
HAL Id: hal-04516479
https://imt-atlantique.hal.science/hal-04516479v1

Submitted on 22 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fast and Accurate Output Error Estimation for
Memristor-Based Deep Neural Networks

Jonathan Kern, Sébastien Henwood, Gonçalo Mordido, Elsa Dupraz,
Abdeldjalil Aïssa-El-Bey, Yvon Savaria, François Leduc-Primeau

To cite this version:
Jonathan Kern, Sébastien Henwood, Gonçalo Mordido, Elsa Dupraz, Abdeldjalil Aïssa-El-Bey, et al..
Fast and Accurate Output Error Estimation for Memristor-Based Deep Neural Networks. IEEE Trans-
actions on Signal Processing, 2024, 72, pp.1205-1218. �10.1109/TSP.2024.3369423�. �hal-04516479�

https://imt-atlantique.hal.science/hal-04516479v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fast and Accurate Output Error Estimation for
Memristor-Based Deep Neural Networks

Jonathan Kern, Sébastien Henwood, Gonçalo Mordido, Elsa Dupraz, Member, IEEE,
Abdeldjalil Aı̈ssa-El-Bey, Senior Member, IEEE, Yvon Savaria, Fellow, IEEE, and

François Leduc-Primeau, Member, IEEE

Abstract—Memristors allow computing in memory, which may
be leveraged by deep neural network (DNN) accelerators to
reduce energy footprint. However, such gains in energy efficiency
come at the cost of noise on the computation results due to
the analog nature of memristors. In this work, we introduce
a theoretical framework to estimate the mean squared error
(MSE) of a memristor-based DNN. We propose an efficient
software implementation of this framework which is shown to be
orders of magnitude faster than using Monte-Carlo simulations.
Additionally, we study two different techniques for mapping
convolutional layers to memristors and compare their relative
impact on the mean squared error and its computation time. The
accuracy of the proposed analysis is first evaluated on a simple
regression problem, and then on a more complex classification
task with a network capable of achieving high accuracy on the
CIFAR-10 dataset, which shows that our method is efficient over
practical up-to-date DNNs. The proposed framework is then
used to perform a meta-heuristic optimization of the memristor
maximal conductance value so as to minimize the energy usage.1

Index Terms—Memristors, neural networks, energy efficiency,
in-memory computing

I. INTRODUCTION

MEMORY accesses are one of the most energy-consuming
parts of a computing system [1]. This is a critical

issue for systems that have high memory requirements [2],
frequent data access [3], or are prone to run on embedded
devices [4]. For example, state-of-the-art deep neural networks
(DNNs) on the ImageNet [5] classification task require millions
of parameters and billions of FLOPs [6]–[8] when imple-
mented with floating-point arithmetic. Therefore processing-
in-memory (PIM) recently emerged as a very promising
alternative compared to the conventional Von-Neumann ar-
chitecture [9], [10]. Specifically, several PIM designs have
been shown to achieve significantly lower energy footprints
for DNN implementations [11]. Among them, memristors [12]

J. Kern is with the Department of Electrical Engineering, Polytech-
nique Montreal, QC, Canada , and also with IMT Atlantique, Lab-
STICC, UMR CNRS 6285, 29238 Brest, France (email: jonathan.kern@imt-
atlantique.fr). S. Henwood, G. Mordido, Y. Savaria and F. Leduc-Primeau
are with the Department of Electrical Engineering, Polytechnique Mon-
treal, QC, Canada (emails: {sebastien.henwood,yvon.savaria,francois.leduc-
primeau}@polymtl.ca). E. Dupraz and A. Aı̈ssa-El-Bey are with
IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238 Brest, France
(emails: {elsa.dupraz,abdeldjalil.aissaelbey}@imt-atlantique.fr). G. Mor-
dido is also with Mila - Quebec AI Institute, Montreal, QC, Canada
(email:goncalomordido@gmail.com).

This work was supported by an IVADO grant (PRF-2019-4784991664) and
by the Samuel-de-Champlain program.

1The code for the framework presented in this work is available at https:
//github.com/sebastienwood/MemSE

are a form of low-power, non-volatile memory that allows
computing matrix-vector multiplications (MVM) directly in
memory, by programming the memristor conductance values to
some specific levels [13], [14]. Hence, memristor-based DNN
implementations are able to achieve a significant reduction in
energy consumption compared to conventional DNN systems.

However, the programmed conductance levels in memristors
may be affected by noise originating from several possible
sources [15], [16]. For instance, in memristors, as in any
resistors, there is a thermal noise that can affect computations.
Additionally, device-to-device variability of the resistance is
another source of unreliability that is likely to affect the result of
the computation. Despite such non-idealities, DNNs have been
shown to inherently tolerate some level of noise up to a certain
extent, while still maintaining their performance [17]. Moreover,
methods to further improve DNN noise tolerance during the
training process have also been recently proposed [18]–[21].
Existing methods primarily rely on injecting noise during
training, which has also been applied to the weights [20]
and activations [22] of memristor-based DNNs.

Even though memristor-based DNN implementations have
recently gained in popularity, their analyses, design, and
optimization have been primarily empirical in nature [23]–
[26]. In this work, we propose an alternative to the vast
empirical work on memristors by using a theoretical framework
instead. More specifically, our analysis can be used to estimate
the performance of a trained DNN deployed on noisy PIM
hardware. As highlighted previously, the development of
memristor-enabled DNNs could be a critical asset for curbing
the increasing power usage of state-of-the-art neural networks.
A theoretical framework capable of estimating the influence of
the unreliability of memristors on the computations of DNNs
could be useful for helping this development by providing
tools for the joint design of reliable DNN architectures and
memristor implementations. As shown in this paper, such joint
considerations between hardware and algorithm can be used
to further increase the energy gains achievable by using a
memristor architecture while preserving the accuracy of DNNs.
However, to be of interest, this framework needs to have a
high degree of accuracy and efficiency, in line with the existing
methods used for estimating uncertainty on standard DNNs.

As related work, several advances have been made to study
uncertainty in the outputs of neural networks without relying
on Monte-Carlo simulations, which can be highly resource-
intensive. In these approaches, weights are modeled as random
variables, and the goal is to estimate the posterior distribution

https://github.com/sebastienwood/MemSE
https://github.com/sebastienwood/MemSE

2

of network outputs over the network parameters. Most recent
methods used variational inferences. A first example is [27]
where the Bayes by Backprop approach is introduced. This
method considers a Gaussian distribution over the weights
of the network. Another example of the use of variational
inference can be found in [28], which proposes to use Bernoulli
variational distributions to interpret dropout in a network. These
works aimed to model uncertainty in each layer of DNNs but
did not propagate the variational distribution through the layers
and preferred to sample randomly from the distribution and pass
it to the respective next layers. This approach was motivated by
the difficulty of propagating moments through the non-linear
operations of DNNs. However [29] presented an extended
variational inference framework, capable of propagating the
mean and covariance of the DNN at the output of each layer.
This paper, and later [30], [31], clearly identify the non-
linearities of each layer as a challenge for moment propagation
and proposed two methods to address this issue: one using a
first-order Taylor series approximation and another using an
unscented transformation.

While all the previously mentioned works focused on
standard implementations suffering from noise or adversarial
attacks, moment propagation was also applied to memristor-
based implementations. This was first reported in [32] which
presented a theoretical analysis for studying the influence of
conductance variations on a DNN at inference time. How-
ever, [32] considers a memristor crossbars model for MVM
computations based on passive summing circuits, which seems
less widely utilized in current experimental implementations
compared to the memristor model used in our work. Then our
preliminary work [33], which uses the same model as in this
work, also proposed a theoretical framework for estimating the
mean squared error (MSE) of a memristor-based DNN. Here,
unlike [31]–[33], we investigate the case where convolutional
layers are directly implemented on memristors, rather than
converted to fully-connected layers. This has an important
impact on the theoretical analysis based on moment propagation.
Moreover, we propose a novel and more accurate method for
moment estimation after the activation functions.

In this work, we propose an improved method, in terms
of adaptability and precision, for theoretically estimating the
influence of noise on the computation of a memristor-based
DNN. Particularly, we develop a framework for estimating
the MSE between an unreliable neural network implemented
using memristors and its reliable counterpart. This framework
allows the prediction of the first and second moments of the
outputs of a variety of DNN layers. We also present equations
for evaluating the power consumption of the memristors
used by the network. Finally, we propose an optimization
method that allows minimizing the power consumption of a
memristor-based DNN to meet a desired MSE. Furthermore, we
introduce a runtime-efficient implementation of our theoretical
framework and empirically demonstrate a speedup of two
orders of magnitude compared to Monte-Carlo simulations. We
showcase the correctness of the proposed theoretical analysis
when estimating the MSE of a small DNN model applied to
a regression task and a larger convolutional neural network
(CNN) capable of achieving an accuracy superior to 90% on

G1,1

X1

r

G2,1

GL,1

X2

XL

Z1

r

Z2

r

Z3

r

ZM

G1,2 G1,3 G1,M

G2,2

GL,2

G2,3

GL,3

G2,M

GL,M

...
...

...
...

. . .

. . .

. . .

Fig. 1: Memristor crossbar architecture for MVM.

the CIFAR-10 classification dataset [34]. Additionally, we show
that using the theoretical analysis in the previously mentioned
optimization problem, it is possible to reach the baseline
accuracy of a network with 6% less power consumption than
with its non-optimized counterpart. In the end, our results show
that our theoretical framework can accurately and efficiently
predict the performance of a memristor-based DNN as a
function of device characteristics.

The main contributions of this paper can be summarized as
follows:

• We provide theoretical equations capable of efficiently
estimating the MSE and power usage of memristor-enabled
DNNs with respect to their reliable digital counterpart
through a moment propagation method.

• We propose a framework to compute these theoretical
metrics which can be several orders of magnitude faster
than using Monte-Carlo simulations to achieve the same
estimation error.

• We make use of this framework to efficiently optimize the
hardware parameters of memristor crossbars to minimize
their energy consumption under performance constraints.

The remainder of the paper is organized as follows: Section II
introduces the memristors and DNN models, Section III
details our theoretical analysis of the memristor-based DNN
performance and provides an overview of the computational
challenges derived from efficiently implementing our analytical
framework, Sections V and VI describe the proposed optimiza-
tion method and corresponding results, respectively, and, finally,
Section VII provides a summary of our main contributions and
future directions.

II. SYSTEM MODELS

Before presenting our theoretical analysis, we first need to
describe the memristor crossbar model we consider and its
associated noise model, as well as how this model is used in
the context of MVM on memristors. Then, we introduce the
characteristics and notation of the DNNs that will be considered
in this paper.

A. Memristor model
Figure 1 illustrates the architecture of the considered memris-

tor crossbar. In accordance with Ohm’s Law and Kirchoff’s Law,

3

the current in each branch is given by the conductance at each
node multiplied by the input voltage of the row. These products
are then summed along the column. Finally, a transimpedance
amplifier (TIA) converts the current into a voltage at the end
of each column [35]. The output zj of the j-th column is thus
given by

zj = r

L∑
i=1

gi,jxi , (1)

where xi is the voltage at the input of row i, gi,j is the
conductance of the memristor at row i and column j, and r is
the feedback resistance of the TIA.

Unfortunately, several practical issues may cause the actual
computation to differ from the ideal case presented in equa-
tion (1). Specifically, conductance values may be affected by
fabrication variations and noise during programming [14], [16],
[20], [36]. We consider that the memristors conductance ranges
from gmin to gmax, which respectively represent the minimum
and maximum physical conductance values programmable on
a memristor. To take variability into account, we represent
the programmed conductance values as random variables Gi,j ,
which we model as

Gi,j = gi,j + ϵvi,j , (2)

where gi,j is the desired value and ϵvi,j is the noise due to
variability in conductance programming. Commonly, this noise
is assumed to follow a normal distribution with 0 mean [20].
We use σ2

v to denote the variance of ϵv. In practice, σ2
v may

vary with the conductance value gi,j [16], but for simplicity,
we assume here that it is constant. Nevertheless, the analysis
proposed in this paper can be easily extended to the case where
σ2
v depends on the conductance value.

B. Mapping dot-product computation into a memristor crossbar

Since memristors can only store positive values, we actually
use two memristor crossbars for storing one matrix: the g

(+)
i,j

are the positive values of the matrix and the g
(−)
i,j are the

opposite of the negative values. As in [25], the MVM can then
be realized by

Zj =

L∑
i=1

rG
(+)
i,j Xi −

L∑
i=1

rG
(−)
i,j Xi , (3)

where Zj , G(+)
i,j , G(−)

i,j , and Xi are random variables. Moreover,
Xi and Zj can be seen as noisy versions of the input xi and
output zj presented in (1), respectively.

Now, an MVM required by a neural network can be
formulated as y = wx, where w is a weight matrix and x
is the input vector. To map this operation into a memristor
crossbar, we need to convert the original weight matrix w to
two conductance arrays g(+) and g(−). Because of the range
[gmin, gmax] of possible conductance values, the weights wi,j

are first scaled by a factor λi,j , such that

ws
i,j = λi,jwi,j , (4)

where λi,j =
gu − gmin

wu , with wu representing the maximum
absolute weight value. In addition, gu is chosen depending on

the desired trade-off between accuracy and power consumption,
and it only needs to be smaller than the maximum physical
conductance value gmax. Note that the scaling factor λi,j may
vary for different parts of the neural network, and in Section V,
we will study cases where λi,j can vary from layer to layer,
or from column to column.

After computing the scaled weights, we compute the positive
and negative memristors values as

g
(+)
i,j = ws

i,j
(+) + gmin , (5)

g
(−)
i,j = ws

i,j
(−) + gmin , (6)

where ws
i,j

(+) = ⌊ sgn(w
s
i,j)+1

2 ⌋ws
i,j and ws

i,j
(−) =

⌊ sgn(w
s
i,j)−1

2 ⌋ws
i,j . For simplicity, we define gi,j as gi,j =

g
(+)
i,j − g

(−)
i,j . We note that the random variables G

(+)
i,j and

G
(−)
i,j , which appear in equation (3), are the noisy versions of

g
(+)
i,j and g

(−)
i,j , respectively.

C. Computation models for DNNs and CNNs

We consider a DNN as a sequence of layers, where each layer
corresponds to either a MVM or to other types of linear or non-
linear transformations. Here, we present the different types of
DNN layers that we consider in our analysis, and we explicitly
describe their computation models for memristor crossbars.
Note that the parts of a DNN that heavily rely on MVMs
are fully-connected layers and convolutional layers. Hence,
we consider that only these layers are implemented using
memristors; other functions in the network such as pooling and
non-linear activation functions are assumed to be processed by
digital circuits that are not affected by noise, as in [37], [38].
In the following discussions, we consider that the input and
output of each layer is a three-dimensional tensor. The input,
denoted by X , has size H×W ×Ci, while the output, denoted
by Z, has size E×F×Co, where Ci and Co correspond to the
number of input and output channels, respectively. The outputs
shapes E and F can be expressed from the input size and the
layer’s parameters such as the padding and stride. They are
used here to provide a common notation between the different
types of layers.

1) Fully-connected layer: A fully-connected layer is rep-
resented by its weight matrix of size HWCi × EFCo as
well as by a bias vector b of size EFCo. To implement the
corresponding dot-product operation using memristors, we
construct two memristor crossbars of the same size as the
weight matrix plus one additional row for the bias b. The
conductance values g

(+)
i,j and g

(−)
i,j are computed following

(4) and mapped onto the memristors. Then, the memristor
crossbar outputs Z̃j

(+)
=
∑L

i=1 rG
(+)
i,j Xi+B

(+)
j and Z̃j

(−)
=∑L

i=1 rG
(−)
i,j Xi + B

(−)
j are computed. We assume that the

difference Z̃j = Z̃j
(+) − Z̃j

(−)
, as well as the necessary

rescaling, Zj =
Z̃j

λj
, are computed by digital circuits outside

of the memristor crossbars.
2) Convolutional layer: We consider a convolutional layer

with Ci input channels and Co output channels, a kernel size
k, and a padding size p. A bias vector b may exist as well.

4

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8
𝑪𝟏
𝒊

𝑪𝟎
𝒊

𝑪𝟎
𝒐 𝑪𝟏

𝒐 𝑪𝟐
𝒐

1 1 1 . . . 0 0 0

2 2 2 . . . 0 0 0

0 0 0

3 3 4

4 4 4

0 0 0

.

. 0 0 0

. 7 7 7

. 8 8 8

9 9 9 . . . 9 9 9

Convolution
kernels

a b c d . . . q r 1

a b c

d e f

g h i

j k l

m n o

p q r

Input

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z . . . z z z

...

Output

9 99 𝐁𝐢𝐚𝐬

𝐻

𝑊

k

𝑪𝒊(𝑾 + 𝒑𝟐)(𝑯 + 𝒑𝟐) + 𝟏

𝑪𝟏
𝒊

𝑪𝟎
𝒊

𝑪𝟎
𝒐 𝑪𝟏

𝒐 𝑪𝟐
𝒐

𝑪𝒐𝑬𝑭

𝐸

𝐹

(a) Unrolled-linear mapping

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8
𝑪𝟏
𝒊

𝑪𝟎
𝒊

𝑪𝟎
𝒐 𝑪𝟏

𝒐 𝑪𝟐
𝒐

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

Convolution
kernels

a b d e j k m n 1

a b c

d e f

g h i

j k l

m n o

p q r

Input

b c e f k l n o 1

d e g h m n p q 1

.

.

.

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

z z z

...

Output

9 99 𝐁𝐢𝐚𝐬

1

2

𝒏−𝒌+𝟏 𝟐

H

W

k

𝑪𝟎
𝒊

𝑪𝟏
𝒊

E

F

𝑪𝟎
𝒐 𝑪𝟏

𝒐 𝑪𝟐
𝒐

𝑪𝟏
𝒊

𝑪𝒊𝒌𝟐

𝑪𝒐

(b) Unfold-repeat mapping

Fig. 2: Mapping designs of the convolution operation onto memristor arrays.

We consider that a convolutional layer may be mapped to a
memristor device using one of the following two approaches.

The first approach, which we call unrolled-linear (UL),
consists in converting the convolutional layer into a fully
connected layer. This is illustrated in Figure 2a, where the
weight matrices of each kernel are unfolded and repeated
into a large matrix. Then, the input is flattened into a vector
which can be directly multiplied with the unrolled new weight
matrix stored using memristors. Note that the weight matrix is
therefore of size Ci(H+2p)(W+2p)×CoEF . This approach
has the advantage that the computation of each layer can be
done in one pass, meaning that only one MVM is performed.
On the other hand, it requires storing a large, although sparse,
matrix on memristor crossbars. Moreover, the larger the height
of the matrix that is stored on a memristor crossbar, the more
noise will be added to the result of the MVM carried out.

In the second approach, which we refer to as unfold-repeat
(UR), a weight matrix is constructed for all the kernels [20],
[39]. Figure 2b shows how the mapping of the operation
translates to a memristor crossbar. The constructed matrix
has size k2Ci ×Co with each row containing all the flattened

kernels for one output channel. This matrix is then stored on
a memristor crossbar. To implement the convolution operation,
the input is then unrolled into patches of size k2Ci, and each
patch is multiplied with the memristor crossbar. With this
approach, a much smaller memristor array is needed, but the
number of MVMs required is now (H − k + 1)(W − k + 1).
In addition, as with the fully-connected layer, the existence
of the bias b implies an extra row on the weight matrix, as
displayed in Figures 2.

In terms of actual hardware implementation, the second
convolution mapping is more practical. This is due to the
required size of the memristor crossbar being much smaller,
which reduces the amount of noise in the final computation.
In the following, we consider that the equations proposed for
the fully-connected layers also apply to the UL convolutional
layers.

3) Other linear operations: We now underline that some
non-linear operations such as batch normalization may be im-
plemented by resorting to the previous UL and UR approaches
described for convolutional layers. In this case, an equivalent
UL or UR can be constructed. Alternatively, a preprocessing

5

fusion step may also be applied, as discussed in Sec. IV-A. In
our theoretical discussions and experimental results, we use
average pooling for the pooling operation due to its linear nature
(compared to the often-used max-pooling) which facilitates the
theoretical analysis.

4) Activation function: As previously mentioned, we con-
sider the DNN non-linear operations to be implemented
in digital circuits. Nonetheless, the first and second-order
moments must be propagated through the activation function.
For most activation functions, evaluating such moments may
require an approximation of some operations, which can be
computationally expensive and hence reduce the practicality
of using a theoretical analysis compared to a Monte-Carlo
evaluation of the MSE. Instead, we impose the use of the
ReLU activation function and propose an efficient analytical
formula to compute the first and second-order moments (see
Section III-D).

III. THEORETICAL ANALYSIS

To evaluate the robustness to noise of a memristor-based
DNN, we aim to compare the difference between the output
of the unreliable DNN with the output of a DNN of the same
architecture but using a standard digital hardware devoid of
noise and perturbations, which we refer to as a reliable DNN.
To achieve this, we compute the MSE between the output of
the memristor-based DNN and the output of the reliable DNN.
Denoting by Z the output of the reliable network and by Z̃
the output of the noisy variant, we can express the MSE as

MSE[Z̃] = V[Z̃] + (E[Z̃]− Z)2 , (7)

where E and V are the mean and variance operator, respectively.
As we see from equation (7), the computation of the MSE
requires two terms for each operation performed on the
memristor-enabled computing device: the first and the second-
order moments. Therefore, the goal of our theoretical analysis
is to compute these moments at the output of each DNN layer.

Since we focus on fully-connected and convolutional layers
that are implemented on memristor crossbars, they are affected
by noise, and as such have a significant effect on the successive
moments. On the other hand, some operations, namely batch
normalization, average pooling, and the activation function, are
performed on reliable digital circuits. However, they propagate
the moments from earlier layers.

In the following discussions, we denote by µ and γ the
mean and covariance matrix of the input X of a given layer,
respectively, and present the detailed equations for calculating
the mean and covariance of the output of the different layer
types considered in this work.

A. Moment propagation for fully-connected layers

As mentioned in Section II, the noise introduced in each
memristor weight is independent from the noise introduced
in the other memristors. In other words, the only correlation
between outputs is due to the computations performed by
previous layers.

The random variable Gi,j = G
(+)
i,j − G

(−)
i,j , has mean

E[Gi,j] = λwi,j . If G
(+)
i,j and G

(−)
i,j have noise variance σ2,

then Gi,j has variance 2σ2. Hence, the fully-connected layer
computations presented in (3) followed by rescaling, can be
rewritten as

Zj =
r

λ

(
L∑

i=1

Gi,jXi +Bj

)
, (8)

where Bj is the scaled noisy bias. This leads to the following
expressions for the first and second moments E[Zj], V[Zj] and
Cov[Zj , Zj′] at the output of fully-connected layers.

Proposition 1 (First and second moment propagation for
fully-connected layers).

E[Zj] = r

(
L∑

i=1

wi,jµi + bj

)
, (9)

V[Zj] = r2

(
2σ2

λ2
+

L∑
i=1

(
σ2µ2

i

λ2
+ γ2

i w
2
i,j +

γ2
i σ

2

λ2

)

+

L∑
i=1

L∑
i′=1,i′ ̸=i

wi,jwi′jγi,i′

)
,

(10)

and

Cov[Zj , Zj′] = r2
L∑

i=1

L∑
i′=1

wi,jwi′j′γi,i′ . (11)

B. Moment propagation for convolutional layers

Unlike the fully-connected layer case presented above, all
outputs from the same output channel in the UR convolution
mapping pass through the same memristors. Hence, the same
noise realization is present at different computation stages. To
take this into account, we introduce an additional term in the
computation of the covariance between two outputs from the
same output channel.

We rewrite the computation at the convolution layer followed
by the rescaling as

Zco,io,jo =
r

λco

∑
c

k/2∑
i=−k/2
j=−k/2

Gco,c,i,jXc,io+i,jo+j +Bco . (12)

Using this expression, we propose analytical formulas for
the mean E[Zco,io,jo], variance V[Zco,io,jo], and covariance
Cov[Zco,io,jo , Zc′o,i

′
o,j

′
o
], of Zco,io,jo . For the covariance cal-

culation, since several inputs will encounter the same noise
realization through the same memristor, we analyze two cases
covering the computation of the covariance : in the first case,
two outputs are from the same output channel, and in the
second case, they are from different output channels.

Proposition 2 (First and second moment propagation for
convolutional layers).

E[Zco,io,jo] = r
∑
c

k/2∑
i=−k/2
j=−k/2

w̄co,c,i,jµc,io+i,jo+j + bco , (13)

6

V[Zco,io,jo] = r2

(∑
c,c′

k
2∑

i=− k
2

j=− k
2

k
2∑

i′=− k
2

j′=− k
2

ϖc,c′,i,j,i′,j′

co,co,io,jo,io,jo
+

2σ2

λ2
co

(1 +
∑
c

k
2∑

i=− k
2

j=− k
2

(γ2
c,io+i,jo+j + µ2

c,io+i,jo+j))

)
. (14)

If two outputs are from the same output channel, i.e. if
co = c′o:

Cov[Zco,io,jo , Zco,i′o,j
′
o
] = r2

(∑
c,c′

k
2∑

i=− k
2

j=− k
2

k
2∑

i′=− k
2

j′=− k
2

ϖc,c′,i,j,i′,j′

co,co,io,jo,i′o,j
′
o

+
2σ2

λ2
co

(
1 +

∑
c

k
2∑

i=− k
2

j=− k
2

γc,io+i,jo+j,c,i′o+i,j′o+j

+ µc,io+i,jo+jµc,i′o+i,j′o+j

))
, (15)

and otherwise, if co ̸= c′o:

Cov[Zco,io,jo , Zc′o,i
′
o,j

′
o
] = r2

∑
c,c′

k
2∑

i=− k
2

j=− k
2

k
2∑

i′=− k
2

j′=− k
2

ϖc,c′,i,j,i′,j′

co,c′o,io,jo,i
′
o,j

′
o
,

(16)

with

ϖc,c′,i,j,i′,j′

co,c′o,io,jo,i
′
o,j

′
o
= w̄co,c,i,jw̄c′o,c

′,i′,j′γc,io+i,jo+j,c′,i′o+i′,j′o+j′ .

C. Moment propagation for average pooling layers

We consider a 2D average pooling layer with stride s. The
operation done at this layer is

Zc,i,j =
1

s2

i+s∑
k=i

j+s∑
l=j

Xc,k,l . (17)

Since the average pooling layer is a linear operation, its
moments E[Zc,i,j], V[Zc,i,j] and Cov[Zc,i,j , Zc′,i′,j′] can be
computed exactly.

Proposition 3 (First and second moment propagation for
average pooling layers).

E[Zc,i,j] =
1

s2

i+s∑
k=i

j+s∑
l=j

µc,k,l , (18)

V[Zc,i,j] =
1

s4

i+s∑
k=i

j+s∑
l=j

i+s∑
m=i

j+s∑
n=j

γc,k,l,c,m,n , (19)

and (20)

Cov[Zc,i,j , Zc′,i′,j′] =
1

s4

i+s∑
k=i

j+s∑
l=j

i′+s∑
m=i′

j′+s∑
n=j′

γc,k,l,c′,m,n .

(21)

D. Moment propagation for the activation functions

Activation functions introduce non-linearities in the network.
Letting f denote the activation function, the operation done
at this layer can be written as Zi,j = f(Xi,j). Because of the
non-linear nature of f , it can be complex to compute exactly
the propagation of the first and second-order moments through
the activation functions. This step is thus the only one in the
proposed framework where some approximations are used.
In order to compute the mean and variance of the moments
after the activation function, we need to know the probability
distribution of the moments at the input of the function. Since
we cannot know the exact distribution, we assume the output
of fully-connected and convolutional layers to follow a normal
distribution. This assumption is supported by the fact that in
the memristor computations, only the inputs are dependent,
but not the noise added on each memristor. Therefore, we can
apply the central limit theorem. The validity of this hypothesis
was also empirically verified through simulations presented in
Section VI.

In the case of the ReLU activation function considered
in this paper, if the input follows a normal distribution, the
output follows a one-sided truncated normal distribution. Using
this assumption we can directly compute the closed-form
expressions for the moments E[Zi,j], V[Zi,j] as follows.

Proposition 4 (First and second moment propagation for ReLU
functions).

E[Zi,j] =
γi,j√
2π

e
−

µ2
i,j

2γ2
i,j +

µi,j

2

(
1− erf

(
−µi,j

γi,j
√
2

))
(22)

and

V[Zi,j] =

(
µ2
i,j

2
+

γ2
i,j

2

)(
1− erf

(
−µi,j

γi,j
√
2

))

+
γi,jµi,j√

2π
e
−

µ2
i,j

2γ2
i,j − (E[Zi,j])

2
,

(23)

where erf is the Gauss error function.

Proof. We can express the mean and variance of the output
of the activation function f when the input follows a normal
distribution as

E[Zi,j] =

∫ ∞

−∞
f(x)

1

γi,j
√
2π

exp

(
−1

2

(
x− µi,j

γi,j

)2)
dx

(24)
and

V[Zi,j] = E[Z2
i,j]− E[Zi,j]

2

=

∫ ∞

−∞
f(x)2

1

γi,j
√
2π

exp

(
−1

2

(
x− µi,j

γi,j

)2)
dx

− E[Zi,j]
2 . (25)

We then replace f by the ReLU function and therefore we
simply need to compute the following integrals:

Ψ1 =

∫ ∞

0

x
1

γi,j
√
2π

exp

(
−1

2

(
x− µi,j

γi,j

)2)
dx , (26)

7

and

Ψ2 =

∫ ∞

0

x2 1

γi,j
√
2π

exp

(
−1

2

(
x− µi,j

γi,j

)2)
dx . (27)

The solutions to Ψ1 and Ψ2 can be computed using the general
forms of these normal integrals, as shown in [40].

Following [32], the covariance can also be computed through
approximation using a Taylor expansion:

Cov[Zi,j , Zi′,j′] ≈ f ′ (µi,j) f
′ (µi′,j′) γi,j,i′,j′ . (28)

E. Power consumption

We now use the previous expressions of the moments to
compute the mean power usage of each memristor crossbar
for the inference of one input. We separate the power usage
of the memristor crossbars into two parts: the power usage of
the memristors and the power usage of the TIAs.

1) Fully-connected layer and UL convolution: We first
derive an estimation of the power consumption of the memristor
computations E[P (mem)

i,j] and E[P (mem)
bias,j] when using a fully-

connected layer, which also directly extends to our UL
convolution mapping.

Proposition 5 (Mean power usage of each memristor in a fully
connected layer).

E[P (mem)
i,j] = (λ |wi,j |+ 2gmin)(γ

2
i + x2

i) (29)

E[P (mem)
bias,j] = λ |wbias,j |+ 2gmin . (30)

Proof. For the power consumption of memristors in crossbars,
it is possible to express directly the power usage for a pair
of memristors storing the positive and negative weight of the
same position in the original weight matrix. Defining P (mem)

i,j =

P
(mem)(+)
i,j + P

(mem)(−)
i,j , the power consumption of each pair

of memristor can be written as P (mem)
i,j = |Gi,j |X2

i . We then
compute the mean E[Gi,jX

2
i].

Moreover, the mean power consumption of each TIA,
E[P (TIA)

j

(+)
] and E[P (TIA)

j

(−)
], is evaluated for both the positive

and negative memristor arrays by the following expressions.

Proposition 6 (Mean power usage of each TIA in a fully
connected layer).

E[P (TIA)
j

(+)
] = λ2 ρ

(+)2

i + µ
(+)2

i

r
, (31)

E[P (TIA)
j

(−)
] = λ2 ρ

(−)2

i + µ
(−)2

i

r
. (32)

Proof. We can express the power consumption of each TIA as

P (TIA)
j

(+)
= r

(
L∑

i=1

G
(+)
i,j Xi

)2

=
Z̃

(+)2

j

r
, (33)

P (TIA)
j

(−)
= r

(
L∑

i=1

G
(−)
i,j Xi

)2

=
Z̃

(−)2

j

r
. (34)

We then simply express the mean of the squared outputs of
the memristor computations as computed in Section III-A.

Hence, the mean power consumption E[P (FC)
tot] of a fully-

connected layer or of a convolutional layer with UL mapping
can be computed based on Propositions 5 and 6.

Corollary 1 (Total power consumption of memristors of a
fully-connected layer).

E[P (FC)
tot] =

L∑
j=1

(
L∑

i=1

E[P (mem)
i,j]+E[P (TIA)

j

(+)
]+E[P (TIA)

j

(−)
]

)
.

(35)

2) UR convolution: We consider a convolutional layer with
kernel size k, Ci input channels and Co output channels and
H ×W the height and width of each feature map. We can
compute the mean power for each weight stored on a memristor
E[P (mem)

co,ci,i,j
] and E[P (mem)

bias,co] as follows.

Proposition 7 (Mean power usage of each memristor in a UR
convolutional layer).

E[P (mem)
co,ci,i,j

] =

M−k/2∑
m=k/2

M−k/2∑
n=k/2

(λco |wco,ci,i,j |+ 2gmin)(γ
2
ci,m,n + x2

ci,m,n)

(36)

and

E[P (mem)
bias,co] = (M − k + 1)2(λco |wbias,co |+ 2gmin) (37)

for each bias stored on a memristor.

Proof. Similarly to Proposition 5, we can express the power
consumption of each memristor during inference except that,
in this case, we must also count the number of times the MVM
product is repeated to complete the computation for one input
map:

P (mem)
co,ci,i,j

=

M−k/2∑
m=k/2

M−k/2∑
n=k/2

|Gco,ci,i,j |X2
ci,m,n . (38)

We can then take the mean of this expression:

E[P (mem)
co,ci,i,j

] =

M−k/2∑
m=k/2

M−k/2∑
n=k/2

E[|Gco,ci,i,j |X2
ci,m,n] . (39)

Similarly we can express the mean of each memristor bias as

E[P (mem)
bias,co] =

M−k/2∑
m=k/2

M−k/2∑
n=k/2

λco |wbias,co | . (40)

We also propose expressions for evaluating the mean power
consumption, E[P TIA(+)

co] and E[P TIA(−)

co], of each TIA in a
similar way.

Proposition 8 (Mean power usage of each TIA in a convolu-
tional layer).

E[P TIA(+)

co] =

M−k/2∑
m=k/2

M−k/2∑
n=k/2

V[Z(+)
co,m,n] + E[Z(+)

co,m,n]2

r
, (41)

8

and

E[P TIA(−)

co] =

M−k/2∑
m=k/2

M−k/2∑
n=k/2

V[Z(−)
co,m,n] + E[Z(−)

co,m,n]2

r
.

(42)

Proof. If Zco,m,n is the result of the convolution, we have

P TIA(+)
co =

M−k/2∑
m=k/2

M−k/2∑
n=k/2

Z
(+)2

co,m,n

r
, (43)

and similarly for P TIA(−)

co . We then take the expectation.

We can then express the mean of the total power consumption
of one UR convolutional layer E[P (Conv)

tot] as a corollary of
Propositions 7 and 8.

Corollary 2 (Total power consumption of memristors of a
convolutional layer).

E[P (Conv)
tot] =

Co∑
co=1

(
E[P (TIA)

co

(+)
] + E[P (TIA)

co

(−)
] + E[P (mem)

bias,co]

+

k∑
i=1

k∑
j=1

d∑
ci=1

E[P (mem)
co,ci,i,j

]

)
.

(44)

IV. IMPLEMENTATION DETAILS

A runtime-efficient implementation of our theoretical anal-
ysis is essential to ensure the practicality of our approach
compared to Monte-Carlo simulations. Algorithm 1 describes
the operations of our theoretical analysis and serves as the
blueprint for its implementation. Note that computing the
theoretical equations for a given DNN and input tensor X
is similar to computing its outputs, i.e., presenting an input
to the DNN and forward propagating the output of each layer
with its weights w to the next; with the exception that the
inputs and outputs consists of the triplet µ, γ and P . In

Algorithm 1 DNN Memristor Squared-Error Estimator
µb,c,i,j ← xb,c,i,j

γb,c,i,j,k,l,m ← 0 ▷ Cov init. to 0
Ptot ← 0 ▷ Power init. to 0
for Layer li in the DNN do

Ptot ← Ptot + P (µ, γ, li, wi) ▷ Update the power
µ← ΦE(µ, l

i, wi) ▷ Update µ
γ ← ΦCov(µ, γ, l

i, wi) ▷ Update γ
γb,c,i,j,c,i,j ← ΦV(µ, γ, l

i, wi) ▷ Diagonal of γ
end for

Algorithm 1, ΦE, ΦCov and ΦV correspond to the theoretical
equations for computing the mean, covariance and variance of
a layer, respectively. There are a few efficiency issues with this
algorithm if it is implemented naively. Namely, the covariance
tensor γ tends to be very large for the first layers of the DNN
since it grows quadratically in the number of output activations
of the layer. This may result in out-of-memory errors early
in the computations. However, note that µ shrinks with each
successive layer in popular DNN architectures. Another source

of improvement is to leverage the same data access to perform
slightly different operations resulting in the mean ΦE(·), the
covariance ΦCov(·), and the power P (·).

The aforementioned issues lead to a heavily memory-bound
implementation, thus limiting the size of input batches and
preventing the use of larger DNNs, datasets, and optimization
techniques for the memristor parameters. We aim to alleviate
such issues by carefully analyzing the operations in a given
layer, as discussed next.

A. Fusing convolutional and batch normalization operations

Operator fusion is a well known optimization technique
for DNN deployment by losslessly merging a set of se-
quential operations into one [41], [42]. A popular instance
of such merging is by taking a sequence of batch-norm
and convolution operations and modifying the convolution
weights to incorporate the linear transformation that would
have been performed by batch normalization. Note that, on top
of promoting computational efficiency, there is also a reduction
of the memory footprint. Hence, we perform convolutional
and batch normalization operator fusion prior to the theoretical
analysis in our experiments.

B. Lazy instantiation of the covariance tensor

There are two elements involved in the successive computa-
tion of the covariance γ. First, there is a tensor of large size
B ×Ci ×H ×W ×Ci ×H ×W initialized with zero values.
Second, as we iterate through Algorithm 1, the dimensions of γ
follow the size of the output of intermediate layers. In popular
DNN architectures, the output size of the intermediate layers
shrinks, lessening the memory burden of γ early on in the
analysis implementation. Therefore, we alleviate such memory
bottleneck by representing γ with its size, i.e. storing only the
values of (Ci, H,W,Ci, H,W), and lazily instantiate it when
needed. This delays the large tensor memory allocation to at
least the second layer, which as noted might be of reduced
size. This approach further simplifies some computations in
the first layer.

V. OPTIMIZATION

The maximal programming conductance value gu has a direct
impact on both the power consumption of the device and the
MSE at the output of the DNN. Consequently, when designing
a memristor-based implementation of a DNN, the choice of
gu values becomes a critical consideration. Our proposed
theoretical framework allows exploring possible trade offs.
Depending on whether the primary goal of the implementation
is to minimize energy consumption or maximize accuracy, our
framework can be used as an efficient tool to determine the most
suitable gu value to align with these objectives. To this end, we
consider a DNN represented by a function f(.), with a target
input X and a set of parameters W that includes the weights
and biases of the network. We consider that gu belongs to
the interval [gmin, gmax], where possible gu values correspond
to different trade-offs between power consumption and MSE.
While lower values lead to smaller power requirements but

9

increased MSE, higher values have the opposite effect. Based
on this observation, we formulate the following optimization
problem:

min
gu

E(Ptot)

s.t. MSE(f(X,W, gu)) ≤ ν ,

gmin < gu ≤ gmax

(45)

where ν represents the target MSE to be achieved by the
network. This optimization problem represents finding the best
values for gu which will minimize the power usage of the
memristors for a desired MSE constraint.

Although the optimization problem (45) aims to satisfy a
constraint on the MSE, this metric is not always the end goal
in machine learning problems. For example, in the case of a
classification problem, it is often the accuracy of the network
that needs to be maximized. However, as will be shown in
Section VI, the MSE can be considered as a good proxy
for these other metrics, in particular for the accuracy in a
classification task.

In what follows, we address the optimization problem (45)
for three cases, called designs, of increasing complexity with
respect to gu. Each design increases the degrees of freedom of
the optimization compared to the previous one, so as to ideally
achieve larger power gains:

1) In the scalar design, we consider only one value of
gu for the whole DNN. To do so, we compute wu as
the maximum absolute weight value of all the network
weights. Therefore, we compute and apply the same
scaling factor for all the weight matrices of the network.

2) In the layer-wise design, a distinct gu is used for each
fully connected or convolution layer in the DNN. In this
case, we compute one wu for each layer as the maximum
absolute weight of a given layer. Hence, a different
scaling factor is computed for each layer depending
on wu and the chosen value of gu.

3) Finally, in the column-wise design, we have a vector of
gu for each fully connected or convolution layer, which
have the size of the number of outputs of the respective
layers. For this, we consider a different value of wu for
each column of each weight matrix. A different scaling
factor is then applied to each column of each memristor
crossbar to give more flexibility for reducing the power
usage of the memristors.

Note that each design is also associated with a different
methodology to compute wmax.

Due to the forms of the equations for computing the MSE and
the power usage, no analytical way of solving this optimization
problem could be proposed. Indeed, the problem is non convex,
and also the results of a layer affect the following layers
so it is not possible to compute them separately. With these
issues in mind, to solve problem (45) related to each design,
we propose to use a heuristic optimizing search, based on a
genetic algorithm [43]. Genetic algorithm have the advantages
of more easily avoiding local optima and they can be used
with a fitness function of any form.

Algorithm 2 describes the genetic optimization process used.
In a first step, we initialize the starting population composed

Algorithm 2 Optimizing for gu

Input: gu
(init), σ(init), Npop, ν

Output: gu
∗

ξ ∼ N (0, σ(init)) ▷ Sample Gaussian noise
gu

pop ← gu
(init) +ξ ▷ Initialisation of population

for i ∈ {1, 2, ..., Ngen} do
for each gu ∈ gu

pop do
(MSE[gu], Ptot[gu])← Φ(gu) ▷ Evaluate solution

end for
gu

pop ← Selection(gupop, MSE, Ptot)
gu

pop ← Reproduction(gupop)
end for
gu

∗ ← argmingu Ptot[gu]
return gu

∗

of Npop gu vectors. To generate our initial population, we add
random gaussian noise to our initial best gu estimation noted
gu

(init). Then, at each iteration until we reach the maximum
number of generations desired Ngen, using our implementation
of the theoretical framework, which we refer to as the operator
Φ(gu), we compute the MSE and power usage of each gu in
the population. We keep track of the MSE and power values
achieved by each configuration gu as dictionaries MSE and
Ptot. The gu parameters that allows to have the least power
usage while either satisfying the MSE constraint ν or being the
closest to the constraint if no gu can satisfy it are then selected
using a tournament selection process [44]. A new population
for the next generation is then created during the “reproduction”
step. In this step, the selected individuals are recombined and
have random perturbations added to promote the evolution of
better solutions over time. The gu with the lowest power usage
in the final generation is considered the best solution gu

∗ to
our optimization problem.

Note that depending on the considered design for gu, the
number of parameters to optimize may vary, which directly
influences the number of iterations of the genetic algorithm
required to converge toward a good solution. To reduce the
optimization time, we use the solution found in the case of a
scalar gu to initialize the optimization problem in the case of a
layer-wise gu. Similarly, we use the solution of the layer-wise
gu to initialize the optimization of the column-wise gu.

VI. EXPERIMENTAL RESULTS

This section presents numerical results comparing our
theoretical analysis to Monte-Carlo simulations for several
types of DNNs. It also provides optimization results for the
three considered designs. In addition, it provides a study of
the time efficiency of our implementation of the theoretical
framework described in this paper.

A. Experimental setups

To assess the accuracy of our theoretical analysis and to
evaluate our optimization process, we used two different neural
networks trained on different tasks: we trained a small DNN
on a regression problem, and a larger DNN on a classification

10

conv1

conv2

conv3

conv4
conv5

fc6 fc7

32 x 32 x 3

16 x 16 x 32

8 x 8 x 64

4 x 4 x 128
2 x 2 x 256

1 x 1 x 256 1 x 1 x 10

Convolutional +
Batch Norm+ ReLU

Average Pooling

Fully Connected +
ReLU

32 x 32 x 16

image

Fig. 3: Architecture of the classification network used in our
experiments.

problem. Our goal is to showcase the ability of our analytical
framework to efficiently scale to larger DNNs while still
maintaining its accuracy.

For the regression problem, we used the naval dataset [45]
of 11,934 datapoints made of 16 input features of a simulated
naval vessel with the task to predict the decay coefficients
of its gas turbine. We trained on this dataset a simple feed-
forward network with a hidden layer of 50 neurons and a
ReLU activation function for 200 epochs using the Adam
optimizer [46] with a learning rate of 0.01. For the classification
problem, we trained a convolutional neural network on the
CIFAR-10 dataset [34]. The DNN architecture is presented in
Figure 3 and consists of five blocks of convolutional layers with
a kernel size of 3, a unit stride, and a varying number of filters:
16, 32, 64, 128, and 256 filters were considered. An average
pooling layer follows each convolution block and the final
part of the network is made of a classifier module composed
of two fully-connected layers. We use the ReLU activation
function, and dropout is applied after each average pooling
during training. The network was trained for 200 epochs using
stochastic gradient descent (SGD) with a momentum of 0.9, a
weight decay of 5× 10−4, and an initial learning rate of 0.1
(reduced by a factor of 10 every 50 epochs).

In the following, we refer to a reliable DNN as a DNN
implemented on a standard noiseless digital system, without any
error on the computations and without the need for any weight
scaling, contrary to the memristor-based DNN. Inference on
the memristor-based DNN is simulated based on experimental
memristor models [25], [26] as described in Section II. This
signifies that for each Monte-Carlo simulation, a new realization
of random noise following a normal distribution is computed
and applied to the simulated memristor crossbars which are
converted from the weights as detailed in Section II-B and
that the DNN computations are then simulated as described in
Section II-C.

B. Accuracy of the MSE estimation

1) Regression problem: Figure 4(a) shows the MSE between
the output of the network implemented using memristors and

the output of the same network implemented on a reliable
system. The MSE is shown as a function of the conductance
noise variance σ, while each curve corresponds to different
values of gu. The results were computed using the theoretical
analysis as well as using Monte-Carlo simulations. Similarly,
Figure 4(b) shows the MSE between the memristor network
and the ground truth of the data, which is a standard method for
measuring the performance of a neural network for a regression
problem. In both cases, we observe that the simulations and
the analytical solution match almost perfectly. Moreover, we
see that as the variance of the memristor noise decreases, the
MSE also decreases and converges toward the minimum MSE
achievable with a reliable network. This confirms this intuition
that as gu increases, the network is able to tolerate a higher
level of noise for the same performance.

2) Classification problem: We next studied if the analytical
formulas match the simulations for the considered classification
DNN. Figure 5 shows the MSE between the output of the
memristor network and a reliable network as a function of the
noise variance σ. We plot the results for two implementations,
one using the unfolded convolution mapping (UR), and one
using the unrolled convolution mapping (UL). In all cases,
gu is chosen such that the scaling factor λ equals 1. We
observe that the simulation almost completely matches with
the theoretical results. On the right y-axis, we also show the
accuracy of the noisy classification CNN depending on σ. We
observe the ability of the network to tolerate some error in its
computation in the low-noise regime while still maintaining
its original accuracy. As mentioned in Section II-C2, with
the UR convolution the amount of noise on the computation
is lower than with the UL convolution when considering
the same memristor noise variance σ. Hence, the MSE is
lower for the UR convolution, which transposes to a better
capacity for maintaining a high accuracy. Note that the link
between MSE and classification accuracy is discussed further
in Section VI-D2.

C. Run time comparison with Monte-Carlo simulations

Among other features, the theoretical analysis presented
in Section III allows for evaluating the MSE of an unreliable
network faster than using Monte-Carlo simulations. To quantify
the execution time reduction compared to Monte-Carlo simula-
tions, we first estimate the number of Monte-Carlo iterations
needed using the following equation [47]:

n =

[
zα/2s

px

]2
. (46)

In this expression, zα/2 is a parameter related to the desired
confidence interval, and it can be retrieved from tables of
the cumulative distribution function for a normally distributed
random variable [47], p is the percentage by which we allow
the result to differ from the true value, and s and x are the
sample standard deviation and sample mean, respectively. The
values of s and x may be computed using the Monte-Carlo
simulations through a substantial number of iterations to grasp
an accurate estimate. Equation (46) allows us to compute the
minimum number of iterations needed to compute an MSE

11

10 4 10 3 10 2 10 1

10 8

10 6

10 4

10 2

100

102

M
SE

 w
ith

 re
lia

bl
e

ou
tp

ut

(a)

10 4 10 3 10 2 10 1

10 3

10 2

10 1

100

101

102

103

M
SE

 w
ith

 g
ro

un
d

tru
th

(b)

Theoretical - gu = 0.1
Theoretical - gu = 1.0
Theoretical - gu = 10.0

Simulation - gu = 0.1
Simulation - gu = 1.0
Simulation - gu = 10.0

Fig. 4: Theoretical and Monte-Carlo computations of the MSE depending on the noise variance σ for different values of gu.

10 3 10 2

10 2

10 1

100

101

M
SE

Theory - UL conv
Simulation - UL conv
Theory - UR conv
Simulation - UR conv 10

20

30

40

50

60

70

80

90
Ac

cu
ra

cy
 (%

)
Accuracy - UL conv
Accuracy - UR conv

Fig. 5: MSE and accuracy comparison between the noisy and
original DNNs for a classification problem depending on σ for
the Unrolled-Linear convolution mapping (UL conv) and the
Unfold-Repeat convolution mapping (UR conv).

which will fall within a specific interval from the true value
for a certain confidence level. For example, using zα/2 = 1.96
and p = 0.01 translates to a 95% confidence that the computed
MSE will not be above or below a 1% difference from the
true MSE.

Figure 6 shows a comparison between the run time needed
for computing the MSE of an input from the theoretical
analysis and from Monte-Carlo simulations on the classification
network. The run time is measured for both types of convolution
mappings. For the simulations, we measure the Monte-Carlo
run time for two possible confidence intervals (which directly
influence the number of Monte-Carlo iterations) and two
σ values. The computations were done using one A100
Nvidia GPU and an AMD Milan 7413 CPU. The run time
measurements for each data point were repeated 10 times and
the results were then averaged. We observe that, for the unfold-
repeat convolution mapping, the theoretical analysis is between
26 to 290 times faster than the Monte-Carlo simulations. The
same trend is observed for the unrolled-linear mapping, where

Analysis
UR Conv

Analysis
UL Conv

Monte-Carlo
UR Conv
 CI = 5%

Monte-Carlo
UR Conv
 CI = 2%

Monte-Carlo
UL Conv
 CI = 5%

Monte-Carlo
UL Conv
 CI = 2%

100

101

102

103

Ti
m

e
(s

)

= 0.001
= 0.03

= 0.001
= 0.03

= 0.001
= 0.03

= 0.001= 0.03

Fig. 6: Run time comparison between the theoretical analysis
implementation and Monte-Carlo simulations.

the acceleration factor is between 243 to 1982 depending on
the desired confidence interval.

D. Optimization

1) Regression problem: We investigate the three designs
introduced in Section V. In each case, we want to minimize the
power usage under a specified constraint of the MSE between
the output and the ground truth. The optimization is done using
a genetic algorithm [43] with a population of size 100, a batch
of 128 samples, and noise variance σ2 = 0.01. The results are
presented in Figure 7. We observe that layer-wise optimization
achieves the same performance as the scalar case for less
power usage. However, going from the layer-wise design to
the column-wise does not seem to yield very significant gains
in power consumption.

2) Classification problem: For our classification network,
we first investigate if minimizing the MSE of the network is a
good proxy for maximizing accuracy. To this end, we randomly
generated different sets of gu in the columns-wise case and,
for each set, we compute both the MSE and accuracy. Each
gu set is represented by a point in Figure 8. We observe a

12

102 103 104 105

Mean power

10 3

4 × 10 4

6 × 10 4

2 × 10 3

3 × 10 3

4 × 10 3
M

SE

Scalar - Theoretical
Layer-wise - Theoretical
Column-wise - Theoretical
Scalar - Simulation
Layer-wise - Simulation
Column-wise - Simulation

Fig. 7: Minimized MSE for different optimized networks
subject to various power constraints for the regression network.

10 1 100 101 102

Max MSE

10

20

30

40

50

60

70

80

90

Ac
cc

ur
ac

y
(%

)

Fig. 8: Accuracy as a function of the maximum MSE for
different sets of random gu.

general trend where as the maximum of the MSE decreases, the
accuracy of the network increases. This suggests that reducing
the MSE of the network is a good way to also improve its
accuracy.

We now try to solve the optimization problem for our
classification network. As in the regression problem, we select
a subset of the CIFAR-10 data set of 100 samples (10 of
each class) and use the genetic algorithm to find the best gu
that minimizes the power usage for a given MSE constraint.
Once the algorithm has converged to a solution for gu, we
use it to compute the accuracy of the network and its mean
power usage over the whole test set. The results using different
MSE constraints for the scalar design and the layer-wise
design are presented in Figure 9. Just like for the regression
network, preliminary results showed no differences between
the layer-wise design and column-wise design. Due to the
high computational cost of optimizing for the column-wise
design in the case of a larger network, the data points for all
different MSE constraints were not evaluated. As a result, the
column-wise design is not depicted in the figure. We observe
that having more degrees of freedom for the optimization by
using the layer-wise design for gu permits to achieve lower

1066 × 105 7 × 105 8 × 105 9 × 105

Mean Power

86

87

88

89

90

Ac
cu

ra
cy

 (%
)

Scalar
Layer-wise

Fig. 9: Accuracy after minimizing the MSE for different cases
of optimization and MSE constraints for the classification
network.

power usage for the same network performance. For instance,
there is a 6% difference in power usage between the layer-wise
and single gu case when achieving an accuracy of 90%.

VII. CONCLUSION

In this work, we studied the mechanisms of error propagation
in a memristor-based DNN using probabilistic analysis. This led
us to a theoretical framework capable of accurately estimating
the MSE of a high-performing, noisy network comprising a
variety of layer types. We observed that such MSE estimation is
significantly faster to obtain than with a Monte-Carlo analysis.
We further proposed two mappings for convolutional layers to
memristor crossbars and compared their impact on the error.
The accuracy of the method was validated on multiple tasks
and networks and its speed was demonstrated for different
confidence intervals on the MSE estimate as well as well as
several levels of noise. We have also shown how to use this
approach to optimize the memristor hardware parameters with
varying degrees of freedom, achieving significant power gains
in both the regression and classification tasks.

The proposed framework is versatile and it can easily be
adapted to other types of layers or error models. Albeit fast,
the efficiency of our theoretical analysis implementation could
still be improved by promoting better memory management
and implementing dedicated software kernels, paving the way
for applying it to larger networks and tasks.

REFERENCES

[1] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,
“Dark memory and accelerator-rich system optimization in the dark silicon
era,” IEEE Des. Test, vol. 34, no. 2, pp. 39–50, Apr. 2017.

[2] G. Mordido, M. Van Keirsbilck, and A. Keller, “Instant quantization of
neural networks using Monte Carlo methods,” in Workshop on Energy
Efficient Mach. Learn. and Cogn. Comput. - NeurIPS Ed., 2019.

[3] ——, “Compressing 1D time-channel separable convolutions using sparse
random ternary matrices,” arXiv preprint arXiv:2103.17142, 2021.

[4] Y. Zhang, Y. Savaria, S. Zhao, G. Mordido, M. Sawan, and F. Leduc-
Primeau, “Tiny CNN for seizure prediction in wearable biomedical
devices,” in Annu. Int. Conf. IEEE Eng. in Medicine & Biology Soc.,
2022.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conf. on Comput.
Vision and Pattern Recognit., 2009.

13

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. on Comput. Vision and Pattern Recognit.,
2016.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-performance
large-scale image recognition without normalization,” in Int. Conf. Mach.
Learn., 2021.

[9] S. Yin, Z. Jiang, M. Kim, T. Gupta, M. Seok, and J.-S. Seo, “Vesti: Energy-
efficient in-memory computing accelerator for deep neural networks,”
IEEE Trans. on Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 1, pp.
48–61, 2020.

[10] C. Sakr and N. R. Shanbhag, “Signal processing methods to enhance
the energy efficiency of in-memory computing architectures,” IEEE
Transactions on Signal Processing, vol. 69, pp. 6462–6472, 2021.

[11] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, Mar. 2020.

[12] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008.

[13] G. Pedretti and D. Ielmini, “In-memory computing with resistive memory
circuits: Status and outlook,” Electronics, 2021.

[14] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, “A memristor-based
optimization framework for artificial intelligence applications,” IEEE
Circuits and Syst. Mag., 2018.

[15] J. Wen, M. Ulbricht, E. Perez, X. Fan, and M. Krstic, “Behavioral
model of dot-product engine implemented with 1T1R memristor crossbar
including assessment,” in Int. Symp. on Des. and Diagnostics of Electron.
Circuits Syst., 2021.

[16] A. J. Pérez-Ávila, G. González-Cordero, E. Pérez, E. P.-B. Quesada,
M. Kalishettyhalli Mahadevaiah, C. Wenger, J. B. Roldán, and F. Jiménez-
Molinos, “Behavioral modeling of multilevel HfO2-based memristors
for neuromorphic circuit simulation,” in Conf. on Des. of Circuits and
Integr. Syst., 2020.

[17] J.-C. Vialatte and F. Leduc-Primeau, “A study of deep learning robustness
against computation failures,” in Int. Conf. on Adv. Cogn. Technol. and
Appl., 2017.

[18] S. Henwood, F. Leduc-Primeau, and Y. Savaria, “Layerwise noise
maximisation to train low-energy deep neural networks,” in IEEE Int.
Conf. on Artif. Intell. Circuits and Syst., 2020.

[19] G. B. Hacene, F. Leduc-Primeau, A. B. Soussia, V. Gripon, and F. Gagnon,
“Training modern deep neural networks for memory-fault robustness,” in
IEEE Int. Symp. on Circuits and Syst., 2019.

[20] V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar,
C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, and E. Eleftheriou,
“Accurate deep neural network inference using computational phase-
change memory,” Nature Commun., 2020.

[21] G. Mordido, S. Chandar, and F. Leduc-Primeau, “Sharpness-aware
training for accurate inference on noisy DNN accelerators,” arXiv preprint
arXiv:2211.11561, 2022.

[22] S. Moon, K. Shin, and D. Jeon, “Enhancing reliability of analog neural
network processors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
2019.

[23] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
convolutional neural network accelerator with in-situ analog arithmetic
in crossbars,” in ACM/IEEE Int. Symp. on Comput. Architecture, 2016.

[24] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery,
P. Lin, Z. Wang, W. Song, J. P. Strachan, M. Barnell, Q. Wu, R. S.
Williams, J. J. Yang, and Q. Xia, “Efficient and self-adaptive in-situ
learning in multilayer memristor neural networks,” Nature Commun.,
vol. 9, no. 1, Jun. 2018.

[25] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song,
N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell,
Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, “Analogue signal and
image processing with large memristor crossbars,” Nature Electron.,
vol. 1, no. 1, pp. 52–59, Dec. 2017.

[26] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila,
H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P. Strachan,
“Memristor-based analog computation and neural network classification
with a dot product engine,” Adv. Mater., vol. 30, no. 9, p. 1705914, 2018.

[27] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proc. of the 32nd Int. Conf. on
Int. Conf. on Machine Learning - Volume 37, ser. ICML’15, 2015, p.
1613–1622.

[28] Y. Gal and Z. B. Ghahramani, “Bayesian convolutional neural networks
with bernoulli approximate variational inference,” in Proc. of 4th Int.
Conf. on Learning Representations, workshop track, 2016.

[29] D. Dera, G. Rasool, and N. Bouaynaya, “Extended variational inference
for propagating uncertainty in convolutional neural networks,” in IEEE
29th Int. Workshop on Machine Learning for Signal Processing (MLSP),
2019, pp. 1–6.

[30] D. Dera, G. Rasool, N. C. Bouaynaya, A. Eichen, S. Shanko, J. Cammer-
ata, and S. Arnold, “Bayes-SAR net: Robust SAR image classification
with uncertainty estimation using bayesian convolutional neural network,”
in IEEE Int. Radar Conf. (RADAR), 2020, pp. 362–367.

[31] D. Dera, N. C. Bouaynaya, G. Rasool, R. Shterenberg, and H. M.
Fathallah-Shaykh, “PremiUm-CNN: Propagating uncertainty towards
robust convolutional neural networks,” IEEE Transactions on Signal
Processing, vol. 69, pp. 4669–4684, 2021.

[32] E. Dupraz, L. R. Varshney, and F. Leduc-Primeau, “Power-efficient deep
neural networks with noisy memristor implementation,” in IEEE Inf.
Theory Workshop, 2021.

[33] J. Kern, S. Henwood, G. Mordido, E. Dupraz, A. Aissa-El-Bey, Y. Savaria,
and F. Leduc-Primeau, “MemSE: Fast MSE prediction for noisy
memristor-based DNN accelerators,” in IEEE Int. Conf. on Artif. Intell.
Circuits and Syst., 2022.

[34] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

[35] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine for
neuromorphic computing: Programming 1T1M crossbar to accelerate
matrix-vector multiplication,” in 2016 ACM/EDAC/IEEE Des. Automat.
Conf., 2016.

[36] V. Milo, C. Zambelli, P. Olivo, E. Pérez, M. K. Mahadevaiah, O. G. Osso-
rio, C. Wenger, and D. Ielmini, “Multilevel HfO2-based RRAM devices
for low-power neuromorphic networks,” APL Materials, vol. 7, no. 8, p.
081120, Aug. 2019.

[37] Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan,
J. P. Strachan, N. Ge, N. McDonald, Q. Wu, M. Hu, H. Wu, R. S.
Williams, Q. Xia, and J. J. Yang, “In situ training of feed-forward and
recurrent convolutional memristor networks,” Nature Mach. Intell., vol. 1,
no. 9, pp. 434–442, Sep. 2019.

[38] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, “Fully hardware-implemented memristor convolutional neural
network,” Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020.

[39] T. Gokmen, M. Onen, and W. Haensch, “Training deep convolutional
neural networks with resistive cross-point devices,” Frontiers in Neuro-
science, vol. 11, Oct. 2017.

[40] D. B. Owen, “A table of normal integrals,” Commun. in Statist. - Simul.
and Comput., vol. 9, no. 4, pp. 389–419, 1980.

[41] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: An
automated end-to-end optimizing compiler for deep learning,” in Proc.
13th USENIX Conf. Operating Syst. Des. and Implementation, 2018.

[42] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “DNNFusion:
Accelerating deep neural networks execution with advanced operator
fusion,” in Proc. 42nd ACM SIGPLAN Int. Conf. Program. Lang. Des.
and Implementation, 2021.

[43] J. H. Holland, Adaptation in natural and artificial systems: An intro-
ductory analysis with applications to biology, control, and artificial
intelligence. MIT Press, 1992.

[44] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament
selection, and the effects of noise,” Complex Syst., vol. 9, 1995.

[45] A. Coraddu, L. Oneto, A. Ghio, S. Savio, D. Anguita, and M. Figari,
“Machine learning approaches for improving condition-based maintenance
of naval propulsion plants,” J. Eng. for the Maritime Environ., vol. 230,
no. 1, pp. 136–153, 2016.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[47] M. R. Driels and Y. S. Shin, “Determining the number of iterations for
Monte Carlo simulations of weapon effectiveness,” Naval Postgraduate
School, Tech. Rep., 2004.

	Introduction
	System models
	Memristor model
	Mapping dot-product computation into a memristor crossbar
	Computation models for DNNs and CNNs
	Fully-connected layer
	Convolutional layer
	Other linear operations
	Activation function

	Theoretical analysis
	Moment propagation for fully-connected layers
	Moment propagation for convolutional layers
	Moment propagation for average pooling layers
	Moment propagation for the activation functions
	Power consumption
	Fully-connected layer and UL convolution
	UR convolution

	Implementation details
	Fusing convolutional and batch normalization operations
	Lazy instantiation of the covariance tensor

	Optimization
	Experimental results
	Experimental setups
	Accuracy of the MSE estimation
	Regression problem
	Classification problem

	Run time comparison with Monte-Carlo simulations
	Optimization
	Regression problem
	Classification problem

	Conclusion
	References

