PDFs of the forecast errors
and observation errors are both zero mean and Gaussian (Carrassi et al., 2018). Depending on the forecast covariance,
P f
k
, Eq. 5 may represent an optimal interpolation or an extended Kalman filter. In the optimal interpolation approach,

P f
k
is usually assumed to be known a priori and state-independent, while in the extended Kalman filter, the time

evolution of P f
k
is computed using the tangent linear approximation of the numerical model.

Once an estimation of the system state is obtained at time k , the numerical model (Eq. 2) can be used to forecast



the state of the system for the next time, and the cycle can be repeated every time a new set of observations becomes
available. The accuracy of the state estimation depends strongly on the accuracy of the error covariance matrices P f

kandRk whose estimation is arguably one of the most challenging aspects of DA systems (Tandeo et al., 2020).

2.2 | The ensemble Kalman filter

The ensemble Kalman filter (EnKF) is one of the most broadly used methods to incorporate the state-dependence
of the forecast error covariance matrix in data assimilation applications. In this work, the EnKF is used to generate
the database for the training of the machine learning method and is used as a benchmark for the evaluation of the
proposed machine learning-based algorithms. For completeness, we briefly describe this technique here.

If we have a sample of states drawn from the probability distribution of the analysis state at time k − 1 (xa,(n )
k −1 ) ,

for n ∈ 1...Ne with Ne the ensemble size, the sample covariance of the forecast at time k can be estimated by evolving
the individual ensemble members from time k − 1 to time k through the non-linear model equations:

xf ,(n )
k

= M
(n )
k :k −1

(
xa,(n )
k −1

)
+ η̂

(n )
k
, (6)

where xf ,(n )
k

are the evolved ensemble members. The forecast ensemble mean at time k , xfk = 1
Ne

∑Ne
n=1 x

f ,(n )
k

provides
a pointwise estimation of the state. Along this line, the forecast error covariance can be estimated from the forecast
state sample,

P̂ f
k =

1

(Ne − 1)

Ne∑
n=1

(
xf ,(n )
k

− xfk
) (
xf ,(n )
k

− xfk
)⊤
. (7)

In the stochastic implementation of the EnKF (Burgers et al., 1998), the ensemble members are updated using
Equation 5a, in which yk is replaced by y(n )

k
= yk + ν

(n )
k

, with ν
(n )
k

∼ N (0,Rk ) and with Pf
k
given by Eq. 7.

In physical systems, the covariance between variables corresponding to locations that are far away in physical
space are close to zero. In the EnKF, due to the presence of sampling errors, covariances between distant variables
can be significantly different from 0, particularly when a small ensemble is used. In this case, a covariance localiza-
tion approach can be used to damp the magnitude of the spurious covariances. These methods usually multiply the
estimated covariances by a factor that decreases with the physical distance between the two variables (Hamill et al.,
2001).

In this work, the stochastic EnKF was chosen over deterministic filters such as the LETKF (Hunt et al., 2007) since
in these filters ensemble members are not equi-probable since some members are persistently associated with larger
departures from the ensemble mean. This effect has already been reported by Amezcua et al. (2012) and found in a
realistic experiment by Kondo and Miyoshi (2019). This affects negatively the training of the neural network models
used in this work. The stochastic EnKF, because of the random sampling in the update of each ensemble member,
does not suffer from this problem. Also, we note that the fine-tuned localized stochastic EnKF and the LETKF had
the same performance in terms of RMSE in the conducted experiments.



2.3 | Uncertainty estimate with neural network for data assimilation

The likelihood function of theGaussian distributionmay be used as a loss function to train a neural network to learn the
state-dependent covariance matrix. However, estimating a full error covariance matrix is difficult and computationally
expensive to train due to the covariance matrix inversion in the evaluation of the likelihood function. The use of
the Cholesky decomposition of the covariance matrix or its inverse, to ensure that the obtained matrix is positive
semidefinite, have been proposed (e.g. Williams 1996; Liu et al. 2018; Hu and Kantor 2015) along with the definition
of the cost function in terms of the precision matrix to avoid performing the inversion of the covariance matrix in
its computation. However, in preliminary experiments, the covariance estimated in this way suffers from serious
numerical instability problems when coupled with a data assimilation cycle with state space dimensions in the order
of 102. An alternative solution was proposed by Ouala et al. (2018) who assumes the covariance matrix to be diagonal
in the space defined by the leading principal components of the state variables. In this space the problem reduces to
the estimation of the variance while a full covariance matrix can be obtained in the original state space.

2.3.1 | Extended-MSE loss-function for covariance estimation

The loss function we use was originally presented in Sacco et al. (2022) for variance estimation. The name extended-
MSEor simply eMSEwas originally proposed because this technique uses themean squared error equation for training,
but instead of using the training target directly, it uses an on-line estimate of the forecast error. In this work, we extend
the use of this loss function for a full covariance estimation and we use it into a DA framework.

The estimation of the forecast error requires an approximation of the true state (Eq. 3),
ϵfk ≈ xfk − x̂tk . (8)

The approximation of the true state x̂tk could be taken to be, for instance, the mean analysis provided that the
analysis error is much smaller than the forecast error (i.e., the analysis is closer to the true state than the forecast).
We note that under this approximation the trace of the analysis covariance is assumed to be significantly smaller than
the forecast covariance. Further choices of proxies for model forecast error are discussed in Section 3.3 and will be
evaluated in the experiments.

This forecast error can be used to generate a state-dependent training matrix as
ϵfk (ϵ

f
k )

⊤ = (xfk − x̂tk ) (x
f
k − x̂tk )

⊤ . (9)

The predicted covariance by the neural network is represented by
Σ̃k = FNN (xfk , x

a
k −1;θ), (10)

whereFNN is the neural network, θ its parameters and {xf
k
, xa

k −1} its input data. In Sacco et al. (2022), it was shown
that using {xf

k
, xa

k −1} as inputs to the network improved the estimation of the mean and the variance of the state
variables with respect to {xf

k
}. Similar results were obtained for the estimation of the full forecast covariance matrix

Σ̃k (not shown).
Then, the loss function used for training (schematized in Figure 1) is the square of Frobenius norm between the



neural network output Σ̃k , and the training target ϵf
k
(ϵf

k
)⊤,

L (ϵfk , Σ̃k ) =
Σ̃k − ϵfk (ϵ

f
k )

⊤

F
=

Nx ,Nx∑
i ,j=0

(Σ̃ (i ,j )
k − [ϵfk (ϵ

f
k )

⊤ ] (i ,j ) )2 . (11)

In the EnKF method, localization methods in the covariance matrix are used to alleviate sampling error. The same
idea can be used to filter out spurious covariances between distant variables in the estimated covariance by applying
a localization matrixC to the training target to force the decay of the estimated covariances with increasing distance
in the physical space. As in EnKF, the structure of the localization matrix is a design decision based on knowledge of
the dynamics of the problem or on empirical results. Based on this idea, the loss function is modified to

L (ϵfk , Σ̃k ) = ∥ Σ̃k − C ◦ [ϵfk (ϵ
f
k )

⊤ ] ∥F (12)
where matrix C is assumed to be known a priori from the dynamical interactions and selects the elements of the
covariance matrix that will be estimated by the network, and ◦ is the element-wise product. Consistently, all the
elements of the output matrix (Σ̃k ) corresponding to 0 values inC are removed by varying the size of the output layer
of the network (see Sec. 3.2). In this way, we reduce the number of training parameters and limit the computation of
the covariances to only the selected subdiagonals (i.e. Σ̃k may be represented by a band matrix).

F IGURE 1 ANN training scheme. The training error is determined by the Frobenius norm between Σ̃k and the
training matrix ϵf

k
(ϵf

k
)⊤ which is estimated from the approximated forecast error.

2.3.2 | Data assimilation process

Figure 2 shows a schematic representation of the hybrid data assimilation cycle. At each assimilation cycle, the nu-
merical model is initialized with the analysis of the previous cycle (xa

k −1) providing a deterministic forecast state,
xf
k
= M (xa

k −1 ) . The forecast and its corresponding analysis are used as inputs to the neural network to obtain an
estimation of the forecast error covariance Pfk ≈ Σ̃k = FNN (xa

k −1, x
f
k
; θ ) which we plug into Eq. 5a to obtain the

analysis at time k , xa
k
. This in turn is used as initial condition to produce the forecast for the next assimilation cycle.

This approach uses a single forecast from a numerical dynamical model to propagate the information on the state
of the system from time k − 1 to time k (as in optimal interpolation or 3-dimensional variational approaches), but it
uses a time-dependent estimation of the forecast error covariance matrix as in the EnKF. However, instead of using an
ensemble of forecasts, the full covariance matrix is estimated by a neural network. It is worth noting that, in this work,
the dataset used for the NN training assumes a fixed observing system. The estimate of Pf by the neural network
inherits this assumption, while an ensemble-derived Pf could adapt to changes in the observation system. Potential
venues to address this limitation are discussed in the conclusions.



F IGURE 2 Schematic representation of an UnnKF assimilation cycle (see the text for details).

The analysis update given by Eq. 5a is quite sensitive to the quality of the estimated forecast error covariance.
For instance, if the diagonal terms are overestimated, the analysis tends to overfit the observations. In addition, if
the subdiagonal elements are not well estimated, the information of the observations does not propagate properly
to the unobserved variables of the system. In the optimal interpolation or 3-dimensional variational approaches, it
is assumed that the covariance of the forecast does not depend on the state of the system. In the EnKF, the state
dependence is taken into account, but sampling errors due to a limited ensemble size can affect its accuracy (Hamill
et al., 2001). In the case of UnnKF, the quality of the covariance will be determined by the ability of the neural network
to learn the relationship between the state of the system and the associated uncertainty, in our case, the covariance.

In Sacco et al. (2022) the estimation of the forecast error variance was done in combination with an estimation
of the state-dependent forecast bias. In this work, our main goal is to evaluate the accuracy and effectiveness of the
covariance estimation in the context of a sequential data assimilation system. Although the forecast bias correction
could improve the performance of the assimilation, we do not include it as part of the experiments in this work, since
it could hide the sensitivity of the analysis error to the accuracy of the covariance estimation. In other words, all
the improvements with respect to a fixed covariance optimal interpolation in this work can be ascribed to the neural
network covariance estimation.

3 | EXPERIMENTAL DESIGN

3.1 | Dataset generation

For the generation of the datasets used to train the neural networks and to validate their performance we used a
simplified data assimilation system based on the Lorenz’96 (Lorenz, 1995) dynamical model. This is a simple chaotic
model widely used in proof-of-concept experiments in the data assimilation community (e.g. Stanley et al. 2021;
Brajard et al. 2020; Lguensat et al. 2017; Terasaki and Miyoshi 2014).

In particular, the two-scale Lorenz model (Lorenz, 1995) is used to represent the evolution of the unknown nature
state. This two-scale system allows us to represent the essence of multiple spatio-temporal scale systems such as the
atmosphere or the ocean. The large and small-scale dynamical variables are governed by

dx (i )
d t

= − x (i−1) (x (i−2) − x (i−1) ) − x (i ) + F − hc

b

i J∑
j=J (i−1)+1

y (j )

dy (j )
d t

= − cb y (j+1) (y (j+2) − y (j −1) ) − c y (j ) +
hc

b
x (int[ (j −1)/J ]+1) ,

(13)



where x (i ) is the i − t h component of the slow dynamics state vector x, and y (j ) is the j − t h component of the fast-
dynamics state vector, with J the number of y variables for each x variable. The coupling between the two systems
is controlled by the time-independent parameters h = 1, c = 10 , and b = 10. Both sets of equations have cyclic
boundary conditions, namely x (1) = x (S+1) , and y (1) = y (J ·S+1) . For most of our experiments the number of state
variables are J=32 and S=100 (i.e., the y vector has a total of 3200 variables) and to obtain a chaotic behavior, the
forcing term F is set to 26.

The one-scale Lorenz system,
dx (i )
d t

= −x (i−1) (x (i−2) − x (i−1) ) − x (i ) + F +G (i ) , (14)
is used as a surrogate model to estimate the true system state from an incomplete set of noisy observations using
an ensemble-based data assimilation method. This introduces model error into our data assimilation and forecasting
system since one of the scales is not explicitly represented.

The effect of the missing dynamics (i.e., the effect of fast variables y) in the surrogate model is approximated by
a state dependent parametrization term. As in Pulido et al. (2016), G (i ) is assumed to be a linear function of the state
variable x (i ) :

G (i ) = αx (i ) + β , (15)
with α = 19.16 and β = −0.81 constant parameters whose optimal values are taken from Scheffler et al. (2019).

The observations were generated from the nature integration every 8 time steps adding a Gaussian error of zero
mean and variance equal to 0.2. Observations are available at odd grid points (i.e., only 50% of the system is observed).
Given the observations set and the forecasting model, we used the EnKF methodology described in Section 2.2 to
generate a set of assimilated states xa

k
that is our best approximation to the real state of the system.

Two sets of analyses were generated, one using a 100-member ensemble and the other using a 5-member ensem-
ble. In both cases, a localization function was used to reduce the impact of sampling errors. The localization functions
follows the one suggested in Gaspari and Cohn (1999) with a localization scale of 3 and 7 grid points which was found
to minimize the RMSE of the analyses for the 5 and 100 member ensemble respectively. These two sets of analyses
were used independently to train the neural networks for each experiment as explained in the following sections and
as a baseline for analyzing the results. The inflation factor was also tuned to give minimum RMSE, resulting in an
optimal inflation factor of 1.15 for the 100-member ensemble and 1.35 for the 5-member ensemble experiment.

The training set consists of 10000 analysis cycles and the validation set has 5000 cycles. The size of the training
and validation set is such that converting the Lorenzmodel time units to atmospheric times is equivalent to 15 years of
data. The testing set consists of 15000 time steps which are completely independent from the training and validation
sets.

3.2 | NN architecture and training

The neural network architecture consists of three convolutional layers (see Table 1). The size of the kernels are rela-
tively small (3 grid points) allowing the identification of patterns in a restricted locality. A kernel width of 5 was also
tested but did not result in a better performance that would justify the increase in the network complexity. This is
consistent with the behavior of the Lorenz variables that present localized interactions, i.e. two variables that are
far from each other have weak interactions. Furthermore, translation invariance is assumed in the convolution lay-



layer in channel out channel kernel activation

input 2 32 3 Softplus
hidden 32 32 3 Softplus
output 32 nd 3 Softplus(n0)+linear(n1 : nd )

TABLE 1 Description of the architecture of the convolutional neural network used in the experimentation. The
number of channels in the output layer (nd ) is the number of subdiagonals to be estimated in the covariance matrix.

ers, which is in accord with the statistical isotropy of the Lorenz’96 dynamics. The size of the output layer depends
on the number of subdiagonals of the forecast covariance matrix that are estimated, which in turns depends on the
localization matrix C in Eq. 9.

For the experiments, we make a simple choice for the localization function C . We use a Heaviside function to
localize the elements of the target covariance. If the distance between two Lorenz variables is less than d grid points,
we leave the corresponding covariance unchanged, and if it is larger than d we set the corresponding covariance to
0. This is equivalent to keep only the first nd subdiagonals of the target covariance. In this case we construct our
neural-network model to estimate the first nd subdiagonals of the covariance matrix, while all other subdiagonals are
assumed to be 0 (Figure 3). Sensitivity experiments were carried out to determine the number of subdiagonals needed
to optimize the RMSE and to compare this localization value with the optimal localization scale in the EnKF.

F IGURE 3 The output of the network is shown in panel (a), the i t h element of channel 0 is the variance
corresponding to the i t h state variable. The d t h channel corresponds to the covariance between the state variables
separated by a distance d as shown in panel (b). Covariance values not represented with the ANN output are
assumed to be zero.

As stated in Table 1 a single hidden convolutional layer is used. The inclusion of an extra hidden layer did not pro-
duce a significant improvement in performance. This convolutional layer use circular padding, since this is consistent
with the boundary conditions of the Lorenz model and allows us to keep unchanged the dimensions of the spatial
representation through the network. Softplus was chosen as the activation function for the first two convolutional
layers since it produces a slightly better convergence among other considered activation functions (viz. logistic and
ReLU). In the output layer we use two activation functions: A Softplus function for the output elements corresponding
to the main diagonal (n0) so the estimated variances are positive, and a linear activation function for the elements cor-
responding to the covariances (subdiagonal elements of the covariance matrix n1 . . . nd ). In preliminary experiments,
we observed that using linear or ReLU as the activation function in the main diagonal (n0) may lead to the estimation
of negative variances or variances equal to zero respectively.



The AdamW optimizer (Loshchilov and Hutter, 2017) was used to train all the networks with a learning-rate value
of 0.001. The use of mini-batches of 50 samples produces the best convergence in training. During the training, the
loss function is evaluated over the validation set every 10 training epochs and the training stops when the loss function
evaluated over the validation set stops decreasing or starts to increase (early stop with patience).

In preliminary experiments, we use large networkswith a considerable capacity, leading to estimates characterized
by high covariance values. This, in turn, resulted in numerical issues during data assimilation. Our initial strategy
to address this issue involved the application of L2 regularization. Although this approach removes the numerical
issues, the required lambda value (i.e. weight decay parameter) was excessively high. Consequently, the estimated
covariance matrices exhibited limited variability, and the resultant analyses showed high RMSEs. Subsequently, we
follow an alternative strategy by adjusting the network capacity without L2 regularization (i.e. null lambda). With
the appropriate network architecture, the training process proved to be highly robust. This robustness allowed for
an exploration of hyperparameters (e.g. learning speed, batch size, early stop criterion), with more than 20 different
combinations evaluated for each experiment. In all cases, the network covariance estimations were robust enough to
conduct accurate assimilations for a large number of cycles without requiring L2 regularization. For each experiment
performed in this work, five different optimizations were conducted using different initial weights and all of then
converge to similar results showing the training is robust.

3.3 | Forecast error proxies

F IGURE 4 Schematic of the MRA and MMA forecast errorproxies used for the training within an ensemble
assimilation cycle.

To train the network that estimates the forecast error covariance, we need a dataset that expresses the spatio-
temporal variability of the error. But constructing proxies for the short range forecast error (i.e. ϵf

k
) is a challenging

task. In this work, we evaluate different possible proxies for the short range forecast errors, these are schematized in
Figure 4. Based on the available ensembles of forecast and analysis, we evaluate three possible ways to approximate
ϵf
k
using the deterministic forecast xf :

• Mean analysis - Mean Analysis (MMA): In this case we define ϵf
k
= xf

k
− x̄a

k
where xf

k
is a deterministic forecast

initialized from the analysis ensemble mean (xf
k
= M (x̄a

k −1 )). In this case, we are taking the difference between
the most probable state of the system given all the observations up to time k − 1 and the most probable state of
the system given all the observations up to time k .



• Mean analysis - RandomAnalysis (MRA): The error proxy is defined as ϵf
k
= xf

k
−xa,(nr )

k
where xa,(nr )

k
is a randomly

selected member from the analysis ensemble. This proxy is assuming that analysis ensemble members represents
equally probable realizations of the true state. It is important to note that once the member is randomly selected,
it remains fixed for all training epochs, i.e. the dataset is the same in all epochs and the random selection is
done only once. In this formulation, the training dataset can be augmented using all the available ensemble
members as targets. In fact, enlarging the training set in this way improved the quality of the estimated covariance,
and consequently decreased the RMSE of the analyses. However, we chose to use only one randomly selected
member for comparison purposes so that the size of the training dataset is the same to the rest of the chosen
proxy methods.

• Mean analysis - NaTure (MNT): Since we are conducting idealized experiments, we have access to the true state
of the system, thus for evaluating purposes we can compute the true forecast error as ϵf

k
= xf

k
− xt

k
, where xt

k
is

the true system state given by the nature run. This representation of the forecast error cannot be computed in
the real applications and is used only for comparison.

Other error approximationswere evaluated, in particular ϵf
k
= xf ,(nr )

k
−x̄a

k
where xf ,(nr )

k
= M (xa,(nr )

k −1 ) is a randomly
selectedmember from the forecast ensemble and ϵf

k
= xf ,(nr )

k
−xa,(nr )

k
, i.e. the difference between a randomly selected

member of the forecast ensemble and the corresponding member in the analysis ensemble. Among all the error
approximations, those employing mean analysis states as the training target were the worst. Conversely, employing
states from random members substantially enhanced the results. Hence, the use of random members captures better
the prediction anomalies, unlike the mean analysis. We decided to select and discuss the outcomes for the best (MRA)
and worst (MMA) proxies in order to give an idea of the general behaviour of the methodology and an estimate of
the error. However, the RMSE for all the assessed proxies was significantly lower than the use of a small ensemble
(ENS5).

The different error proxies are associatedwith different estimated error variances. Thus, the trace of the estimated
covariance matrix using these different proxies to compute the target, can be significantly different. To reduce the
impact of this effect in the assimilation cycle and to compare these different approaches in a more consistent way, a
multiplicative inflation factor is applied in the data assimilation experiments as in the EnKF. The multiplicative inflation
factor is optimized independently for each error proxy using a brute force approach.

4 | RESULTS

In this section, we present the results obtained with different sensitivity experiments designed to evaluate the per-
formance of the UnnKF and to compare it to the EnKF with two different ensemble sizes, 5 and 100 members. Each
UnnKF experiment is identified with a name composed of two parts, the first refers to the error proxy used in the
training (see section 3.3) and the second one is the number of subdiagonal of the covariance matrix being estimated
by the network (including the main diagonal). Data assimilation experiments performed using the EnKF are named as
"ENS" followed by the number of members in the ensemble.

We start by comparing the time evolution of the covariances used in the data assimilation for the 100-variable
Lorenz model with the UnnKF and EnKF methods. The EnKF method uses the sample covariances obtained using 5-
member (ENS5) and 100-member (ENS100) ensembles to which a Gaspari-Cohn function with a localisation scale of
3 and 7 grid points has been applied respectively. The UnnKF method uses an ANN with nd = 6 trained with the MRA
error proxy (MRA6). Values of nd greater than 6 did not show a statistically significant improvement (see Sec. 4.2). In



all three cases the magnitude of the estimated covariances has been scaled by the optimal multiplicative inflation (i.e.,
the one that produced the best results in terms of the analysis RMSE).

Figure 5 shows the time evolution of selected elements of the error covariance matrix as estimated from the
EnKF with different ensemble sizes and the neural network. We distinguish between odd covariance matrix rows
(centered at an observed variable (Fig. 5 left column)) and even rows (centered at an an unobserved variable, Fig. 5
right column) since their variability can be different. The temporal correlation coefficient of MRA6 and ENS5 with
respect to ENS100 for the entire testing set is stated at the right of each panel of Figure 5. In all cases, the correlation
coefficient of the MRA6 estimate is higher than the correlation of ENS5, even for those estimated covariances which
are not shown in the figure.

The overall analysis shows that ENS5produces covarianceswith a higher temporal variability compared to ENS100
due to the effect of sampling noise. In contrast, MRA6 closely follows the variability of the ENS100 for both observed
and unobserved variables. In general, MRA6 has a smoother variability than ENS100 and sometimes it seems to omit
some extremes (e.g. time 1525 for the observed variables in all covariances). But it is also able to reproduce quite ac-
curately other extremes present in ENS100 (e.g. variance and covariance at time 1535 for observed variables). Figure
5 shows that, in general, the time evolution of the covariance matrix estimated by MRA6 is closer to ENS100 than to
ENS5. This is consistent with the obtained correlation coefficients already mentioned.

To assess the overall quality of the spatio-temporal structure of the estimates in the context of data assimilation,
Figure 6 compares the analysis RMSE over 15,000 consecutive assimilation cycles of the testing dataset using the
UnnKF with those generated with ENS5 and ENS100. The black line on top of each bar represent the 95% confidence
interval computed using a bootstrap approach using 500 subsamples obtained from the testing dataset using random
selectionwith replacement and selecting samples which aremore than 20 time steps apart from each other to increase
the independence between different sample elements.

For both the observed and unobserved variables, the RMSE obtained in Figure 6 is much closer to ENS100 than
to ENS5. This agrees with the time evolution analysis of the covariance matrix elements and shows that the proposed
methodology is able to generate a state-dependent estimate of the covariance matrix robust enough to run long
assimilation cycles, using only a deterministic forecast as input.

4.1 | Sensitivity to the forecast error proxy

Figure 7 shows the RMSE of the analysis over the test dataset for an ensamble of 100 members using EnKF and
for the UnnKF trained with the actual forecast error (MNT) and the error proxies, MRA and MMA. In all the cases, 6
subdiagonals of the error covariance matrix are estimated. Overall, independently of the error proxy, the performance
of the UnnKF is stable and produces accurate results.

The skill of the UnnKF is sensitive to the error proxy, with roughly a 10% difference between the best (MRA)
and the worst (MMA) proxies. Additionally, MMA requires a larger multiplicative inflation factor to achieve optimal
performance, indicating that this proxy underestimates the amplitude of errors. In MMA the forecast error is being
approximated as the difference between the deterministic forecast (which is close to the forecast ensemble mean)
and the analysis ensemble mean, without considering that the forecast and the real state of the system are random
realizations of these distributions. In other words, in MMA, the smoothing effect affecting the analysis ensemble
mean can negatively impact the estimated covariance structure. In the MRA approach, a random analysis ensemble
member is chosen, taking into account that the analysis members are equally probable realizations of the true state
of the system. This proxy overestimates the variance of the errors, leading to optimal multiplicative inflations that are
below one.



F IGURE 5 Time evolution of selected covariance matrix elements over 100 consecutive time steps starting at
the 1500 cycle of the testing set. The panels, from top to bottom, show respectively the first elements of the first
column of the covariance matrix. Left panels show covariance matrix elements of an odd row (centered at observed
variables), while right panels shows covariance matrix elements of an even row (centered at an unobserved
variable).The correlation coefficients for MRA6 and ENS5 covariance matrix elements with respect to ENS100 are
shown to the right of each panel. These coefficients are calculated from the test dataset composed by 15,000
assimilation cycles and including all the corresponding observed/non-observed state variables given that the Lorenz
system is isotropic.

The MRA experiment performed similarly to the ENS100 for the observed variables, but more significant RMSE
differences appear for the unobserved variables. This can negatively impact the performance of the UnnKF with re-
spect to the EnKF in sparsely observed systems in which the proportion of non-observed variables is larger. This effect
can be explained by the way in which model errors are represented in our proxies. The assimilation of observations
reduces the impact of model errors in the analysis, but some of these errors remain, particularly in the unobserved
variables, leading to a misrepresentation of forecast errors used as target variables.

To provide further insight into this issue, the MNT experiment which is trained with the true forecast error, al-
lows us to investigate the impact of forecast error missrepresentation in the MRA and MMA experiments. The MNT
experiment in Figure 7 clearly outperforms the MRA and MMA error proxies (the analysis RMSE decreases 3.5% and
10% with respect to MRA and MMA, respectively). The MNT experiment in Figure 7 shows very similar performance
to the ensemble in terms of covariance estimates. It is worth noting that MNT performs better relative to MRA in
non-observed variables (4.5%) than in observed variables (2.6%). This indicates an improvement in the representation
of the covariances in MNT and suggests that the deterioration of performance in non-observed variables for MMA
and MRA is due to a misrepresentation of forecast errors in the target variables. However, MNT is clearly better



F IGURE 6 RMSE of the analyses generated by a 5-member ensemble (ENS5), a 100-member ensemble
(ENS100) using ENKF method and the UnnKF method (MRA6) for the 100-variable Lorenz’96 model. The RMSE of
unobserved variables (left), observed variables (middle) and the total RMSE (right) are shown. Note that the ranges
of the RMSE axes are different in each panel, this is to highlight the difference between the experiments. The limits
of a 95% confidence interval obtained using a bootstrap approach is indicated by the black line on top of each bar.

F IGURE 7 The RMSE of the unobserved system variables (left panel), the observed variables (middle panel) and
the total RMSE (right panel) of the analyses generated using a separate testing dataset are shown for the networks
trained with the datasets, MNT, MRA and MMA. The limits of a 95% confident interval obtained using a bootstrap
approach is indicated by the black line on top of each bar.

than ENS100 for observed variables and nearly equal to ENS100 for non-observed variables. Moreover, the use of
error proxies such as MRA or MMA leads to analysis errors comparable to those obtained with a large ensemble. This
suggests that, despite the limitations of these proxies, they could give reasonable results.

The best RMSE for MNT experiments, 0.3593 (Fig. 7), is obtained using a multiplicative inflation of 0.85 and
a localisation function, as used in the ENS100 experiment, but with a distance of 4 grid points. If no localisation
function is used the obtained RMSE for MNT experiment is 0.3655 and the optimal multiplicative inflation is 0.8. This
indicates a slight overestimation of the distant covariances in the MNT experiment. On the other hand, the minimum
RMSE for the experiments with MMA and MRA error proxies is achieved without applying the localisation function.

4.2 | Sensitivity to localization

We conducted another set of experiments to explore the sensitivity of the UnnKF to the number of estimated subdi-
agonals in the forecast covariance matrix (nd ) (i.e., how covariance between distant variables are correctly modeled
by the neural network and to what extent the inclusion of covariances between variables that are farther improves
the analysis accuracy). The training of these experiments was carried out using the MRA error proxy.



Figure 8 shows the analysis RMSE in the observed, unobserved and total variables as a function of nd . Overall, the
larger nd , the lower the RMSE of the analysis with significant reduction of the RMSE up to nd = 6. The optimal inflation
for each experiment is consistent with the overall performance of the experiment, with larger multiplicative inflation
associated with the experiments with larger analysis errors. Beyond nd = 6 the RMSE continues to decrease, but the
differences are not statistically significant and therefore, it may not be worthwhile to increase the number of neurons
at the output of the network, which would increase the network’s complexity and training requirements. It is not
surprising that between 7 and 8 there is no difference because the analysis with which the network is trained comes
from an Enkf with location nd = 7 and therefore the farthest covariates were not considered in the analysis. This
shows that the proposed training methodology is able to capture the variability of the farthest covariances containing
relevant physical interactions present in the system.

F IGURE 8 RMSE for band covariance matrices of different sizes {2, 3, 4, 5, 6, 7, 8}, for the unobserved system
variables (left panel), the observed variables (middle panel) and the total RMSE (right panel) of the analyses
generated using a separate testing dataset are shown. The optimal inflation values for each experiments are
indicated to the left of the figure. The limits of a 95% confident interval obtained using a bootstrap approach is
indicated by the black line on top of each bar.

For unobserved variables, the experiment with nd = 3 does not lead to an analysis error reduction with respect
to the nd = 2 case. This can be because, in the experiment with nd = 3, the number of observations used to obtain
the analysis at unobserved variables is the same as the in the nd = 2 experiment. However, the performance on
the observed variables improves when nd is increased from 2 to 3, since the number of observations assimilated at
observed variables increases from 1 to 3. This effect is schematized in Figure 9 showing that the even subdiagonals
propagate information from the observed variables to the unobserved variables, while the odd subdiagonals prop-
agate the information from the observed variables to other observed variables (information is propagated from the
observations). This effect seems imperceptible from the 4th subdiagonal onward likely because of the small amplitude
of the estimated covariances.

4.3 | Scalability

In this section we investigate how the optimal size of the neural network (i.e. the number of convolutional filters in
the hidden layer) depends on the number of estimated diagonals of the error covariance matrix and on the dimension
of the state space. We perform experiments varying the size of the neural network and the number of estimated
diagonals to evaluate how this affects the RMSE of the analyses. Results are shown in Table 2. It was found that the
optimal network capacity is almost insensitive to the number of estimated diagonals (nd ). For nd = 2 (200 output
variables) the optimal number of filters is 32 and for nd = 8 (800 output variables) the optimal is 40. Using larger



F IGURE 9 Pattern of observed (Obs) and unobserved (NoObs) state variables during data assimilation process
and how each covariance (Σn,i ) propagates information from one variable (n) to another (i ).

networks slightly degrades the RMSE. This suggests that adding more channels does not improve the performance.
Furthermore, the increase in output variables related to more subdiagonals in the covariance estimation does not lead
to a linear increase in the number of channels.

F IGURE 10 RMSE of the analyses generated for the Lorenz’96 model of 8, 40 and 100 state variables (right,
middle and left panels respectively). Each panel shows the RMSE achieved for the EnKF methodology with a small
ensemble of 5 members (ENS5), a large ensemble of 50 members for S=8 (ENS50) and 100 members for S=40 and
S=100 (ENS100) and for the UnnKF methodology (MRA6).

We also investigate the sensitivity of the analysis error to the dimension of the state space. In this work, we
explore the scalability with respect to the state space dimension, by evaluating the performance of the UnnKF for
different sizes of the state of the system S (i.e. the number of slow variables in the Lorenz’96 model). We conducted
three experiments with S = 8, 40 and 100. For the first experiment (i.e., S=8), we estimated the full covariance matrix
(nd = 4). For the other two experiments (S = 40 and 100), we consider nd = 6. These experiments are compared with a
small ensemble (5-members) and a large ensemble (50-members for S = 8 and 100-member for S = 40 and 100) EnKFs.
In all cases, the large ensemble is in the saturation zone of the RMSE curve (i.e., no further significant improvement
was obtained by increasing the ensemble size).

The UnnKF has an RMSE that is close to the one of the large ensemble in all the experiments. This indicates
that the performance of the estimation of the covariance has no sensitivity to the size of the state vector in these
experiments (Fig. 10). Moreover, in all cases the performance of the UnnKF is significantly better than the one
obtained with the small ensemble size, even though an appropriately tuned covariance localization and multiplicative
inflation factor has been used in the EnKF.



number of channels nd = 2 nd = 8

in the hidden layer test-loss RMSE test-loss RMSE
10 0.11816 0.4085 0.068481 0.39275
20 0.11758 0.4050 0.068203 0.37823
32 0.11748 0.4042 0.068105 0.37336
40 0.11755 0.4053 0.068130 0.37331
50 0.11766 0.4044 0.068115 0.37335

TABLE 2 Loss function and analysis RMSE computed over the testing dataset for different ANN architectures.
The first column shows the number of convolutional kernels used in the hidden layer. Results are presented for the
case where 2 diagonals (nd = 2) and 8 diagonals (nd = 8) of the covariance matrix were estimated.

4.4 | Sensitivity to target quality

In the experiments presented so far the methodology with the novel loss function achieves a reliable estimate of
the state-dependent covariance when trained using an ensemble data assimilation system with a large ensemble.
However, in real world applications, available ensemble-based data assimilation systems which can be used for the
training of the neural network are based on smaller ensembles due to the high computational cost associated with
multiple model integrations. To investigate the impact of the training data quality upon the estimated covariances with
the neural network, we performed an additional experiment in which the error proxy is computed from a ensemble-
based data assimilation system with only 5 ensemble members. Figure 11 compares the results of a neural network in
which the error proxy is computed with a 100-member ensemble (MRA6_E100 as in previous experiments) and the
results obtained when the training is performed with an error proxy computed from a smaller 5-member ensemble.
The results obtained when the actual forecast error is used for the training are also included for comparison (MNT6).

F IGURE 11 RMSE of different assimilation experiments where ENS100 and ENS5 correspond to the ensemble
Kalman filter performance for a 100 and 5 ensemble respectively. MNT6 corresponds to the performance of a
neural network trained with the ground truth, MRA6_E5 is a network trained with the 5-member ensemble dataset
and MRA6_E100 is the network trained with a 100-member ensemble dataset.

An interesting result is that the network trained with error proxies derived from a small ensemble-based data
assimilation system (MRA6_5) allows us to produce UnnKF analyses with much lower RMSE than the EnKF analyses
used in the training data. These results may be explained by the fact that the small ensemble has only a few members
to estimate all the elements of the covariance so, sampling errors are expected to be large. However, during training



and due to the use of multiple instances at different times the neural network learns to smooth out the different
samples leading to a more reliable estimation of the covariance matrix.

In contrast, analyses generated with large ensembles have very small sampling error but model error is likely to
becomemore dominant. The analyses have a bias, so a part of the forecast error is not well represented during training.
Consequently the resulting RMSEs are rather similar with a slight advantage by ENS100 compared to MRA_100.
Meanwhile, the experiment MNT_100 outperforms ENS100.

F IGURE 12 RMSE of the ensemble Kalman filter as a function of the ensemble size. The dots show the RMSE of
the different experiments shown in Fig. 11 but plotted over the line to relate the performance of the machine
learning technique to the ensemble size of the ensemble Kalman filter.

Figure 12 shows the RMSE of the EnKF with optimal localization and inflation coefficient as a function of the
ensemble size. In the same curve, the dots show the corresponding RMSE of the examined experiments (i.e., ENS5,
ENS100, MRA6_E100, MRA6_E5, and MNT6), so that it establishes an equivalence between the accuracy of the
machine learning based analysis and the ones produced by the EnKF. In particular, MRA6_E5 is equivalent to an EnKF
with 15 ensemble-members, MRA6_E100 is equivalent to a 35-member ensemble, and MNT6 is equivalent to a more
than 300 members EnKF. Therefore, we note that MRA6_E5 improves the performance of the ENS5 dataset.

5 | CONCLUSION

In this work, we examine the potential of machine learning techniques to infer a state-dependent forecast covariance
using single deterministic forecast from a numerical dynamical model. We propose a loss function (eMSE) that allows
training a neural network to estimate state-dependent covariance matrices using only previously computed analyses
(training target) and current forecasts (model input). Furthermore, this training method is trivially adaptable to localize
the covariance matrix to an arbitrary number of diagonals. We also evaluate this novel way to estimate the covariance
matrix using a methodology that combines the Kalman-like filter technique with the neural network covariance esti-
mate (UnnKF), allowing us to perform data assimilation with state-dependent covariance using a single deterministic
forecast. Moreover, a model bias correction method could be easily included within the same framework as shown
in Sacco et al. (2022). This hybrid data-driven methodology was evaluated in terms of numerical stability and scala-
bility as a function of the size of the state vector. The results are stable (the data assimilation cycle using the UnnKF
could be run robustly during 15, 000 cycles) and allowed us to generate analyses with a performance comparable to an
ensemble-based data assimilation technique with 100 members. The optimal network size was not very sensitive to
the size of the state space and to the number of covariance matrix elements being estimated, which suggests that the



extension of this approach to more realistic applications in high-dimensional state spaces is feasible, although more
research is certainly required to confirm this.

In the experiments where the neural networks was trained with EnKF analysis resulting from a small ensemble,
theUnnKFmethodology decreases considerably the RMSE of analyses outperforming the EnKF performance. Besides
the encouraging results there are many challenges and issues that requires further investigation before this method-
ology can be implemented in combination with state-of-the-art data assimilation systems. For instance, a relatively
simple convolutional neural network architecture is used in our experiments. This was sufficient for representing the
uncertainty of the two-scale Lorenz-96 dynamics. However, more realistic datasets with multi-scale dynamics are
expected to require a deeper network architecture. Another important issue is the flexibility of the technique in a
context of a continuously changing observing network. In the experiments presented in this work, the observation
network is assumed to be fixed. This hypothesis, leads to a quantification of the uncertainty that is implicitly assuming
the underlying observation network structure. A possible approach to overcome this could be to include information
on the analysis uncertainty (e.g. an estimation of the analysis error variance) as an input to the network (as proposed
in Ouala et al. (2018)). The analysis uncertainty depends on the structure of the observation network. Another alter-
native is the approach taken by Grönquist et al. (2021), which includes forecast uncertainty generated from a small
ensemble as an input to the network.

The regular improvements that are made to dynamical model formulations—such as annual updates to enhance
model physics and dynamical cores—present an additional challenge. The behavior of model errors is altered by these
recurring changes, necessitating an update to the network parameters. However, retraining the entire system each
time themodel is changed can be very demanding in terms of computing power. Nevertheless, for minormodifications
to the prediction model, retraining the network might not be required because beyond the uncertainty related to the
model error, the uncertainty related to state, which is less dependent on the model formulation, is not expected
to change. So, in the event of minor modifications to the prediction model, a fine-tuning or updating of the neural
networkwould be sufficient in terms of knowledge transfer, which generally requiresmuch smaller data sets and fewer
epochs to be updated. The availability of a large enough dataset to perform the network optimization is an additional
challenge for the technique’s implementation. In the studies reported here, increasing the dataset size from 10, 000

to 20, 000 samples had only a negligible effect on the RMSE (less than 1%), but more complex dynamical systems
are likely to be more sensitive to the size of the training dataset and to require a greater number of samples. In this
synthetic case the dataset can be easily extended by running the model for a longer time period. In real data cases,
all available ensemble members can be used to augment the dataset.

More research is also required tomore efficiently compute the analysis update. In thiswork, we conduct an explicit
estimation of the analysis update based on the Kalman update equation. However, this approach is not feasible in
high dimensions. A local implementation of the UnnKF like the one used in the Optimal Interpolation approach can be
used to allow the computation of the analysis in high dimensional systems. Moreover, examining the use of machine
learning-based uncertainty quantification in the context of variational data assimilation is an interesting direction for
future research. Here, the error covariances are modeled as operators, and the state-dependent values of parameters
(such as error variances, decorrelation scales, balance constraints, etc.) within these operators can be learned using the
proposed method. In this work, we analyze a limit case in which only one deterministic forecast run was performed to
conduct data assimilation with the UnnKF. However the combination of machine-learning approaches and ensemble-
based approaches have been also explored in the literature leading to promising results (e.g. Grönquist et al. 2021)
although the implementation in the context of data assimilation has not yet been tested.

The results obtained in this proof of concept work, using a simple and numerically stable loss-function, are a first
step towards evaluating the potential of hybrid machine-learning data-assimilation techniques that can be applied



as operational data assimilation and weather prediction systems in meteorological centers where the computational
capacity is limited like in developing countries where the computational cost of well-established assimilation methods,
like 4DVAr or EnKF is prohibitive. Future work will extend and evaluate the present methodology in more realistic
datasets.
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