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Summary: The article presents a multi-agent simulation utilizing fuzzy logic to explore battery recharging management for 
Autonomous Industrial Vehicles (AIVs). This approach offers adaptability and resilience through a distributed system, 
accommodating variations in AIV battery capacity. Results highlight the efficacy of adaptive fuzzy multi-agent models in 
optimizing recharging strategies, enhancing operational efficiency, and curbing energy consumption. Dynamic factors like 
workload variations and AIV-infrastructure communication are considered in the form of heuristics, emphasizing the 
significance of flexible, collaborative approaches in autonomous systems. Notably, infrastructure capable of optimizing 
recharging based on energy tariffs can significantly reduce consumption during peak hours, emphasizing the importance of 
such strategies in dynamic environments. Overall, the study underscores the potential of incorporating adaptive fuzzy multi-
agent models for AIV energy management to drive efficiency and sustainability in industrial operations. 
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1. Introduction 

 
Industry 4.0 is coming with a high degree of 

digitalisation of industrial processes, but also a 
significant increase in communication and cooperation 
between the machines that make it up. This is the case 
with autonomous industrial vehicles (AIVs) and other 
cooperative mobile robots that are proliferating in 
factories or airports, and whose intelligence and 
autonomy are increasing. 

The deployment of AIV fleets raises several issues, 
all of which related to their actual level of autonomy: 
acceptance by employees, vehicle localization, traffic 
flow, collision detection, and vehicle perception of 
changing environments. Simulation allows us to take 
into account the different constraints and requirements 
formulated by manufacturers and future users of these 
AIVs. 

Before starting to test AIV traffic scenarios on a 
large scale in sometimes complex industrial or airport 
situations, it is essential to simulate these scenarios [1]. 
One significant benefit of running simulations is that 
usable results without the need to applying a scaling 
factor. 

The main benefits of simulating AIV operations are 
extensively presented by Tsolakis et al [2]: simulation 
reduces the development time and cost of an AIV, 
minimises the potential operational risks associated 
with the AIV, enables the feasibility of different AIVs 
scenarios to be assessed at a strategic or operational 
level, provides a rapid understanding of AIV 
operations (under conditions of limited data 

availability), and identifies improvements in facility 
layout configurations hosting AIVs. 

The simulation also provides flexibility in terms of 
deployment and redeployment, and enables us to study 
the sharing of responsibility between the central server 
and the robots (local/global balance) for the various 
operational decisions. Another advantage of 
simulations is to introduce humans into the scenarios 
in order to convince people, before the actual 
deployment of autonomous mobile robots, of the safe 
nature of the coexistence and possible interactions 
between these future mobile robots and human 
operators in industry [3]. 

Agent-based approaches are often proposed for the 
simulation of autonomous vehicles [4], including path 
planning in a large-scale context [5], or optimal task 
allocation with collision and obstacle avoidance [6]. 

Our current research focuses on the use of fuzzy 
agents to manage the levels of imprecision and 
uncertainty involved in modelling the behaviour of 
simulated vehicles [7]. Fuzzy set theory is well suited 
to the processing of uncertain or imprecise information 
that must lead to decision-making by autonomous 
agents [8]. The concept of the fuzzy agent can 
therefore be proposed as a partial implementation of 
this theory. 

Most of the control tasks performed by autonomous 
mobile robots (perception, localisation, mapping, path 
and task planning, navigation and motion control, 
obstacle avoidance, communication, and energy 
control [9]) have been the subject of performance 
improvement studies using fuzzy logic: 
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1) navigation of mobile robots from conceptual, 
theoretical or application points of view [10], 
navigation of several mobile robots [11], 
navigation and control of a mobile robot in an 
unknown environment in real time [12], and 
comparison of navigation performance of mobile 
robots obtained using fuzzy logic or neural 
networks [13]; 
2) obstacle avoidance from conceptual and 
systemic points of view in an unknown dynamic 
environment [14]; 
3) path planning strategies focusing on obstacle 
avoidance [15] or global navigation [16]; 
4) motion planning [17] ; 
5) localisation of mobile robots [18]; 
6) intelligent management of energy consumption 
[19]. 
An agent-based system is fuzzy if its agents have 

fuzzy behaviours or if the knowledge they use is fuzzy. 
This means that agents can have: 1) fuzzy knowledge 
(fuzzy decision rules, fuzzy linguistic variables, and 
fuzzy linguistic values); 2) fuzzy behaviours (the 
behaviours adopted by the agents as a result of fuzzy 
inferences); and 3) fuzzy interactions, organisations or 
roles [20]. 

Fuzzy agents can follow the evolution of fuzzy 
information coming from their environment and from 
the agents [21]. By interpreting the fuzzy information 
they receive or perceive, fuzzy agents interact within a 
multi-agent system; they can also interact in a fuzzy 
manner. For example, a fuzzy agent can discriminate a 
fuzzy interaction value to evaluate its degree of affinity 
(or interest) with another fuzzy agent [22]. 

 
2. Fuzzy agent-based simulation 

 
The different elements of the fuzzy agent model are 

as follows [7]: (1) the agent-based fuzzy system; (2) 
the behaviour of a fuzzy agent, inspired by perceive-
decide-act feedback loops [23]; (3-5) the behavioural 
functions of a fuzzy agent; (6) and the fuzzy 
interactions between two fuzzy agents. 

 
Table 1. Fuzzy agent model used in our simulations 

[7,24]. 
 

  (1) 

where  is a set of agents, ;  is a set of 

fuzzy agents,  with ;  is a set of 

fuzzy interactions between fuzzy agents;  is a set of 
fuzzy roles filled by fuzzy agents; and  is a set of fuzzy 
organisations defined for fuzzy agents (subsets of strongly 
related fuzzy agents). 

  (2) 

where, for a fuzzy agent ,  is its observation 

function,  its decision-making function,  its 

action function and  its knowledge base. 

 (3) 

 (4) 

 (5) 

Where, for a fuzzy agent ,  is the set of fuzzy 

events observed,  all its fuzzy interactions,  all its 

fuzzy states,  all its fuzzy percpetions,  all its 

fuzzy decisions,  all its fuzzy actions, and  is the 

state of the fuzzy multi-agent system . 

  (6) 

Where, for fuzzy interaction ,  is the fuzzy source 

agent,  is the destination fuzzy agent, and  is a 
fuzzy communication act (inform, diffuse, ask, reply, …). 

 
3. Case study: autonomous management of 
battery recharging 
 

We present an adaptable fuzzy multi-agent model 
(Figure 1) that addresses the challenges of energy 
management for AIVs. Efficient management of AIVs 
requires a holistic approach that takes into account 
several factors, including operational availability, 
energy consumption [25], collaboration between AIVs 
and the dynamic infrastructure, and their adaptation to 
changing conditions. We aim to optimise recharging 
based on energy costs, as a low workload combined 
with frequent recharging can increase the overall 
energy consumption of the system. In addition, poor 
anticipation can limit system availability. 

AIV missions do not follow a uniform distribution 
in terms of frequency, creating periods of intense 
activity and others that are quieter. It is therefore 
essential to link the energy consumption of AIVs to the 
amount of work carried out and their operational 
availability.  

To avoid an overload of recharging requests due to 
too many simultaneous requests, the AIVs need to 
work together by communicating with each other or 
via the infrastructure. As for automatic recharging, 
although it solves the problem of the number of 
charges, it requires space and consumes energy. Even 
a 2 to 3% reduction in energy consumption is 
significant for certain warehouses and airports. For the 
introduction of fleets of autonomous vehicles in the 
industry of the future, it therefore seems necessary to 
fine-tune the number of recharging points. This sizing 
can be improved by taking into account the 
possibilities for communication between the AIVs, 
which can collectively avoid critical (urgent) 
recharging. 
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 3.1 . Description of the simulation framework 
 

 
Fig. 1. Simulator architecture: dynamic elements in red, static in green, and not related to the environment in purple. 

 
To test different autonomous management 

strategies for solving the problem of AIVs recharging 
batteries, we defined an initial scenario, which we will 
refer to as the basic scenario (Figure 2). We made 
several improvements to this basic scenario and 
compared the number of missions carried out (1), the 
number of recharges performed (2), the average time 
taken to complete a mission in seconds (3), and waiting 
times for recharging in seconds (4). We also varied the 
charge threshold at which an AIV must recharge its 
battery. We then introduced a fuzzy inference system 
to determine the recharge time. We also varied the 
values of the fuzzy model (fuzzy linguistic values).  

 

 
Fig. 2. Simulation Application 

 
3.2 Comparisons between thresholds and fuzzy 
logic models  
 

In this section, we delve into a comparative 
analysis between different thresholds and fuzzy logic 
models. We propose 3 different scenarios:  

- Scenario 1 (or ‘Sc1’), which corresponds to a 
Basic Scenario. 
- Scenario 2 (or ‘Sc2’), where different threshold 
values are tested in the context of scenario 1. 
- Scenario 3 (or ‘Sc3’), where AIVs use a fuzzy 
logic model for recharge.  
We simulated these three scenarios for 1000 

baggages (a discussion regarding the scenario results 
is provided in the following three sections). The 
temporal results are shown in Table 3. We aim to 
discern the optimal threshold configurations that 
maximise mission throughput, minimise recharging 
frequency, and optimise resource utilisation, thereby 
improving the overall efficiency of autonomous 
management strategies for recharging the AIV battery. 
 

Table 2. Time results for 1000 baggages for Sc1, Sc2 
and Sc3 

 
Scenarios Sc1 Sc2 Sc3 

Number of baggages 1000 1000 1000 

Total recharge time (s) 3675 3535 3561 

Total simulation time 
(hour:minutes:seconds) 

04:36:46 04:35:11 04:34:58 

 
3.2.a Basic Scenario  
 

In the “Basic Scenario”, AIVs have a single 
threshold model set at 30% for recharge. This scenario 
makes it possible to compare performance in terms of 
mission processing time (overall and individual time), 
number of recharges, and waiting time for recharges 
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(access to a free station). The AIVs results for Scenario 
1 are shown in Table 3.   

 
Table 3. AIVs results for Scenario 1 

 
Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 

Thresholds 30 30 30 30 30  

(1) 201 200 199 200 200 1000 

(2) 67 67 66 67 67 334 

(3) 80 80 80 80 80 80 

(4) 0 0 0 11 23 34 

 
3.2.b Different threshold values 
 

Scenario 2 enables us to compare different 
threshold values for AIVs recharge. When we compare 
with thresholds varying between 15% and 30%, the 
overall mission processing time is slightly lower, and 
the number of recharges and overall recharge time are 
also lower (295 and 3535, respectively). The 
performance of AIV1 with the lowest threshold (15%) 
is obviously the best, although there is a greater risk of 
not being able to reach a station due to a lack of charge 
in the event of an incident! 
 

Table 4. AIV results for Scenario 2 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 

Thresholds 15 20 25 30 35  

(1) 202 200 200 199 199 1000 

(2) 50 57 57 66 67 295 

(3) 79 80 80 77 80 79.2 

(4) 31 38 27 2 13 111 

 
3.2.c Fuzzy logic model 
 

In comparison with Scenario 1, where AIVs have a 
threshold of 30%, in Scenario 3, AIVs use a fuzzy 
basic model. The results presented in Table 5 
demonstrate an improvement in overall and individual 
AIV times (79.4 secondes on average instead of 80 
secondes) and fewer recharges (285 recharges instead 
of 334). 
 

Table 5. AIV results for Scenario 3 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 

FL model FL FL FL FL FL  

(1) 200 200 200 200 200 1000 

(2) 57 57 57 57 57 285 

(3) 80 80 80 80 77 79.4 

(4) 0 19 0 15 0 34 

 
3.3 Increases in fuzzy logic criteria  
 

To improve the results of the previous simulations, 
we made 3 types of adaptation (heuristics), taking into 
account more realistic constraints and the possibility of 
AIVs communicating with each other and with 
infrastructure elements such as charging points: 

1) adaptation of recharging according to the needs 
of the AIVs and the availability of the charging 
points (centralised scenario by supervision and 
decentralised scenario by communication between 
the AIVs and the charging points); 
2) adaptation of recharging according to the rate of 
baggage arrival and the resulting variation in 
activity (the number of missions to be performed 
by the AIVs in a unit of time is no longer constant); 
3) adapting the speed of the AIVs according to the 
rate of baggage arrival (centralised scenario by 
supervision and decentralised scenario by 
communication between the AIVs and the charging 
points). 
The objective of this section is to show that specific 

heuristics allow certain situations to be dealt with 
fairly finely and increase the collective/overall 
performance of AIVs. We simulated these three 
improved scenarios for 1000 baggages. The temporal 
results are shown in Table 6. 

 
Table 6. Time results and configuration for 1000 

baggages for Sc4, Sc5 and Sc6 
 

Scenarios Sc4 Sc5 Sc6 

Number of baggages 1000 1000 1000 

Total recharge time (s) 3528 3574 11807 

Total simulation time 
(hour:minutes:seconds) 

03:59:06 03:51:08 02:25:00 

Maximum number 
waiting baggages 

486 650 499 

Average Baggages 
Waiting 

242 322 266 

 
3.3.a Adapting recharging to demand and the 
availability of charging points 
 

Scenario 4 simulates the adaptation of charging to 
demand and the availability of charging points. The 
AIV results are shown below, in Table 7. The 
effectiveness of this heuristic is clearly visible, 
especially for AIV1: 15 fewer recharges than for 
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AIV5, and 16 fewer than for AIV4. The total 
recharging time is also shorter than for scenarios 1 and 
2: 3528 seconds instead of 3675 seconds and 3535 
seconds. 
 

Table 7. AIV results for Scenario 4 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 

Thresholds 15/15 20/15 25/20 30/20 35/25  

(1) 202 201 200 200 197 1000 

(2) 50 56 57 66 65 294 

(3) 69 69 69 69 69 69 

(4) 117 11 44 14 0 186 

 
3.3.b Adaptation of recharging according to the 
baggage arrival rate 
 

Scenario 5 simulates an adaptation of recharging as 
a function of the baggage arrival rate and therefore of 
the variation in induced activity (the number of tasks 
to be carried out by the AIVs). Table 8 shows that the 
adaptation of recharging enables AIVs to complete 
their missions more quickly than in scenario 4. In fact, 
they complete 1 mission in 66 seconds on average, 
compared with 69 seconds for Scenario 4.  

 
Table 8. AIV results for Scenario 5 

 
Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 

Thresholds 20 20 20 20 20  

(1) 201 200 201 200 200 1000 

(2) 57 57 58 57 57 286 

(3) 66 66 66 66 66 66 

(4) 0 46 0 0 24 70 

 
3.3.c Adapting the speed of the AIVs to the flow of 
baggage arrivals  
 

In scenario 6, we propose to adapt the speed of the 
AIVs to the flow of baggage arrivals. Compared with 
scenario 5, the 30% threshold has been adapted (the 
20% threshold causing too many load faults due to the 
increase in energy consumption in cases of faster 
speed). The overall simulation time is much shorter 
despite a much longer overall reload time, as presented 
in Table 6. Moreover, Table 9 shows that the 
throughput is a little better controlled since the 
baggage waiting time is 266 seconds in this scenario 
instead of 332 seconds for scenario 5, presented in 
Table 8. 

Table 9. AIV results for Scenario 6 
 

Indicators AIV1 AIV2 AIV3 AIV4 AIV5 Global 

Thresholds 20 20 20 20 20 20 

(1) 199 203 198 203 197 1000 

(2) 195 200 194 200 194 983 

(3) 41 40 41 40 41 40.6 

(4) 330 39 342 20 343 1074 

 
4. Conclusions 

 
We have developed a multi-agent simulation, 

including fuzzy logic, to test various scenarios of 
battery recharging management. This approach offers 
a flexible adaptation to the various aspects of AIV 
management and facilitates any adjustments required 
for deployment on the industrial site. The use of a 
distributed system provides temporary autonomy in 
the event of failure of the central infrastructure, taking 
into account the individual differences in the battery 
capacity of the AIVs.  

The simulation results demonstrate that 
incorporating adaptive fuzzy multi-agent models for 
AIV energy management can significantly optimize 
recharging strategies, improve operational efficiency, 
and mitigate energy consumption, particularly by 
considering dynamic factors such as workload 
variation, communication between AIVs and 
infrastructure elements. In fact, an infrastructure 
capable of optimising recharging according to energy 
tariffs is advantageous, particularly with the ability to 
cut consumption over an hour. These findings will 
underscore the importance of flexible, collaborative 
approaches in enhancing the performance of 
autonomous systems in dynamic environments.  

We plan to continue integrating fuzzy models into 
our AIV simulation agents in order to increase the 
relevance and effectiveness of their decisions in the 
management of their energy recharge. 
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